首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 284 毫秒
1.
中国东南地区深部电导率分布的进一步研究   总被引:2,自引:0,他引:2  
陈伯舫 《地震研究》1989,12(4):348-352
本文用五个地磁台站的静日日变资料重新研究中国东南地区的深部电导率分布。这五个台站是:武汉、佘山、广州、泉州与仑坪。五台定出的C值结果与文献〔1〕的不同。另外本文用简单的蒙特卡罗(Monte-Carlo)法反演推断可能的电性结构模型。  相似文献   

2.
Time domain reflectometry (TDR) is a highly accurate and automatable method for determination of porous media water content and electrical conductivity. Water content is inferred from the dielectric permittivity of the medium, whereas electrical conductivity is inferred from TDR signal attenuation. Empirical and dielectric mixing models are used to relate water content to measured dielectric permittivity. Clay and organic matter bind substantial amounts of water, such that measured bulk dielectric constant is reduced and the relationship with total water content requires individual calibration. A variety of TDR probe configurations provide users with site‐ and media‐specific options. Advances in TDR technology and in other dielectric methods offer the promise not only for less expensive and more accurate tools for electrical determination of water and solute contents, but also a host of other properties such as specific surface area, and retention properties of porous media. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
王多君  马瑾  杨晓松  周平 《地震地质》2007,29(1):152-160
研究地幔矿物的电导率可以揭示地球内部电导率的分布规律以及地球介质的极化机制。通过对近年来国际上地幔矿物电导率的研究结果进行分析和总结,介绍了矿物的各种影响因素与电导率的关系;对含水和不含水的地幔矿物导电机制进行了区别,不含水矿物的导电机制主要为小极化子,含水矿物的导电机制为自由质子。比较了各种典型的地幔矿物电导率结果并对电导率模型进行了评述和总结,对电导率的研究方向进行了展望。认为水在地幔矿物电导率和电导率剖面中起着重要作用  相似文献   

4.
Measurement of complex electrical conductivity as a function of frequency is an extremely sensitive probe for changes in pore and crack volume, crack connectivity, and crack surface topography. Such measurements have been made as a function of pore fluid chemistry, hydrostatic confining pressure, as well as uniaxial and triaxial deformation. This paper will; (1) describe the effects of triaxial deformation on the complex electrical conductivity of saturated porous rocks, (2) use the electrical data to model the mechanical stress-strain behaviour, and (3) compare the modelled behaviour with the stress-strain behaviour measured during the deformation. Experimental conductivity data tracks how the rock undergoes compaction with progressive loss of crack volume, followed by dilatation due to new crack formation, growth of existing cracks, crack interlinkage, and finally failure, as axial strain is increased. We have used the complex electrical data to produce a direction-sensitive (anisotropic) crack damage parameter, and used it to calculate the effective Young's modulus by employing the models of Walsh and Bruner. Comparison of the synthetic stress-strain curves so produced, with the experimentally derived stress-strain curves shows good agreement, particularly for undrained tests. This modelling is an improvement on similar curves produced using isotropic crack damage parameters derived from acoustic emission data. The improvement is likely to be due to the directional sensitivity of the electrical conductivity measurement, and its ability to discriminate between the formation of isolated cracks, and those cracks that contribute to the inter-connected crack space i.e. those cracks upon which transport properties of the rock such as electrical conductivity, and mechanical properties depend most critically during triaxial deformation.  相似文献   

5.
居里面是地球内部铁磁性物质向顺磁性物质转换的界面,在温度略低于居里点时物质磁化率会快速升高,这被称为Hopkinsin峰.对于地球内部而言Hopkinsin峰是只有几百米至几公里厚的薄层,由于其与居里温度的关系,因此其底界面的深度可以作为居里面深度的估计.传统的居里面深度探测方法包括谱分析方法、等层模型方法和温度-深度剖面法.这些方法是人们研究地球内部热结构和居里面深度的重要手段,但是谱分析和等层模型的结果均有一些固有的缺点,如横向分辨率太低等;而地热方程的结果则受地表因素影响十分严重,并且地球内部的热源分布也不是十分清楚,这导致了其结果是不可靠的.本文提出用MT方法探测居里面深度,通过对几种简单一维模型进行的正反演数值试验,论证了该方法的可行性.结果表明,用MT方法研究居里面性质,不但可以得到居里面深度,还可以得到居里面顶部Hopkinsin峰所对应介质的电学和磁学性质,但必须同时反演岩层的电阻率和磁导率,才能获得较为可靠的居里面深度估计.  相似文献   

