首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molybdenum concentration and δ98/95Mo values for NIST SRM 610 and 612 (solid glass), NIST SRM 3134 (lot 891307; liquid) and IAPSO seawater reference material are presented based on comparative measurements by MC‐ICP‐MS performed in laboratories at the Universities of Bern and Oxford. NIST SRM 3134 and NIST SRM 610 and 612 were found to have identical and homogeneous 98Mo/95Mo ratios at a test portion mass of 0.02 g. We suggest, therefore, that NIST SRM 3134 should be used as reference for the δ–Mo notation and to employ NIST SRM 610 or 612 as solid silicate secondary measurement standards, in the absence of an isotopically homogeneous solid geological reference material for Mo. The δ98/95MoJMC Bern composition (Johnson Matthey ICP standard solution, lot 602332B as reference) of NIST SRM 3134 was 0.25 ± 0.09‰ (2s). Based on five new values, we determined more precisely the mean open ocean δ98/95MoSRM 3134 value of 2.09 ± 0.07‰, which equals the value of δ98/95MoJMC Bern of 2.34 ± 0.07‰. We also refined the Mo concentration data for NIST SRM 610 to 412 ± 9 μg g?1 (2s) and NIST SRM 612 to 6.4 ± 0.7 μg g?1 by isotope dilution. We propose these concentration data as new working values, which allow for more accurate in situ Mo determination using laser ablation ICP‐MS or SIMS.  相似文献   

2.
Molybdenum isotopes are increasingly widely applied in Earth Sciences. They are primarily used to investigate the oxygenation of Earth's ocean and atmosphere. However, more and more fields of application are being developed, such as magmatic and hydrothermal processes, planetary sciences or the tracking of environmental pollution. Here, we present a proposal for a unifying presentation of Mo isotope ratios in the studies of mass‐dependent isotope fractionation. We suggest that the δ98/95Mo of the NIST SRM 3134 be defined as +0.25‰. The rationale is that the vast majority of published data are presented relative to reference materials that are similar, but not identical, and that are all slightly lighter than NIST SRM 3134. Our proposed data presentation allows a direct first‐order comparison of almost all old data with future work while referring to an international measurement standard. In particular, canonical δ98/95Mo values such as +2.3‰ for seawater and ?0.7‰ for marine Fe–Mn precipitates can be kept for discussion. As recent publications show that the ocean molybdenum isotope signature is homogeneous, the IAPSO ocean water standard or any other open ocean water sample is suggested as a secondary measurement standard, with a defined δ98/95Mo value of +2.34 ± 0.10‰ (2s).  相似文献   

3.
A HF‐free sample preparation method was used to purify silicon in twelve geological RMs. Silicon isotope compositions were determined using a Neptune instrument multi‐collector‐ICP‐MS in high‐resolution mode, which allowed separation of the silicon isotope plateaus from their interferences. A 1 μg g‐1 Mg spike was added to each sample and standard solution for online mass bias drift correction. δ30Si and δ29Si values are expressed in per mil (‰), relative to the NIST SRM 8546 (NBS‐28) international isotopic RM. The total variation of δ30Si in the geological reference samples analysed in this study ranged from ‐0.13‰ to ‐0.29‰. Comparison with δ29Si values shows that these isotopic fractionations were mass dependent. IRMM‐17 yielded a δ30Si value of ‐1.41 ± 0.07‰ (2s, n = 12) in agreement with previous data. The long‐term reproducibility for natural samples obtained on BHVO‐2 yielded δ30Si = ‐0.27 ± 0.08‰ (2s, n = 42) on a 12 month time scale. An in‐house Si reference sample was produced to check for the long‐term reproducibility of a mono‐elemental sample solution; this yielded a comparable uncertainty of ± 0.07‰ (2s, n = 24) over 5 months.  相似文献   

