首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
This study examined monthly feeding rates and grazing impact on phytoplankton biomass, as well as diel feeding rhythms of four key copepod species in a tidally well mixed estuary (Asan Bay, Korean Peninsula). Monthly ingestion rates estimated based on gut pigment analysis were closely associated with their peak densities, but not with phytoplankton biomass, implying high ingestion may be related to reproductive output for population growth. The three smaller copepods, Acartia hongi, Acartia pacifica and Paracalanus parvus, showed feeding preference for smaller phytoplankton (<20 μm) with higher clearance rates, whereas the larger Calanus sinicus preferred larger phytoplankton. Acartia pacifica and P. parvus showed distinct increased nocturnal feeding rates as measured with gut fluorescence, whereas A. hongi showed no significant day–night differences. Copepod diel feeding patterns were not associated with food quantity, and endogenous physiological rhythm might be hypothesized as responsible for the observed diel feeding patterns. Grazing impact on phytoplankton biomass by the four copepods in the estuary was on average 8% (range 0.2–29.8%) of the phytoplankton standing stock, similar to values reported in other coastal waters. Very high copepod abundances but low daily carbon ration (<20% for all copepods) provided by feeding on phytoplankton indicate that copepods also grazed on other non‐phytoplankton foods in Asan Bay.  相似文献   

2.
The diet of sardine Sardinops sagax in the southern Benguela was investigated by microscopic examination of stomach contents. The relative dietary importance of prey size and prey type was assessed by calculating the carbon content of prey items. Sardine is an omnivorous clupeoid, ingesting both phytoplankton and zooplankton, with the relative importance of these two food types varying both spatially and temporally. Stomach contents were numerically dominated by small prey items, principally dinoflagellates, followed by crustacean eggs, cyclopoid copepods, calanoid copepods and diatoms. Virtually all prey items ingested by sardine were <1.2 mm maximum dimension, the particle size below which sardine only filter-feed. Despite the numerical dominance by phytoplankton, zooplankton contributed the major portion to sardine dietary carbon, small calanoid and cyclopoid copepods, anchovy eggs and crustacean eggs being the primary prey types. These results indicate that, like anchovy Engraulis capensis, sardine in the southern Benguela are primarily zoophagous, and contrast with earlier dietary studies on sardine in the region. However, the two species appear to partition their prey on the basis of size; sardine consume small zooplankton, whereas anchovy consume large zooplankton. This difference has been observed in other upwelling ecosystems where the two genera co-exist and is likely to contribute to the regime shifts observed between sardine and anchovy.  相似文献   

3.
During late winter and spring of 2002 and 2003, 24 two- to three-day cruises were conducted to Dabob Bay, Washington State, USA, to examine the grazing, egg production, and hatching success rates of adult female Calanus pacificus and Pseudocalanus newmani. Here, we discuss the results of our grazing experiments for P. newmani. Each week, we conducted traditional microzooplankton dilution experiments and “copepod dilution” experiments, each from two different layers. Grazing was measured by changes in chlorophyll concentration and direct cell counts. Clearance rates on individual prey species, as calculated by cell counts, showed that Pseudocalanus are highly selective in their feeding, and may have much higher grazing rates on individual taxa than calculated from bulk chlorophyll disappearance. The grazing rates of the copepods, however, are typically an order of magnitude lower than the grazing rates of the microzooplankton community, or the growth rates of the phytoplankton. P. newmani ingested diatoms, but, at certain times fed preferentially on microzooplankton, such as ciliates, tintinnids, and larger dinoflagellates. Removal of the microzooplankton may have released the other phytoplankton species from grazing pressure, allowing those species’ abundance to increase, which was measured as an apparent “negative” grazing on those phytoplankton species. The net result of grazing on some phytoplankton species, while simultaneously releasing others from grazing pressure resulted in bulk chlorophyll-derived estimates of grazing which were essentially zero or slightly negative; thus bulk chlorophyll disappearance is a poor indicator of copepod grazing. Whether copepods can significantly release phytoplankton from the grazing pressure by microzooplankton in situ, thus causing a trophic cascade, remains to be verified, but is suggested by our study.  相似文献   

4.
The biomass and size fraction of phytoplankton in terms of chlorophyll a(Chl a) was measured during four cruises conducted in April, July, October 2013 and January 2014 in mariculture area, the Sanggou Bay, China.Results show that total Chl a levels in the surface seawater of the Sanggou Bay generally range from 0.10 to 20.46μg/L, with an average value of 2.13 μg/L. Nano-phytoplankton was the most important size-fraction and accounted for about 65.1% of total Chl a. In order to evaluate the importance of the "protozoan trophic link" for energy transfer from the microbial loop to filter-feeding feeders, Zhikong scallop Chlamys farreri was then offered a natural planktonic community as potential prey. Results show that scallops obtained carbon source from natural plankton with the rate of 11 033.05 μg/(g·d). Protists(nanoflagellates and ciliates) were the dominant source of carbon retained by scallop(48.78%). The microbial loop provided 58.45% of the carbon source for farmed scallops. These results indicate that the microbial loop represent a valuable trophic resource in mariculture system of the Sanggou Bay.  相似文献   