6.
The electrical properties of rocks and minerals are controlled by thermodynamic parameters like pressure and temperature and by the chemistry of the medium in which the charge carriers move. Four different charge transport processes can be distinguished. Electrolytic conduction in fluid saturated porous rocks depends on petrophysical properties, such as porosity, permeability and connectivity of the pore system, and on chemical parameters of the pore fluid like ion species, its concentration in the pore fluid and temperature. Additionally, electrochemical interactions between water dipoles or ions and the negatively charged mineral surface must be considered. In special geological settings electronic conduction can increase rock conductivities by several orders of magnitude if the highly conducting phases (graphite or ores) form an interconnected network. Electronic and electrolytic conduction depend moderately on pressure and temperature changes, while semiconduction in mineral phases forming the Earth’s mantle strongly depends on temperature and responds less significantly to pressure changes. Olivine exhibits thermally induced semiconduction under upper mantle conditions; if pressure and temperature exceed ~ 14 GPa and 1400 °C, the phase transition olivine into spinel will further enhance the conductivity due to structural changes from orthorhombic into cubic symmetry. The thermodynamic parameters (temperature, pressure) and oxygen fugacity control the formation, number and mobility of charge carriers. The conductivity temperature relation follows an Arrhenius behaviour, while oxygen fugacity controls the oxidation state of iron and thus the number of electrons acting as additional charge carriers. In volcanic areas rock conductivities may be enhanced by the formation of partial melts under the restriction that the molten phase is interconnected. These four charge transport mechanisms must be considered for the interpretation of geophysical field and borehole data. Laboratory data provide a reproducible and reliable database of electrical properties of homogenous mineral phases and heterogenous rock samples. The outcome of geoelectric models can thus be enhanced significantly. This review focuses on a compilation of fairly new advances in experimental laboratory work together with their explanation.  相似文献   

7.
将总电位ν分解为正常电位.uo和异常电位u·本文绘出点源二维电场中,异常电位u的傅氏变换U的变分方程,以及点源二维电场地形影响的异常电位u的傅氏变换U的积分方程,前者可用有限单元法求解,后者可用边界单元法求解.根据电源点的U的傅氏反交换,解决了前人尚未解决的直接计算点源二维电场中纵剖面(通过电源点、平行走向的剖面)的电位问题.  相似文献   

8.
This review paper presents recent research on electrical conductivity structure in various marine tectonic settings. In at least three areas, marine electromagnetic studies for structural exploration have increasingly progressed: (1) data accumulations, (2) technical advances both for hardware and software, and (3) interpretations based on multidisciplinary approaches. The mid-ocean ridge system is the best-studied tectonic setting. Recent works have revealed evidence of conductive zones of hydrothermal circulation and axial magma chambers in the crust and partial melt zones of the mid-ocean ridge basalt source in the mantle. The role of water or dissolved hydrogen and its redistribution at mid-ocean ridges is emphasized for the conductivity pattern of the oceanic lithosphere and asthenosphere. Regions of mantle upwelling (hotspot or plume) and downwelling (subducting slab) are attracting attention. Evidence of heterogeneity exists not only in the crust and the upper mantle, but also in the mantle transition zone. Electrical conductive zones frequently overlap seismic low-velocity zones, but discrepancies are also apparent. Some studies have compared conductivity models with the results of seismic and other studies to investigate the physical properties or processes. A new laboratory-based conductivity model for matured oceanic lithosphere and asthenosphere is proposed. It takes account of both the water distribution in the mantle as well as the thermal structure. It explains observed conductivity patterns in the depth range of 60–200 km.  相似文献   

9.
多点渗漏垃圾填埋场三维电学检测能力及影响因素分析   总被引:1,自引:0,他引:1  
通过理论分析与原位实验,研究三维电学监测系统对垃圾填埋场多渗漏点位置的检测能力,分析影响检测效果的主要因素,以为设计经济、合理、有效的实时监测系统提供依据。结果表明:膜下电位监测法具有清晰的理论基础;供电电流强弱只影响测量电位值大小,不改变其异常形态,供电强度应以保证测量电位具有较高信噪比为原则;电极系极距大小会影响对相邻漏洞的检测能力,当极距小于相邻漏洞间距时,系统可对漏点位置进行有效反映;供电电极A在填埋场顶层中部布设、B极在膜下多点相连布设的布极方式,有利于漏点检测;漏洞越大,相应位置的测量电位值越高;划痕状漏洞不易被测出。利用膜下电极系测量的电阻率剖面对漏点具有较好的反映能力,并可实现渗滤液在地下扩散过程的监测。  相似文献   

