首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为确定非饱和紫色土颗粒流宏细观力学参数间关系,采用三维颗粒流软件(PFC3D)并结合控制变量法与莫尔-库仑破坏准则,对不同含水率(8%、10%、12%、14%、16%、18%)及围压(100kPa、200kPa、300kPa、400 kPa)条件下的非饱和紫色土三轴固结不排水试验进行了数值模拟,并与室内结果进行对比。结果表明:重塑紫色土黏聚力随含水率增加呈先增后减的趋势,且存在临界含水率12%;内摩擦角与含水率呈一阶线性负相关。紫色土的宏观强度参数黏聚力与细观参数切向黏结强度呈线性正相关,而内摩擦角值由颗粒切向黏结强度及摩擦系数共同决定。建立了紫色土含水率与颗粒切向黏结强度、摩擦系数之间的定量关系,通过细观参数切向黏结强度及摩擦系数的改变来模拟不同含水率下紫色土的黏聚力与内摩擦角的变化,将数值模拟的应力-应变曲线与室内试验曲线进行对比,验证了该关系的正确性。利用PFC3D内置的切片工具对含水率为12%,围压为200kPa的数值试件进行剖切,可以较好地观察到紫色土三轴微观颗粒的运动情况及颗粒间接触力的分布特征,为深入探究紫色土的抗剪强度特性及应力-应变性状提供参考。  相似文献   

2.
吸力内摩擦角在非饱和土抗剪强度理论中是一个关键参数,因受设备、测试技术以及试验方法等的限制,对于其值的确定难度较大。详细地分析了土的基本物理力学性质、测试方法对吸力内摩擦角数值的影响,并通过定性分析和定量计算结合,认为干密度、含水率、内摩擦角、黏聚力与吸力内摩擦角之间存在着一定的非线性关系,因而借用人工智能--BP神经网络的方法构建了4:9:1的网络结构模型,实现了对吸力内摩擦角 的预测和计算。通过预测结果的分析可知,该模型模拟和预测的精度均较高,因此,该种方法可以应用到非饱和土吸力内摩擦角值的预测之中去。  相似文献   

3.
降雨诱发坡面型泥石流形成机理   总被引:7,自引:0,他引:7  
基于野外调查和室内测试分析,依据岩土体破坏准则理论,结合典型坡面型泥石流进行剖析,从坡面型泥石流形成的影响因素、运动学特征、动力条件、形成与演化过程等方面,探讨了降雨诱发坡面型泥石流的形成机理。研究结果表明:坡面流以平移式滑动方式破坏为主,通常发生于残坡积土层厚度小(≤2.0 m)的陡坡地带(坡度≥40°),降雨是坡面型泥石流的主要触发因素,雨水入渗促使斜坡残坡积岩土体饱和软化,当土体含水率超过28%~30%,粘聚力、内摩擦角与含水率关系曲线都出现了明显的拐点,即饱和度超过75%时,其粘聚力和内摩擦角都发生急剧降低,斜坡土体由稳定状态向破坏状态演化。遇持续降雨(或暴雨)作用,此种残坡积土局部发生失稳下滑——流土,进而在动水压力作用下发生下泻造浆形成坡面泥石流。  相似文献   

4.
River bank erosion control by soil nailing   总被引:2,自引:0,他引:2  
A study has been done for analysing soil nailed cuts with circular type wedge failure by friction circle method. Various parameters such as nail length, nail diameter, nail inclination, wall inclination and angle of internal friction of soil have been considered to determine the factor of safety of nailed open cuts. The study shows that for cohesionless soil nailed cut, factor of safety increase with increase of parameters like angle of internal friction of soil, length of nail (L) versus height of cut (H) ratio, cohesion of soil and nail inclination (upto 15°) with horizontal. The study revealed that nails grouted with cement perform better than driven nails. A case study further confirms the analytical findings. Received 7 October  相似文献   