4.
We report an approach for the accurate and reproducible measurement of boron isotope ratios in natural waters using an MC‐ICP‐MS (Neptune) after wet chemistry sample purification. The sample matrix can induce a drastic shift in the isotopic ratio by changing the mass bias. It is shown that, if no purification is carried out, the direct measurement of a seawater diluted one hundred times will induce an offset of ?7‰ in the isotopic ratio, and that, for the same concentration, the greater the atomic mass of the matrix element, the greater the bias induced. Whatever the sample, it is thus necessary to remove the matrix. We propose a method adapted to water samples allowing purification of 100 ng of boron with a direct recovery of boron in 2 ml of 3% v/v HNO3, which was our working solution. Boron from the International Atomic Energy Agency IAEA‐B1 seawater reference material and from the two groundwater reference materials IAEA‐B2 and IAEA‐B3, was chemically purified, as well as boron from the certified reference material NIST SRM 951 as a test. The reproducibility of the whole procedure (wet chemistry and MC‐ICP‐MS measurement) was ± 0.4‰ (2s). Accuracy was verified by comparison with positive‐TIMS values and with recommended values. Seawater, being homogeneous for boron isotope ratios, is presently the only natural water material that is commonly analysed for testing accuracy worldwide. We propose that the three IAEA natural waters could be used as reference samples for boron isotopes, allowing a better knowledge of their isotopic ratios, thus contributing to the certification of methods and improving the quality of the boron isotopic ratio measurements for all laboratories.  相似文献   

5.
This study presents a high‐precision Cd isotope measurement method for soil and rock reference materials using MC‐ICP‐MS with double spike correction. The effects of molecular interferences (e.g., 109Ag1H+, 94Zr16O+, 94Mo16O+ and 70Zn40Ar+) and isobaric interferences (e.g., Pd, In and Sn) to Cd isotope measurements were quantitatively evaluated. When the measured solution has Ag/Cd ≤ 5, Zn/Cd ≤ 0.02, Mo/Cd ≤ 0.4, Zr/Cd ≤ 0.001, Pd/Cd ≤ 5 × 10?5 and In/Cd ≤ 10?3, the measured Cd isotope data were not significantly affected. The intermediate measurement precision of pure Cd solutions (BAM I012 Cd, Münster Cd and AAS Cd) was better than ± 0.05‰ (2s) for δ114/110Cd. The δ114/110Cd values of soil reference materials (NIST SRM 2709, 2709a, 2710, 2710a, 2711, 2711a and GSS‐1) relative to NIST SRM 3108 were in the range of ?0.251 to 0.632‰, the δ114/110Cd values of rock reference materials (BCR‐2, BIR‐1, BHVO‐2, W‐2, AGV‐2, GSP‐2 and COQ‐1) varied from ?0.196‰ to 0.098‰, and that of the manganese nodule (NOD‐P‐1) was 0.163 ± 0.040‰ (2s, n = 8). The large variation in Cd isotopes in soils and igneous rocks indicates that they can be more widely used to study magmatic and supergene processes.  相似文献   

6.
Although initial studies have demonstrated the applicability of Ni isotopes for cosmochemistry and as a potential biosignature, the Ni isotope composition of terrestrial igneous and sedimentary rocks, and ore deposits remains poorly known. Our contribution is fourfold: (a) to detail an analytical procedure for Ni isotope determination, (b) to determine the Ni isotope composition of various geological reference materials, (c) to assess the isotope composition of the Bulk Silicate Earth relative to the Ni isotope reference material NIST SRM 986 and (d) to report the range of mass‐dependent Ni isotope fractionations in magmatic rocks and ore deposits. After purification through a two‐stage chromatography procedure, Ni isotope ratios were measured by MC‐ICP‐MS and were corrected for instrumental mass bias using a double‐spike correction method. Measurement precision (two standard error of the mean) was between 0.02 and 0.04‰, and intermediate measurement precision for NIST SRM 986 was 0.05‰ (2s). Igneous‐ and mantle‐derived rocks displayed a restricted range of δ60/58Ni values between ?0.13 and +0.16‰, suggesting an average BSE composition of +0.05‰. Manganese nodules (Nod A1; P1), shale (SDO‐1), coal (CLB‐1) and a metal‐contaminated soil (NIST SRM 2711) showed positive values ranging between +0.14 and +1.06‰, whereas komatiite‐hosted Ni‐rich sulfides varied from ?0.10 to ?1.03‰.  相似文献   