10.
The electrical conductivity of Tibetan eclogite was investigated at pressures of 1.5–3.5 GPa and temperatures of 500–803 K using impedance spectroscopy within a frequency range of 10-1–106 Hz. The electrical conductivity of eclogite increases with increasing temperature(which can be approximated by the Arrhenius equation), and is weakly affected by pressure. At each tested pressure, the electrical conductivity is weakly temperature dependent below ~650 K and more strongly temperature dependent above ~650 K. The calculated activation energies and volumes are 44±1 kJ/mol and-0.6±0.1 cm3/mol for low temperatures and 97±3 kJ/mol and-1.2±0.2 cm3/mol for high temperatures, respectively. When applied to the depth range of 45–100 km in Tibet, the laboratory data give conductivities on the order of 10-1.5–10-4.5 S/m, within the range of geophysical conductivity profiles.  相似文献   

11.
Studies of the rocks′ electrical properties under high temperature and pressure have found favors in the geophysicist′s eyes, because those studies are becoming to be the important methods to understand the earth′s interior materials, their migration and evolution. This article introduces the development and significant of those studies from the measurements, instruments and affections, etc.  相似文献   

12.
In order to better understand the nature of deep crustal high electrical conductivity, we studied the electrical properties of a tilted section of a former lower continental crust exposed in the Calabrian arc of the Alpine-Apennine mountain system. Geoelectric field measurements and impedance measurements on rock samples showed that these high-grade metamorphic rocks are generally highly resistive as expected for crystalline, electrolytically conducting rocks of low porosity. This holds for graphite-free metabasites as well as for metapelites which generally contain accessory, up to 3% biogenic graphite in the form of isolated grains. Clearly as an exception, a group of thin stratiform black horizons with thicknesses of 1-15 cm within the metapelitic series was detected by means of self-potential (SP) measurements. Rock samples from these horizons exhibit high, quasi-metallic bulk conductivities of up to 50 S/m (0.02 Ωm) in agreeement with up to 20% syngenetic graphite, forming a network of interconnected streaks or crack fillings. The high amount of carbon most probably originates from organic matter of Corg-rich black shales. Relative enrichment of the low mobility graphitic matter compared to the carbon content of the assumed protoliths may have been due to pressure solution and partial melting during prograde metamorphism, without major contribution of a fluid phase, resulting in isolated graphite flakes. Although enriched, graphite in this form has little effect on electrical conductivity. For the Calabrian black horizons, microscopic analyses make conceivable that, in a further decisive step, isolated graphite grains were mechanically smeared to continuous pathways during uplift by shearing, producing hereby the observed graphitic network which is needed to generate high conductivity. As Corg-rich black shales are common members of sedimentary sequences throughout the earth’s history, good conductors of this type may be expected in the continental crust at any depth depending on tectonic and metamorphic history, with the exception of magmatic protoliths. Regarding the extremely high conductivity of the meta-black shale samples containing syngenetic sheared graphite, a total thickness of a few meters of such rocks is sufficient to explain magnetotelluric high conductivity anomalies in the deep crust.  相似文献   