5.
与地下水位以下的饱和黄土力学性质相比,包气带黄土力学性质具有不同的表征参数和测试方法,其对黄土斜坡渗流场和稳定性的影响不容忽视.以甘肃黑方台地区黄土为例,分别采用张力计和轴平移技术量测了黄土的部分区段土-水特征曲线,依据Gardner、Van Genuchten和Fredlund and Xing 3种经验公式对轴平移测试数据进行拟合,获取了完整的土-水特征曲线.基于GDS多功能三轴仪,通过控制基质吸力的三轴剪切试验,获取了考虑基质吸力的黄土强度参数.结果显示:张力计和轴平移技术量测的部分区段土-水特征曲线具有相近的曲线形态,但张力计曲线位于轴平移技术曲线的上方;当基质吸力由100kPa减小至20kPa时,黄土内摩擦角减小约1°,粘聚力下降近22kPa;拟合所得的黑方台地区黄土的基质吸力摩擦角为15.6°.试验为进行黑方台黄土斜坡的非饱和渗流和稳定性分析提供了参数.  相似文献   

6.
非饱和土的抗剪强度与含水率关系的试验研究   总被引:10,自引:0,他引:10  
黄琨  万军伟  陈刚  曾洋 《岩土力学》2012,33(9):2600-2604
研究非饱和土的抗剪强度及其随含水率的变化规律,对工程实践具有重要意义。在总结前人试验研究成果的基础上,以欠固结的第三系粉砂土为研究对象,对原状土和两种控制含水率方法的重塑土进行直剪试验,并与前人研究进行对比。研究结果表明,随着含水率的增加,土的抗剪强度降低,含水率对抗剪强度的影响主要是降低了土的黏聚力,对内摩擦角的影响较小。含水率与黏聚力之间的关系可以由两个直线段描述,第2直线段的斜率要大于第1直线段,当含水率增加到一定值时,土的黏聚力急剧下降。通过控制干密度,添加不同质量的水来改变土样含水率的重塑土方法,不仅改变了土样的含水率,还改变了土的压实度和颗粒结构,因此,土的抗剪强度的变化是含水率和压实度共同影响的结果,在分析试验结果时应该引起重视。  相似文献   

7.
Soil–water characteristic curve (SWCC) is the most fundamental and important soil property in unsaturated soil mechanics. It has been used for analyzing slope stability due to the infiltration of rainfall into slopes and water flow in unsaturated embankments. Generally, SWCC is obtained by laboratory tests. However high cost, long duration and difficulty of the tests impede the application of unsaturated soil mechanics to practical design or analysis. Therefore, several equations have been developed to predict the SWCC using grain-size distribution (GSD) curve. However, most of the equations were limited to soils with unimodal characteristics and the parameters of the equations are not related to the physical properties of the soil. In this paper, an equation to predict SWCC for soils with bimodal characteristics is proposed. The parameters of the proposed equation are related to the physical properties of soil and the variables of SWCC closely. The proposed equation is evaluated with data from the literature and laboratory tests carried out in this study. In addition, the computer codes for the computation of the predicted bimodal SWCC are presented.  相似文献   

8.
津巴布韦泥岩残积土是一种性质特殊的风化土,系统地评价这类问题土的工程地质特性对于推动我国海外的工程建设具有重要指导意义。通过室内物理与力学试验,评价泥岩残积土的工程特性,并通过矿物组成、化学成分和微观结构论述其特殊性质的机理。结果表明,该土可定义为坚硬的非饱和黏性土,具有较弱膨胀性和较差的压实性;天然状态下,由于含有母岩残留的结构强度,表现出偏高的强度特征,但泡水后土的黏聚力明显减低,干湿循环作用也会导致内摩擦角的降低,但浸水过程不会出现明显的湿陷沉降;强烈的水敏性也导致该土浸水后产生强烈的泥化崩解,因此,雨季施工中应重点关注降雨引发的工程灾害。研究还表明,津巴布韦泥岩残积土的工程特性受控于土的物化成分与结构特性,该土的黏土矿物主要是伊利石-高岭石型,微观结构主要是含有高定向性的高岭石团与大裂隙的团粒结构,团粒间的铁质胶结是导致土的较高强度的根本原因。  相似文献   