7.
The double‐spike method with multi‐collector inductively coupled plasma‐mass spectrometry was used to measure the Mo mass fractions and isotopic compositions of a set of geological reference materials including the mineral molybdenite, seawater, coral, as well as igneous and sedimentary rocks. The long‐term reproducibility of the Mo isotopic measurements, based on two‐year analyses of NIST SRM 3134 reference solutions and seawater samples, was ≤ 0.07‰ (two standard deviations, 2s, n = 167) for δ98/95Mo. Accuracy was evaluated by analyses of Atlantic seawater, which yielded a mean δ98/95Mo of 2.03 ± 0.06‰ (2s, n = 30, relative to NIST SRM 3134 = 0‰) and mass fraction of 0.0104 ± 0.0006 μg g?1 (2s, n = 30), which is indistinguishable from seawater samples taken world‐wide and measured in other laboratories. The comprehensive data set presented in this study serves as a reference for quality assurance and interlaboratory comparison of high‐precision Mo mass fractions and isotopic compositions.  相似文献   

8.
The interest in the study of gallium (Ga) stable isotope fractionation in low‐ and high‐temperature environments has increased significantly in the last few years. However, a unified reference material (RM) is still lacking for the Ga isotope research community, which hinders interlaboratory comparison between different groups. Consequently, certification of Ga isotopic reference materials for interlaboratory comparison is of high priority. In this study, Ga isotope ratio data for ten geological RMs including silicates, shales and ferromanganese nodules, and two pure Ga RMs including NIST SRM 994 and NIST SRM 3119a reported by three different groups, were determined by MC‐ICP‐MS. Sample matrices of geological RMs were separated by a two‐column separation method with the use of AG MP‐1M and AG 50‐X8 resin, separately, and quantitative recoveries of > 99% Ga were obtained for all geological RMs. Instrumental mass bias was corrected by the combined calibrator‐sample bracketing and internal normalisation model. Validation of the proposed method was performed by analysing synthetic solutions. After normalisation of all available δ71Ga data of geological RMs to a single Ga RM, results obtained in our study are in agreement with previously reported results.  相似文献   

9.
This contribution presents data for laser ablation multicollector ICP‐MS (LA‐MC‐ICP‐MS) analyses of NIST SRM 610 and 612 glasses with the express purpose of examining the Pb isotope homogeneity of these glasses at the ~ 100 μm spatial scale, relevant to in situ analysis. Investigation of homogeneity at these scales is important as these glasses are widely used as calibrators for in situ measurements of Pb isotope composition. Results showed that at the levels of analytical uncertainty obtained, there was no discernable heterogeneity in Pb isotope composition of NIST SRM 610 and also most probably for NIST SRM 612. Traverses across the ~ 1.5 mm glass wafers supplied by NIST, consisting of between 75 and 133 individual measurements, showed no compositional outliers at the two standard deviation level beyond those expected from population statistics. Overall, the measured Pb isotope ratios from individual traverses across NIST SRM 610 and 612 wafers closely approximate single normally‐distributed populations, with standard deviations similar to the average internal uncertainty for individual measurement blocks. Further, Pb isotope ratios do not correlate with Tl/Pb ratios measured during the analysis, suggesting that regions of volatile element depletion (marked by low Tl/Pb) in these glasses are not associated with changes in Pb isotope composition. For NIST SRM 610 there also appeared to be no variation in Pb isotope composition related to incomplete mixing of glass base and trace element spike during manufacture. For NIST SRM 612 there was some dispersion of measured ratios, including some in a direction parallel to the expected mixing line for base‐spike mixing. However, there was no significant correlation parallel to the mixing line. At this time this cannot be unequivocally demonstrated to result from glass heterogeneity, but it is suggested that NIST SRM 610 be preferred for standardising in situ Pb isotope measurements. Data from this study also showed significantly better accuracy and somewhat better precision for ratios corrected for mass bias by external normalisation to Pb isotope ratios measured in bracketing calibrators compared to mass bias corrected via internal normalisation to measured 205Tl/203Tl, although the Tl isotopic composition of both glasses appears to be homogeneous.  相似文献   

