首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 762 毫秒
1.
选用磷酸为离子流发射剂,热表面电离质谱法分析纳克量级贫化铀样品的铀同位素比值,方法最大相对标准偏差2.9%。以233U为稀释剂,采用同位素稀释法对铀的含量进行测定,扩展不确定度为2.4%(K=2)。研究表明,在纳克量级的铀同位素比值测定中,来自铼带等铀本底的干扰影响不容忽视,需要进一步研究并扣除。  相似文献   

2.
讨论了影响甲醛标准溶液浓度标定值不确定的各种因素,并评定了甲醛标准溶液浓度标定值的不确定度。当甲醛标准溶液浓度为1058 mg/L时,它的相对标准不确定度为0.70%(K=2)。  相似文献   

3.
酸碱滴定法测定天然石膏中碳酸盐的不确定度评定   总被引:2,自引:0,他引:2  
对酸碱滴定法测定天然石膏中碳酸盐的结果进行不确定度评定。测量过程中的不确定度主要来源于样品制备过程引入的不确定度、滴定导致的不确定度、标定NaOH标准滴定溶液和HCl标准溶液引起的不确定度及重复性实验引起的不确定度等。合成各不确定度分量,并乘以扩展因子2得到扩展不确定度。对于CO2平均含量为8.66%(质量分数)的天然石膏样品,其扩展不确定度为0.17%。  相似文献   

4.
黄聪  董传江  王力  肖峰  李莉  郑洪龙 《铀矿地质》2020,(1):52-58,72
介绍了激光荧光法测定土壤中总铀含量的不确定度评定方法。建立了不确定度的测量模型,对不确定度来源进行了分析,并对不确定度分量进行量化,计算出环境级土壤样品总铀含量测量的扩展不确定度。结果表明,某0.1 g环境土壤干样总铀含量测量的扩展不确定度为13.04%(k=2),占主导作用的不确定度来源为样品荧光计数测量不确定度。  相似文献   

5.
多接收器等离子体质谱精确测定铼含量及其同位素丰度   总被引:5,自引:2,他引:5  
利用多接收器等离子体质谱建立了快速精确测定铼含量及其同位素丰度的方法。溶液中加入铱元素进行铼同位素的质量分馏校正,在常规的溶液雾化进样条件下,采用同位素稀释法可准确测定纳克级的铼含量。铼标样A的自然同位素丰度的测量结果为185Re(37.437±0.008)%、187Re(62.563±0.008)%(2σ,n=5);铼稀释剂的同位素丰度测量结果为185Re(5.576±0.018)%、187Re(94.424±0.018)%(2σ,n=7);与未进行分馏校正的同位素组成的测量结果相比,精度和准确度均有提高。利用同位素稀释法测得铼标样A的浓度为(516.48±0.35)ng/g(2σ,n=5);测量精度和准确度均优于0.10%;利用反同位素稀释法对铼稀释剂B进行了详细的测量,平均测量结果为(62.74±0.26)ng/g(2σ,n=15),在分析误差范围内与其标定值完全一致;与未进行分馏校正的浓度测量结果相比,铼同位素丰度及铼含量的测量准确度均明显提高。  相似文献   

6.
硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定   总被引:2,自引:0,他引:2  
蔡玉曼 《岩矿测试》2008,27(2):123-126
对硅钼蓝分光光度法测定钛铁矿中SiO2含量的不确定度进行评估,建立了数学模型,认为测量过程中不确定度主要来源于标准物质、样品制备、曲线拟合,以及重复实验产生的不确定度。当SiO2平均含量为0.67%时,评定其扩展不确定度为0.05%(k=2)。  相似文献   

7.
镉标准溶液配制结果的不确定度评定   总被引:4,自引:2,他引:2  
李松  饶竹 《岩矿测试》2009,28(5):479-482
选择氧化镉标准物质,配制成质量浓度为1000μg/mL的镉标准溶液,利用等离子体质谱法对标准溶液进行了定值与稳定性检验。通过对镉标准溶液配制过程不确定因素的描述,以95%概率下的扩展因子2获得标准溶液浓度配制标示值的扩展不确定度。实验数据表明,所配制的标准溶液稳定性可达2年。  相似文献   

8.
陈志清  曹静  梅祖明 《岩矿测试》2009,28(6):583-586
讨论了影响三氧化二铝测定结果不确定度的各种因素,并评定了土壤样品中测定三氧化二铝结果的不确定度。采用EDTA络合、氟化钾置换、乙酸锌溶液滴定的测定方法,当三氧化二铝的含量为15.03%时,其扩展不确定度U=0.20%(Urel=1.4%,k=2)。  相似文献   