9.
The addition of cementitious admixtures and/or inclusion of fibers are frequently used in practice to stabilize soils and to improve their mechanical properties. In this study, ring shear tests were conducted to investigate mechanical properties such as shear strength, angle of friction and cohesion values of randomly distributed discrete fiber-reinforced sand mixtures. The length and aspect ratio of the fibers used in the current study were 12 mm and 120, respectively. Specimens were prepared at four different fiber ratios (0.1, 0.3, 0.6, and 0.9 % by weight of sand). A series of ring shear tests were carried out on sand alone and fiber-reinforced sand mixtures at different normal stresses. The test results indicated that the addition of fiber had a significant effect on the shear strength of the sand. Shear stress of the unreinforced sand increases 1.29–2.32, 1.16–1.39, and 1.07–1.5 times at a normal stress of 50, 150, and 250 kPa, respectively with fiber inclusion. Fiber content had positive effects on improving the shear strength parameters (angle of internal friction and cohesion) of the mixtures. The cohesion and angle of internal friction of fiber-reinforced sand prepared at different ratios of fiber increased by 5.3–27.4 kPa and 2.0°–7.3° respectively. The inclusion of fibers improves the ductility of the soil by preventing the loss of post-peak strength.  相似文献   

10.
基于路径的非饱和土抗剪强度指标确定方法   总被引:1,自引:1,他引:0  
姚攀峰  祁生文  张明 《岩土力学》2009,30(9):2605-2608
非饱和土的抗剪强度是非饱和土中的基本问题,如何快速、经济地确定非饱和土的抗剪强度指标是非饱和土工程应用的关键性问题之一。非饱和土抗剪强度的黏聚力和内摩擦角是含水指标的函数;通过模拟不同路径下非饱和土抗剪试验,得到黏聚力-饱和度曲线(CDSC曲线)和内摩擦角-饱和度曲线(IFADSC曲线),进而得到非饱和土抗剪强度指标;在同一路径小区间范围内CDSC和IFADSC曲线近似为直线。通过抗剪强度路径模拟,用常规试验和含水指标得到非饱和土抗剪强度指标,大大地简化了非饱和土抗剪强度指标的确定,为非饱和土土力学理论应用于实际工程提供了有利条件。  相似文献   

11.
Debris strength is a key factor in the initiation of debris flows. Therefore debris strength must be measured to assess the initiation conditions of debris flows. It is difficult to test the strength of coarse debris in the laboratory, as large quantities of material are needed to eliminate single-particle effects. Therefore in-situ strength tests have been conducted on scree slopes in the southern French Alps to measure the strength of dry, coarse, matrixless debris. The test method consisted of bringing a debris mass into movement parallel to the slope surface on slopes at or near the critical slope angle.

As dry, coarse, matrixless debris is essentially cohesionless, its strength can be characterized by its internal friction angle. Mean kinetic internal friction angles vary from 360° to 387° for five debris types with mean stone sizes ranging from 33–50 mm. Stone size sorting is the most important cause of variations in kinetic internal friction angle. Stone shape also influences the kinetic internal friction angle, but it is less important. Stone size, stone shape sorting and rock type have no influence. However, rock type may indirectly influence kinetic internal friction angle through stone size sorting and stone shape.  相似文献   


12.
This paper discusses the formation of stable arches in frictional soils. A series of laboratory tests are performed to explore the formation of arches in granular materials, either cohesionless or with small apparent cohesion. By considering the stable soil arch as a stress‐free surface, the analysis in the framework of continuum mechanics reveals that such an arch can only form in cohesive frictional materials. The shape of the arch mainly depends on the material's friction angle, while the critical width of the arch is primarily dominated by cohesion. The formation of stable arches in cohesionless materials is interpreted by taking into account the discrete nature of the material, with the failure of the arch being considered as buckling of particle columns. It is shown that the width of stable arches in cohesionless materials is generally five to seven times of the particle size. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Passive earth pressure calculations in geotechnical analysis are usually performed with the aid of the Rankine or Coulomb theories of earth pressure based on uniform soil properties. These traditional earth pressure theories assume that the soil is uniform. The fact that soils are spatially variable leads to two potential problems in design: do sampled soil properties adequately reflect the effective properties of the entire soil mass and does spatial variability in soil properties lead to passive earth pressures that are significantly different from those predicted using traditional theories? This paper combines non-linear finite element analysis with random field simulation to investigate these two questions. The specific case investigated is a two-dimensional frictionless passive wall with a cohesionless drained soil mass. The wall is designed against sliding using Rankine's earth pressure theory. The unit weight is assumed to be constant throughout the soil mass and the design friction angle is obtained by sampling the simulated random soil field. For a single sample, the friction angle is used as an effective soil property in the Rankine model. For two samples, an average of the sampled friction angles is used. Failure is defined as occurring when the Rankine predicted passive resistance acting on the wall, modified by a factor of safety, is greater than that computed by the random finite element method. Using Monte Carlo simulation, the probability of failure of the traditional design approach is assessed as a function of the factor of safety using and the spatial variability of the soil.  相似文献   