10.
Due to intensive research into selenium isotopes in recent years, the increasing requirement for reliable and comparable measurement results has created a strong demand for selenium isotopic certified reference materials (iCRM) that were previously not available. To address this, eleven selenium iCRMs were developed, including ten synthetic iCRMs (GBW 04447–GBW 04456) and one natural iCRM (GBW 04457). The synthetic iCRMs were prepared with 76Se, 78Se, 80Se and 82Se solutions and a natural selenium solution; the natural iCRM was prepared with highly pure selenium material. The property values of isotope ratios in these iCRMs were certified by calibrated mass spectrometry with a collision cell multi‐collector ICP‐MS. The mass discrimination effect of the instrument was corrected with corresponding 78Se/76Se isotope mixtures and 82Se/76Se isotope mixtures, which were gravimetrically prepared with purified, isotopically enriched selenium materials. Homogeneity and stability tests were performed, and no significant influences were found. The uncertainty of the property values of the iCRMs was evaluated according to the Guide to the Expression of Uncertainty in Measurement (GUM) of ISO/BIPM and ISO Guide 35. The δ82/76Se value of GBW 04457 relative to NIST SRM 3149 was also calculated. These iCRMs are intended for use in calibration of instruments and evaluation of methods for the determination of selenium isotope ratios.  相似文献   

11.
A dry ashing method is commonly used to remove organic material from samples prior to geochemical analysis. In the course of this study, the Cd isotope ratios of a series of soil and plant reference materials and samples were studied to evaluate the effect of the dry ashing method on measurement results of Cd isotope ratios. The samples were pre‐treated using the dry ashing method and high‐pressure bomb for comparison. The results show that the digestion using high‐pressure bombs did not lead to Cd loss, but using the dry ashing method would cause different proportions of Cd loss. The whole range of Cd isotope difference between two methods was from ?0.07‰ to 3.01‰. There was also an obvious difference in measured Cd isotope ratios from the same leaf sample pre‐treated independently by the dry ashing method, indicating that the amount of Cd loss and the effect on Cd isotope measurement during dry ashing is related to the properties of the samples. Therefore, dry ashing may not be appropriate for the removal of organic material in Cd isotope ratio measurement, especially for samples with high organic contents. The δ114/110Cd values of reference materials NIST SRM 1573a and GSD‐30 are reported for the first time in this study.  相似文献   

12.
Niobium and Ta concentrations in MPI‐DING and USGS (BCR‐2G, BHVO‐2G, BIR‐1G) silicate rock glasses and the NIST SRM 610–614 synthetic soda‐lime glasses were determined by 193 nm ArF excimer laser ablation and quadrupole ICP‐MS. Measured Nb and Ta values of MPI‐DING glasses were found to be consistently lower than the recommended values by about 15% and 25%, respectively, if calibration was undertaken using commonly accepted values of NIST SRM 610 given by Pearce et al. Analytical precision, as given by the 1 s relative standard deviation (% RSD) was less than 10% for Nb and Ta at concentrations higher than 0.1 μg g?1. A significant negative correlation was found between logarithmic concentration and logarithmic RSD, with correlation coefficients of ‐0.94 for Nb and ‐0.96 for Ta. This trend indicates that the analytical precision follows counting statistics and thus most of the measurement uncertainty was analytical in origin and not due to chemical heterogeneities. Large differences between measured and expected Nb and Ta in glasses GOR128‐G and GOR132‐G are likely to have been caused by the high RSDs associated with their very low concentrations. However, this cannot explain the large differences between measured and expected Nb and Ta in other MPI‐DING glasses, since the differences are normally higher than RSD by a factor of 3. Count rates for Nb and Ta, normalised to Ca sensitivity, for the MPI‐DING, USGS and NIST SRM 612–614 glasses were used to construct calibration curves for determining NIST SRM 610 concentrations at crater diameters ranging from 16 (im to 60 μm. The excellent correlation between the Nb/Ca1μgg‐1 signal (Nb represents the Nb signal intensity; Ca1μg g‐1 represents the Ca sensitivity) and Nb concentration, and between the Ta/Ca1μg g‐1 signal (where Ta represents the Ta signal intensity; Ca1μg g‐1 represents the Ca sensitivity) and Ta concentration (R2= 0.9992–1.00) in the various glass matrices suggests that matrix‐dependent fractionation for Nb, Ta and Ca was insignificant under the given instrumental conditions. The results confirm that calibration reference values of Nb and Ta in NIST SRM 610 given by Pearce et al. are about 16% and 28% lower, respectively. We thus propose a revision of the preferred value for Nb from 419.4 ± 57.6 μg g?1 to 485 ± 5 μg g?1 (1 s) and for Ta from 376.6 ± 77.6 μg g?1 to 482 ± 4 μg g?1 (Is) in NIST SRM 610. Using these revised values for external calibration, most of the determined average values of MPI‐DING, USGS and NIST SRM 612–614 reference glasses agree within 3% with the calculated means of reported reference values. Bulk analysis of NIST SRM 610 by standard additions using membrane desolvation ICP‐MS gave Nb = 479 ± 6 μg g?1 (1 s) and Ta = 468 ± 7 μg g?1 (1 s), which agree with the above revised values within 3%.  相似文献   