9.
廖丽荣  杜白  刘玉 《云南地质》2014,33(3):413-416
采用电感耦合等离子体质谱法(ICP-MS)对饮用天然矿泉水中的锂和锶进行测定,分析了测定过程中不确定度的主要来源,按JJF 1059-1999《测量不确定度评定与表示》对各个不确定度来源进行分析评定,给出了此法测定过程中的扩展不确定度,使得测定结果的表达更加客观和真实.  相似文献   

10.
对采用伏尔哈特法测定银首饰中Ag质量分数的不确定度进行了评定。以某925银首饰为例,分析了影响该方法测定Ag质量分数不确定度的来源,对每个不确定度分量进行了量化,并应用Excel程序给出了扩展不确定度以及最终结果:wAg=(92.55±0.24)%,k=2,为有效地使用该方法测定银饰品中Ag的质量分数提供可靠的理论依据。  相似文献   

11.
A new technique has been developed for the accurate and precise determination of the stable Cd isotope composition of seawater. The method utilizes a 110Cd-111Cd double spike, and it involves separation of Cd from seawater by column chromatography and isotopic analyses by multiple collector inductively coupled plasma mass spectrometry. As a by-product, it also generates precise Cd concentration data. Repeated analyses of three pure Cd reference materials and three seawater samples yielded reproducibilities of about ±1.0 to ±1.6 ε114/110Cd (2 SD), based on measurements that each consumed about ∼8 ng of natural Cd (ε114/110Cd is the deviation of the 114Cd/110Cd isotope ratio of a sample from the standard in parts per 10,000). This demonstrates that the new double spike technique is superior to published methods of Cd isotope analyses, with regard to the acquisition of precise data for samples of limited size. Additional experiments showed that as little as 1-5 ng of seawater Cd could be analyzed with a precision of about ±2 to ±6 ε114/110Cd (2 SD). The accuracy of the seawater isotope data was ascertained by experiments in which a Cd-free seawater matrix was doped with small quantities of isotopically well-characterized Cd. Repeated mass scans that were carried out on purified Cd fractions of several samples furthermore demonstrated the absence of significant spectral interferences. The isotope data that were acquired for the three seawater samples reveal, for the first time, small but resolvable Cd isotope fractionations in the marine environment. Cadmium-rich intermediate water from the North Pacific was found to have an isotope composition of ε114/110Cd = 3.2 ± 1.0. In contrast, Cd-depleted seawater from the upper water column of the Atlantic and Arctic Oceans displayed isotope compositions of ε114/110Cd = 6.4 ± 1.1 and 6.6 ± 1.6, respectively. These observations are in accord with the interpretation that the isotope effects are due to the biological fractionation that occurs during the uptake of dissolved seawater Cd by phytoplankton.  相似文献   

12.
As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from ice‐core water from the Amundsen–Scott South Pole Station. This isotopic reference material, designated as USGS49, was filtered, homogenised, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity and measured by dual‐inlet isotope‐ratio mass spectrometry. The δ2H and δ18O values of USGS49 are ?394.7 ± 0.4 and ?50.55 ± 0.04 mUr (where mUr = 0.001 = ‰), respectively, relative to VSMOW, on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, ?428 and ?55.5 mUr. Each uncertainty is an estimated expanded uncertainty (= 2uc) about the reference value that provides an interval that has about a 95% probability of encompassing the true value. This isotopic reference material is intended as one of two isotopic reference waters for daily normalisation of stable hydrogen and oxygen isotopic analysis of water with an isotope‐ratio mass spectrometer or a laser absorption spectrometer. It is available by the case of 144 glass ampoules or as a set of sixteen glass ampoules containing 5 ml of water in each ampoule.  相似文献   

13.
Research into natural mass‐dependent stable isotope fractionation of cadmium has rapidly expanded in the past few years. Methodologies are diverse with MC‐ICP‐MS favoured by all but one laboratory, which uses thermal ionisation mass spectrometry (TIMS). To quantify the isotope fractionation and correct for instrumental mass bias, double‐spike techniques, sample‐calibrator bracketing or element doping has been used. However, easy comparison between data sets has been hampered by the multitude of in‐house Cd solutions used as zero‐delta reference in different laboratories. The lack of a suitable isotopic reference material for Cd is detrimental for progress in the long term. We have conducted a comprehensive round‐robin assay of NIST SRM 3108 and the Cd isotope offsets to commonly used in‐house reference materials. Here, we advocate NIST SRM 3108 both as an isotope standard and the isotopic reference point for Cd and encourage its use as ‘zero‐delta’ in future studies. The purity of NIST SRM 3108 was evaluated regarding isobaric and polyatomic molecular interferences, and the levels of Zn, Pd and Sn found were not significant. The isotope ratio 114Cd/110Cd for NIST SRM 3108 lies within ~ 10 ppm Da?1 of best estimates for the Bulk Silicate Earth and is validated for all measurement technologies currently in use.  相似文献   