13.
Electromagnetic Studies Of The Lithosphere And Asthenosphere   总被引:3,自引:0,他引:3  
In geodynamic models of the Earth's interior, the lithosphere and asthenosphere are defined in terms of their rheology. Lithosphere has high viscosity, and can be divided into an elastic region at temperatures below 350 °C and an anelastic region above 650 °C. Beneath the lithosphere lies the ductile asthenosphere, with one- to two-orders of magnitude lower viscosity. Asthenosphere represents the location in the mantle where the melting point (solidus) is most closely approached, and sometimes intersected. Seismic, gravity and isostatic observations provide constraints on lithosphere-asthenosphere structure in terms of shear-rigidity, density and viscosity, which are all rheological properties. In particular, seismic shear- and surface-wave analyses produce estimates of a low-velocity zone (LVZ) asthenosphere at depths comparable to the predicted rheological transitions. Heat flow measurements on the ocean floor also provide a measure of the thermal structure of the lithosphere.Electromagnetic (EM) observations provide complementary information on lithosphere-asthenosphere structure in terms of electrical conductivity. Laboratory studies of mantle minerals show that EM observations are very sensitive to the presence of melt or volatiles. A high conductivity zone (HCZ) in the upper mantle therefore represents an electrical asthenosphere (containing melt and/or volatile) that may be distinct from a rheological asthenosphere and the LVZ. Additionally, the vector propagation of EM fields in the Earth provides information on anisotropic conduction in the lithosphere and asthenosphere. In the last decade, numerous EM studies have focussed on the delineation of an HCZ in the upper mantle, and the determination of melt/volatile fractions and the dynamics of the lithosphere-asthenosphere. Such HCZs have been imaged under a variety of tectonic zones, including mid-ocean ridges and continental rifts, but Archaean shields show little evidence of an HCZ, implying that the geotherm is always below the mantle solidus. Anisotropy in the conductivity of oceanic and continental lithosphere has also been detected, but it is not clear if the HCZ is also anisotropic. Although much progress has been made, these results have raised new and interesting questions of asthenosphere melt/volatiles porosity and permeability, and lithosphere-upper mantle heterogeneity. It is likely that in the next decade EM will continue to make a significant contribution to our understanding of plate tectonic processes.  相似文献   

14.
Recent inversions of electrical profiles of the upper mantle beneath the oceans permit a variety of conductivity-depth profiles ranging from models with monotonically increasing conductivity to layered models having decreases of conductivity with depth. Laboratory data on possible mantle materials can physically explain high mantle conductivities in terms of a fluid phase (partial melt, hydrous fluid) or a good solid conductor (amorphous or graphitic carbon) and favor a profile having a high conductivity layer (HCL) underlain by a more resistive layer.  相似文献   

15.
Beyond KTB - electrical conductivity of the deep continental crust   总被引:8,自引:0,他引:8  
Great strides have been made in understanding the upper part of the crust by in-situ logging in, and laboratory experiments on core recovered from super-deep bore-holes such as the KTB. These boreholes do not extend into the lower crust, and can contribute little to the elucidation of mechanisms that produce the high electrical conductivities that are commonly observed therein by magneto-telluric (MT) methods. Laboratory studies at simulated lower crustal conditions of temperature, pressure and saturation, on electrolyte saturated rocks thought to have been derived from the lower crust, have not been possible up until now due to their experimental difficulty. It is necessary to subject electrolyte-saturated rock samples to independently controlled confining and pore-fluid pressure, which implies that the rock be sleeved in some impermeable but deformable material, that can withstand the very high temperatures required. Metals are the only materials capable of being used, but these cause great difficulties for cell sealing and conductivity measurement. In this paper we describe recent breakthroughs in experimental work, specifically the development of two new types of sophisticated metal/ceramic seal, and a conductivity measurement technique that enables the measurement of saturated rock conductivity in the presence of a highly conducting metallic sleeve. The advances in experimental technique have enabled us to obtain data on the electrical conductivity of brine saturated basic, acidic and graphite-bearing rocks at lower crustal temperatures and raised pressures. These data have facilitated the comparison of MT derived crustal electrical conductivity profiles with profiles obtained from laboratory experiments for the first time. Initial modelling shows a good agreement between laboratory derived and MT derived profiles only if the mid-crust is composed of amphibolite pervaded by aqueous fluids, and the lower crust is composed of granulite that is saturated with aqueous fluids and/or contains interconnected grain surface films of graphite. The experimental data are consistent with a three layer crust consisting of an aqueous fluid saturated acidic uppermost layer, above an aqueous fluid saturated amphibolite mid-crust, and a granulite lowermost crust, which may or may not be saturated with aqueous fluids, but if not, requires the presence of an additional conduction mechanism such as conduction through thin graphite films.  相似文献   

16.
Plants have been shown to affect soil water content and temperature. Previous studies were conducted mainly in forestry and agricultural soils, where conditions of soil and vegetation are different from those in an urban landscape. In an urban landscape, the influence of plant roots on electrical conductivity, soil water content and temperature is still not clear. This study aims to investigate the effects of soil water content and temperature on electrical conductivity in vegetated soils through an integrated field monitoring and computational modelling approach. A new relationship between soil electrical conductivity and water content as well as temperature is proposed. Field monitoring was conducted in both vegetated (tree species) and bare soils. The monitoring included measurements of soil water content, soil temperature and soil electrical conductivity. This was followed by response surface regression modelling. Measured results show that soil temperature at shallow depths was lower in vegetated soil than that in the bare soil. This observation was also consistent with the higher soil water content and hence, higher electrical conductivity under tree canopy. The model developed could predict nonlinear relationships between electrical conductivity and soil temperature and water content. Uncertainty analysis indicated normal distribution for electrical conductivity under variation of soil temperature and water content. © 2018 John Wiley & Sons, Ltd.  相似文献   