13.
Lead isotope ratio data were obtained with good precision and accuracy using a 266 nm femtosecond laser ablation (fLA) system connected to a multi‐collector ICP‐MS (MC‐ICP‐MS) and through careful control of analytical procedures. The mass fractionation coefficient induced by 266 nm femtosecond laser ablation was approximately 28% lower than that by 193 nm excimer laser ablation (eLA) with helium carrier gas. The exponential law correction method for Tl normalisation with optimum adjusted Tl ratio was utilised to obtain Pb isotopic data with good precision and accuracy. The Pb isotopic ratios of the glass reference materials NIST SRM 610, 612, 614; USGS BHVO‐2G, BCR‐2G, GSD‐1G, BIR‐1G; and MPI‐DING GOR132‐G, KL2‐G, T1‐G, StHs60/80‐G, ATHO‐G and ML3B‐G were determined using fLA‐MC‐ICP‐MS. The measured Pb isotopic ratios were in good agreement with the reference or published values within 2s measurement uncertainties. We also present the first high‐precision Pb isotopic data for GSE‐1G, GSC‐1G, GSA‐1G and CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5 glass reference materials obtained using the femtosecond laser ablation MC‐ICP‐MS analysis technique.  相似文献   

14.
The interest in variations of barium (Ba) stable isotope amount ratios in low and high temperature environments has increased over the past several years. Characterisation of Ba isotope ratios of widely available reference materials is now required to validate analytical procedures and to allow comparison of data obtained by different laboratories. We present new Ba isotope amount ratio data for twelve geological reference materials with silicate (AGV‐1, G‐2, BHVO‐1, QLO‐1, BIR‐1, JG‐1a, JB‐1a, JR‐1 and JA‐1), carbonate (IAEA‐CO‐9) and sulfate matrices (IAEA‐SO‐5 and IAEA‐SO‐6) relative to NIST SRM 3104a. In addition, two artificially fractionated in‐house reference materials BaBe12 and BaBe27 (δ137/134Ba = ?1.161 ± 0.049‰ and ?0.616 ± 0.050‰, respectively) are used as quality control solutions for the negative δ‐range. Accuracy of our data was assessed by interlaboratory comparison between the University of Bern and the United States Geological Survey (USGS). Data were measured by MC‐ICP‐MS (Bern) and TIMS (USGS) using two different double spikes for mass bias correction (130Ba–135Ba and 132Ba–136Ba, respectively). MC‐ICP‐MS measurements were further tested for isobaric and non‐spectral matrix effects by a number of common matrix elements. The results are in excellent agreement and suggest data accuracy.  相似文献   