14.
A thermal ionisation mass spectrometric technique enabled the abundance of Zn in geological and biological reference materials and water samples to be measured by double spiking isotope dilution mass spectrometry enriched in the 67Zn and 70Zn isotopes. In the past, thermal ionisation mass spectrometry proved to be difficult for low-level zinc isotopic measurements. The size of Zn samples used for isotopic determination, in particular the biological RMs, represents an important breakthrough. These results represent the most accurate and precise concentrations measured for Zn in these samples. The maximum fractional uncertainty was that for TILL-3 (2%), while the minimum fractional uncertainty was 0.7% for both BCR-1 and W-2. The inhomogeneity of Zn in HISS-1 was revealed while other reference materials appeared homogeneous at the 95% confidence uncertainty. The certified concentration of Zn in HISS-1 and IMEP-19 by their producers are 28% and 3.8% higher than the values measured in this work. These are the first Zn concentration measurements in these materials by the isotope dilution-TIMS technique, except for BCR-1, NIES No 9 and IMEP-19. Reducing the blank enabled accurate measurement in water at the ng g-1 level demonstrating the applicability of the technique for low-level Zn samples.  相似文献   

15.
Elemental and isotopic ratio analyses of U ore concentrate samples, from the 3 operating U mining facilities in Australia, were carried out to determine if significant variations exist between their products, thereby allowing the U ore concentrate’s origin to be identified. Elemental analyses were conducted using inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence spectrometry (XRF). Lead isotope ratios were measured using ICP-MS and U isotope analyses were conducted using thermal ionisation mass spectrometry (TIMS). Minute quantities of sample, such as that obtained from a swipe, were also examined for elemental concentrations using secondary ion mass spectrometry (SIMS). The results of multivariate statistical analysis show clear patterns in the trace elemental composition of the processed U ores, indicating that it is possible to use this feature as a unique identifier of an Australian U ore concentrate’s source. Secondary ion mass spectrometry analyses also allow individual particles to be differentiated using this ‘fingerprinting’ technique. Isotope ratios determined using TIMS reveal that there is a significant difference in the n(234U)/n(238U) isotope ratio between the U ore concentrate from each mine.  相似文献   

16.
A new natural zircon reference material SA01 is introduced for U‐Pb geochronology as well as O and Hf isotope geochemistry by microbeam techniques. The zircon megacryst is homogeneous with respect to U‐Pb, O and Hf isotopes based on a large number of measurements by laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS). Chemical abrasion isotope dilution thermal ionisation mass spectrometry (CA‐ID‐TIMS) U‐Pb isotopic analyses produced a mean 206Pb/238U age of 535.08 ± 0.32 Ma (2s, n = 10). Results of SIMS and LA‐ICP‐MS analyses on individual shards are consistent with the TIMS ages within uncertainty. The δ18O value determined by laser fluorination is 6.16 ± 0.26‰ (2s, n = 14), and the mean 176Hf/177Hf ratio determined by solution MC‐ICP‐MS is 0.282293 ± 0.000007 (2s, n = 30), which are in good agreement with the statistical mean of microbeam analyses. The megacryst is characterised by significant localised variations in Th/U ratio (0.328–4.269) and Li isotopic ratio (?5.5 to +7.9‰); the latter makes it unsuitable as a lithium isotope reference material.  相似文献   

17.
Ice core from Greenland was melted, filtered, homogenised, loaded into glass ampoules, sealed, autoclaved to eliminate biological activity, and calibrated by dual‐inlet isotope‐ratio mass spectrometry. This isotopic reference material (RM), USGS46, is intended as one of two secondary isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The measured δ2H and δ18O values of this reference water were ?235.8 ± 0.7‰ and ?29.80 ± 0.03‰, respectively, relative to VSMOW on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, ?428 and ?55.5‰. Each uncertainty is an estimated expanded uncertainty (= 2uc) about the reference value that provides an interval that has about a 95‐percent probability of encompassing the true value. This reference water is available in cases containing 144 glass ampoules that are filled with either 4 ml or 5 ml of water per ampoule.  相似文献   

18.
Computer simulation of random errors in the measurements for the double spike technique applied to Pb isotope analyses, indicates that normalized error multiplication factors for the calculated values of isotope ratios lie in the range 2 to 3. The optimum isotopic composition of the tracer is about 207Pb204Pb = 2.0 and the optimum ratio of amount of tracer to amount of unknown is about P = 1.0. Determination of errors in the fractionation factor alone does not adequately describe the ultimate errors in the calculated isotope ratios except under special circumstances. Uncertainty in the actual composition of the tracer is closely proportional to uncertainty in the unknown composition. The purity of the spike is unimportant at least as long as the separated 207Pb and 204Pb isotopes are greater than 90% pure.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号