14.
Landslides are the major natural hazards in many countries all over the world and are usually caused by heavy rainfall, water level change of reservoir, excavation, earthquake, etc. Whether the landslide occurs or not in rainfall season, the strength variation of slip-zone soils of landslide is regarded as the vital control factor. Thus, strength behavior for slip-zone soils of landslide subject to the change of water content is required to be evaluated in a potential landslide area. In this paper, the shear strength of typical slip-zone soil, six groups of 25 specimens of remolded clay samples from Daxishan reservoir landslide, was systemically investigated using the improved direct shear test apparatus in order to fully understand its physical and mechanical properties, and also the shear and failure behavior. Furthermore, the fitting equations for expressing the relationship between the shear strength (effective cohesion and internal friction angle) and vertical loadings, initial water contents of slip-zone clay were established based on the experimental results. In particular, a series of shear stress–shear strain curves under various vertical loadings and different water contents were observed. The results show that a “softening” stress–strain behavior is achieved for unsaturated slip-zone soil, while a “hardening” curve is found for saturated slip-zone soil.  相似文献   

15.
The use of steel slag fines has been fully investigated and developed as it has similar chemical composition and mineralogy to that of Portland cement. Researchers from home and abroad have done lots of research on steel slag, such as its production, processing, properties, mechanical behavior, cementitious property and so on. This paper describes influence of water content on mechanical properties of improved clayey soil using steel slag and a series of tri-axial compression tests are carried out to study the influence of water content to the admixture of clayey soils and steel slag. Through the test data statistics and analysis, the basic rules of the mechanical properties of these mixed soils were gotten, especially, the optimum steel slag and water content. Through tri-axial compression tests, there are several kinds of specimen failure forms in different conditions of steel slag and water content. The stiffness of steel slag is larger than clayey soil, so the specimen with steel slag would break with an oblique angle whereas the clayey soil specimen would be compressed. Drawn from the experiment, while water content increases, cohesion c increases and internal friction angel φ decreases; however, in general, the maximum stress difference firstly increases, and then decreases. Under the same water content, with the curing period and steel slag content increase, cohesion c increases, internal friction angel φ decreases, however, the stress difference increases. By analyzing the specimen failure forms and the relations of stress difference and axial strain, the relations between stress difference max (σ1 ? σ3) and steel slag content and relations between the secant modulus E50 and steel slag content are gotten. It is concluded that when the water content is about 18 % and steel slag content is about 30 %, the stress difference and secant modulus E50 is larger than other cases. Therefore, in soft soil foundation treatment, such steel slag and water content could be chosen in order that the soil strength would be improved. So, judging from the results, the foundation settlement will be reduced by mixing appropriate steel slag and water content.  相似文献   