15.
A novel preconcentration method is presented for the determination of Mo isotope ratios by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS) in geological samples. The method is based on the separation of Mo by extraction chromatography using N‐benzoyl‐N‐phenylhydroxylamine (BPHA) supported on a microporous acrylic ester polymeric resin (Amberlite CG‐71). By optimising the procedure, Mo could be simply and effectively separated from virtually all matrix elements with a single pass through a small volume of BPHA resin (0.5 ml). This technique for separation and enrichment of Mo is characterised by high selectivity, column efficiency and recovery (~ 100%), and low total procedural blank (~ 0.18 ng). A 100Mo‐97Mo double spike was mixed with samples before digestion and column separation, which enabled natural mass‐dependent isotopic fractionation to be determined with a measurement reproducibility of  < 0.09‰ (δ98/95Mo, 2s) by MC‐ICP‐MS. The mean δ98/95MoSRM 3134 (NIST SRM 3134 Mo reference material; Lot No. 891307) composition of the IAPSO seawater reference material measured in this study was 2.00 ± 0.03‰ (2s, n = 3), which is consistent with previously published values. The described procedure facilitated efficient and rapid Mo isotopic determination in various types of geological samples.  相似文献   

16.
In this study the homogeneity of the zinc isotopic composition in the NIST SRM 683 reference material was examined by measuring the Zn isotopic signature in microdrilled sample powders from two metal nuggets. Zinc was purified using AG MP‐1M resin and then measured by MC‐ICP‐MS. Instrumental mass bias was corrected using the “sample‐standard bracketing” method and empirical external normalisation with Cu doping. After evaluating the potential effects of varying acid mass fractions and different matrices, high‐precision Zn isotope data were obtained with an intermediate measurement precision better than ± 0.05‰ (δ66Zn, 2s) over a period of 5 months. The δ66ZnJMC‐Lyon mean values of eighty‐four and fourteen drilled powders from two nuggets were 0.11 ± 0.02‰ and 0.12 ± 0.02‰, respectively, indicating that NIST SRM 683 is a good isotopic reference material with homogeneous Zn isotopes. The Zn isotopic compositions of seventeen rock reference materials were also determined, and their δ66Zn values were in agreement with most previously published data within 2s. The δ66Zn values of most of the rock reference materials analysed were in the range 0.22–0.36‰, except for GSP‐2 (1.07 ± 0.06‰, n = 12), NOD‐A‐1 (0.96 ± 0.03‰, = 6) and NOD‐P‐1 (0.78 ± 0.03‰, = 6). These comprehensive data should serve as reference values for quality assurance and interlaboratory calibration exercises.  相似文献   

17.
Isotope dilution determinations of Lu, Hf, Zr, Ta and W are reported for nine test portions (five for W) of NIST SRM 610 and 612 glass wafers. Additionally, all test portions were analysed for their Hf isotope compositions. In general, high field strength elemental (HFSE) distributions in NIST SRM 610 and 612 were reproducible to ~± 1%, except for Zr (± 5%) in NIST SRM 612, and absolute reported concentrations agreed with previously published values, but with higher precision. The slightly worse reproducibility of Zr in NIST SRM 612 compared to other HFSE is interpreted to result from analytical scatter, rather than sample inhomogeneity. The analyses demonstrated elemental homogeneity for both glass wafers for samples of 1–2 mg with respect to the precision of the method, i.e., ± 1% or better. Average Hf isotope compositions for both glass wafers agreed within uncertainty and the weighted average of all determinations yielded a mean 176Hf/177Hf ratio of 0.282111 ± 0.000009 (95% confidence level). However, although mean values for NIST SRM 610 and 612 agreed within analytical limits, NIST SRM 610 test portions showed a tendency of systematically elevated isotope composition of ~ 0.5 ?Hf units when compared to NIST SRM 612, which may indicate a slightly more radiogenic Hf isotope composition of NIST SRM 610. The results of this study suggest that NIST SRM 610 and 612 are valuable calibrators for HFSE in situ analyses within the given uncertainties.  相似文献   