17.
Many types of mixing model are used widely within the earth sciences to determine the electrical properties of porous media consisting of solid and fluid phases of known conductivities, volume fractions and distributions (i.e. phase connectivities). Most models are valid for two or more conducting phases. However, of the simple models only Archie’s law includes a variable term, the Archie cementation exponent m, that describes the connectivity of the phases. Unfortunately, Archie’s law is only valid for one conducting phase distributed within a non-conducting phase, which makes it inapplicable in instances where the rock matrix has a significant conductivity such as for clay-rich rocks and in calculations involving partial melting. More complex models exist which account for multiple conducting phases and control over phase conductivity. We have adapted the conventional Archie’s law to produce a simple modified Archie’s law that can be used with two conducting phases of any conductivity and any volume fraction, while retaining the ability to model variable connectivities within those phases that result from variations in their distribution. The modified model has two exponents (m and p) that describe the connectivity of each of the two phases. The exponents are related through an equation that depends also on the volume fractions of the two phases. The modified and the conventional versions of Archie’s law have been tested on a granular analogue porous medium with a conducting matrix and a pore space saturated with a range of saline fluids with different salinities and conductivities. The new model describes the experimentally determined electrical behaviour of the system extremely well, improving greatly on the conventional Archie’s law.  相似文献   

18.
Deep in the Earth, the electrical conductivity of geological material is extremely dependent on temperature. The knowledge of temperature is thus essential for any interpretation of magnetotelluric data in projecting lithospheric structural models. The measured values of the terrestrial heat flow, radiogenic heat production and thermal conductivity of rocks allow the extrapolation of surface observations to a greater depth and the calculation of the temperature field within the lithosphere. Various methods of deep temperature calculations are presented and discussed. Characteristic geotherms are proposed for major tectonic provinces of Europe and it is shown that the existing temperatures on the crust-upper mantle boundary may vary in a broad interval of 350–1,000°C. The present work is completed with a survey of the temperature dependence of electrical conductivity for selected crustal and upper mantle rocks within the interval 200–1,000°C. It is shown how the knowledge of the temperature field can be used in the evaluation of the deep electrical conductivity pattern by converting the conductivity-versustemperature data into the conductivity-versus-depth data.  相似文献   

19.
The electrical conductivity of serpentine is measured and the microscopic conductance mechanisms are investigated with impedance spectroscopy at 2.5–4.0 GPa and 220–780°C. The results show that the electrical conductivity is strongly dependent on the frequencies used, and that only arc I, which reflects grain interior conductance, occurs and dominates the whole conductance processes over 12-105Hz at high pressure before dehydration. The arc II, which indicates the grain boundary process, begins to occur at the initial stage of dehydration. After dehydration, due to the presence of highly conductive networks of free water, the electrical conductivity is not dependent on frequencies any longer and the total electrical conductivity is dominated by process of ionic conductance of free water in interconnected networks. Dehydration of serpentine enhances pronouncedly the total electrical conductivity, through which highly conductive layers (HCL) may be formed in the earth’s interior.  相似文献   

20.
In river bank filtration, impurities present in the river water travel with the bank filtrate towards the pumping well. During this passage, certain types of impurities, such as turbidity, total coliform, and so forth, may get attenuated; however, it is interesting to note that some of the instant raw river water quality parameters, such as alkalinity and electrical conductivity, increase after the passage of water through the porous medium. This occurs because water, when passing through the soil pores, absorbs many of the solutes that cause an increase in alkalinity and electrical conductivity. Measurements at a river bank filtration site for a year showed that alkalinity of 116–32 mg l?1 in river water increased to 222.4–159.9 mg l?1 in the river bank filtered water. Likewise, the electrical conductivity increased from 280–131 μS cm?1 to 462–409.6 μS cm?1. This study uses a probabilistic approach for investigating the variation of alkalinity and electrical conductivity of source water that varies with the natural logarithm of the concentration of influent water. The probabilistic approach has the potential of being used in simulating the variation of alkalinity and electrical conductivity in river bank filtrate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号