16.
干湿循环对非饱和膨胀土抗剪强度影响的试验研究   总被引:1,自引:0,他引:1  
徐丹  唐朝生  冷挺  李运生  张岩  王侃  施斌 《地学前缘》2018,25(1):286-296
膨胀土是一种气候敏感性土体,研究在干湿循环过程中膨胀土剪切强度的变化,对了解在自然界周期性蒸发和降雨作用下原位膨胀土体工程性质的变化以及由此导致的地质灾害发生过程具有重要意义。文中以重塑非饱和膨胀土为研究对象,模拟了3次干湿循环过程,对每次干燥路径中的试样进行了直剪试验,重点分析含水率、正压力及干湿循环次数对膨胀土剪切强度的影响,得到如下主要结果:(1)在干燥过程中,随着含水率的减小,试样的刚度、脆性、抗剪强度值(峰值剪切应力)、抗剪强度指标(黏聚力、内摩擦角)及抗剪强度损失(峰值强度与残余强度之差)均呈增加趋势;(2)正压力越高,试样的剪切强度和残余强度越大,而破坏后的峰值强度损失越小,破坏韧性增加;(3)在3次干燥过程中,试样的剪切强度及黏聚力呈先增加后减小的趋势,在第二次干燥过程中达到峰值,但内摩擦角受干湿循环的影响无明显规律;(4)试样经历多次干湿循环后,其剪切特性越来越类似于超固结土,脆性显著增加;(5)干燥过程和干湿循环对试样残余剪切强度的影响都不明显,残余剪切强度基本都在100 kPa附近变化;(6)非饱和膨胀土在干湿循环及干燥过程中剪切强度的变化除了与吸力有关外,还与其微观结构调整和裂隙发育状态密切相关,需要综合非饱和土力学和土质学理论对试验现象进行分析。  相似文献   

17.
Significant difference in stress–strain behavior of dense cohesionless soil has been observed between plane strain and triaxial test conditions. At present, majority of geotechnical laboratories have no plane strain testing facility. Therefore, geotechnical professionals are more dependent on the conventional triaxial test for soil properties, whereas many geotechnical structures prevail close to plane strain condition. A method has been proposed to determine soil properties for plane strain condition from the conventional triaxial tests. This method can especially be used to determine the internal friction angle and stress–strain relationship for plane strain condition from triaxial tests results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The shear strength of cohesionless soil is reduced as the water pressure inside the pores of the soil mass increases. The mathematical relationship between the shear strength and the pore water pressure was derived using Mohr–Coulomb failure criteria as a function of the confining pressure and the effective angle of friction. Experimentally, a series of consolidated drained triaxial tests with back pore water pressure was run on samples of saturated uniform dense sand. The tests were conducted at different confining pressures in the range of 100–400 kPa with an increment of 100 kPa. At each level of confining pressure, the tests were repeated at different values of back pore water pressure in the range of 0–100 kPa with an increment of 25 kPa. For each test, the initial applied back pore water pressure was kept constant during the test for comparing the results at the same effective confining pressure. This study concludes that the mathematical relationship gives accurate results at any level of confining pressure and/or pore water pressure as a function of the effective angle of friction that can be evaluated using single consolidated drained triaxial test at zero back pore water pressure.  相似文献   

19.
非饱和土的蒸发效应与影响因素分析   总被引:7,自引:4,他引:3  
采用非饱和土等温流和考虑热湿耦合的非等温流方程,结合不同的蒸发计算模型,分析了大气蒸发效应对非饱和土吸力变化的影响,并对控制蒸发量计算的多个参数进行了影响程度分析。结果表明,考虑实际蒸发量和非饱和土热湿耦合的水分运动公式能较好地模拟大气影响下非饱和土吸力变化状态,通常所采用的等温流方程加以潜在蒸发量计算非饱和土吸力变化会高估表层蒸发和吸力的下降程度。控制地面蒸发的主导因素是外部气象条件,尤其以太阳净辐射量和风速为最,土体自身特性参数影响程度有限。  相似文献   

20.
If the free vertical movement of the upper rigid part of the shear box is hindered during shearing, a frictional force is mobilized between the specimen and the vertical walls of the shear box. This causes either unloading (for contractant soils) or additional loading (for dilatant soils) of the specimen during shearing. If no correction of the applied vertical load with respect to the wall friction is taken into account, the resulting shear strength can be either underestimated (for contractant soils) or overestimated (for dilatant soils). For example, in a particular investigation of a normally consolidated soil, the measured friction angle from a direct shear test was almost 8° smaller than the angle from a triaxial test. This paper, therefore, presents a method for direct measurement of the frictional force at the contact between the vertical walls of the box and a fine-grained soil. If the wall friction is taken into account, the friction angle from the shear box coincides well with the angle from triaxial tests. If the wall friction cannot be measured during the test, a sufficiently large vertical gap should be adjusted in case of soft soils, in order to enable non-restrained settlement of the upper part of the box during specimen contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号