18.
This study presents a high‐precision method to measure barium (Ba) isotope compositions of international carbonate reference materials and natural carbonates. Barium was purified using chromatographic columns filled with cation exchange resin (AG50W‐X12, 200–400 mesh). Barium isotopes were measured by MC‐ICP‐MS, using a 135Ba–136Ba double‐spike to correct mass‐dependent fractionation during purification and instrumental measurement. The precision and accuracy were monitored by measuring Ba isotope compositions of the reference material JCp‐1 (coral) and a synthetic solution obtained by mixing NIST SRM 3104a with other matrix elements. The mean δ137/134Ba values of JCp‐1 and the synthetic solution relative to NIST SRM 3104a were 0.21 ± 0.03‰ (2s,= 16) and 0.02 ± 0.03‰ (2s,= 6), respectively. Replicate measurements of NIST SRM 915b, COQ‐1, natural coral and stalagmite samples gave average δ137/134Ba values of 0.10 ± 0.04‰ (2s,= 18), 0.08 ± 0.04‰ (2s,= 20), 0.27 ± 0.04‰ (2s,= 16) and 0.04 ± 0.03‰ (2s,= 20), respectively. Barium mass fractions and Ba isotopes of subsamples drilled from one stalagmite profile were also measured. Although Ba mass fractions varied significantly along the profile, Ba isotope signatures were homogeneous, indicating that Ba isotope compositions of stalagmites could be a potential tool (in addition to Ba mass fractions) to constrain the source of Ba in carbonate rocks and minerals.  相似文献   

19.
Recent analytical developments in germanium stable isotope determination by multicollector ICP‐MS have provided new perspectives for the use of Ge isotopes as geochemical tracers. Here, we report the germanium isotope composition of the NIST SRM 3120a elemental reference solution that has been calibrated relative to internal isotopic standard solutions used in the previous studies. We also intercalibrate several geological reference materials as well as geological and meteoritic samples using different techniques, including online hydride generation and a spray chamber for sample introduction to MC‐ICP‐MS, and different approaches for mass bias corrections such as sample–calibrator bracketing, external mass bias correction using Ga isotopes and double‐spike normalisation. All methods yielded relatively similar precisions at around 0.1‰ (2s) for δ74/70Ge values. Using igneous and mantle‐derived rocks, the bulk silicate Earth (BSE) δ74/70Ge value was re‐evaluated to be 0.59 ± 0.18‰ (2s) relative to NIST SRM 3120a. Several sulfide samples were also analysed and yielded very negative values, down to ?4.3‰, consistent with recent theoretical study of Ge isotope fractionation. The strong heavy isotope depletion in ore deposits also contrasts with the generally positive Ge isotope values found in many modern and ancient marine sediments.  相似文献   

20.
Ilmenite (FeTiO3) is a common accessory mineral and has been used as a powerful petrogenetic indicator in many geological settings. Elemental fractionation and matrix effects in ilmenite (CRN63E‐K) and silicate glass (NIST SRM 610) were investigated using 193 nm ArF excimer nanosecond (ns) laser and 257 nm femtosecond (fs) laser ablation systems coupled to an inductively coupled plasma‐mass spectrometer. The concentration‐normalised 57Fe and 49Ti responses in ilmenite were higher than those in NIST SRM 610 by a factor of 1.8 using fs‐LA. Compared with the 193 nm excimer laser, smaller elemental fractionation was observed using the 257 nm fs laser. When using 193 nm excimer laser ablation, the selected range of the laser energy density had a significant effect on the elemental fractionation in ilmenite. Scanning electron microscopy images of ablation craters and the morphologies of the deposited aerosol materials showed more melting effects and an enlarged particle deposition area around the ablation site of the ns‐LA‐generated crater when compared with those using fs‐LA. The ejected material around the ns crater predominantly consisted of large droplets of resolidified molten material; however, the ejected material around the fs crater consisted of agglomerates of fine particles with ‘rough' shapes. These observations are a result of the different ablation mechanisms for ns‐ and fs‐LAs. Non‐matrix‐matched calibration was applied for the analysis of ilmenite samples using NIST SRM 610 as a reference material for both 193 nm excimer LA‐ICP‐MS and fs‐LA‐ICP‐MS. Similar analytical results for most elements in ilmenite samples were obtained using both 193 nm excimer LA‐ICP‐MS at a high laser energy density of 12.7 J cm?2 and fs‐LA‐ICP‐MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号