5.
During late winter and spring of 2002 and 2003, 24, 2–3 day cruises were conducted to Dabob Bay, Washington State, USA, to examine the grazing, egg production, and hatching success rates of adult female Calanus pacificus and Pseudocalanus newmani. The results of the copepod grazing experiments for C. pacificus are discussed here. Each week, copepod grazing incubation experiments from two different depth layers were conducted. Grazing was measured by both changes in chlorophyll concentration and cell counts. In 2002, there was one moderate bloom consisting mainly of Thalassiosira spp. in early February, and a larger bloom in April comprised of two Chaetoceros species and Phaeocystis sp. Similarly, in 2003, there were two blooms, an early one dominated by Thalassiosira spp., and a later one consisting of Chaetoceros spp. and Thalassiosira spp. Clearance rates on individual prey species, as calculated by cell counts, showed that C. pacificus are highly selective in their feeding, and may have much higher clearance rates on individual taxa than rates calculated from bulk chlorophyll disappearance. During weeks of high phytoplankton concentration, the copepods generally ate phytoplankton. However, they often rejected the most abundant phytoplankton species, particularly certain Thalassiosira spp., even though the rejected prey were often of the same genus and similar size to the preferred prey. It is speculated that this avoidance may be related to the possible deleterious effects that certain of these diatom species have on the reproductive success of these copepods. During weeks of medium to low phytoplankton concentration, the copepods selectively ate certain species of phytoplankton, and often had high electivity for microzooplankton. The selection mechanism must consist of active particle rejection most likely based on detection of surface chemical properties, since the diatoms that were selected were of the same genus, nearly the same size, and at lower numerical abundance than those cells that were avoided. The grazing choices made by these copepods may have important consequences for the overall ecosystem function within coastal and estuarine systems through changes in the transfer efficiency of energy to higher trophic levels.  相似文献   

6.
To investigate the seasonal variation and community structure of nano- and microzooplankton in Gyeonggi Bay of the Yellow Sea, the abundance and carbon biomass of nano- and microzooplankton were evaluated at 10-day intervals from January 1997 to December 1999. Four major groups of nano- and microzooplankton communities were classified: heterotrophic ciliates, heterotrophic dinoflagellates (HDF), heterotrophic nanoflagellates (HNF), and copepod nauplii. The total carbon biomass of nano- and microzooplankton ranged from 10.2 to 168.8 μg C L−1 and was highest during or after phytoplankton blooms. Nano- and microzooplankton communities were composed of heterotrophic ciliates (7.4–81.4%; average 41.7% of total biomass), HDF (0.1–70.3%; average 26.1% of total biomass), copepod nauplii (1.6–70.6%; average 20.7% of total biomass), and HNF (0.8–59.5%; average 11.5% of total biomass). The relative contribution of individual components in the nano- and microzooplankton communities appeared to differ by seasons. Ciliates accounted for the most major component of nano- and microzooplankton communities, except during summer and phytoplankton blooming seasons, whereas HDF were more dominant during the phytoplankton blooming seasons. The abundance and biomass of nano- and microzooplankton generally followed the seasonal dynamics of phytoplankton. The size and community distribution of nano- and microzooplankton was positively correlated with size-fractionated phytoplankton. The carbon requirement of microzooplankton ranged from 60 to 83% of daily primary production, and was relatively high when phytoplankton biomass was high. Therefore, our result suggests that the seasonal variation in the community and size composition of nano- and microzooplankton appears to be primarily governed by phytoplankton size and concentration as a food source, and their abundance may greatly affect trophic dynamics by controlling the seasonal abundance of phytoplankton.  相似文献   

7.
Recent research developments on the ecology, dynamics and trophic position of copepods in the Benguela ecosystem are synthesized. Attention is focused on herbivorous species of the southern Benguela and how they cope with the physical and biological variability characteristic of this upwelling region. Copepods constitute on average approximately half of the total zooplankton carbon and. are most abundant during the upwelling season. They are able to maintain large population densities within local coastal upwelling areas by combining ontogenetically based vertical migration behaviour with features of the current system. Some species have developed finely tuned strategies to overcome periods of starvation between upwelling bouts by storing lipid reserves or by entering temporary developmental arrest. In situ measurements of production rates of local species are among the highest recorded for copepods. Despite an apparent excess of food, copepods exert only limited impact on the phytoplankton, removing on average <25 per cent of that available daily. Indirect estimates of carbon flux indicate that 11–25 per cent of copepod daily ration is used for egestion of faecal pellets. Copepods are the preferred prey of a wide variety of invertebrate and vertebrate predators. Large copepods in particular are important in the diet of commercially exploited pelagic fish. Localized areas of low abundance of copepods have been found in association with high densities of anchovy during peak spawning and recruitment periods. Copepods may therefore constitute a central limiting factor for pelagic fish production in the southern Benguela.  相似文献   

8.
The endangered fan shell Pinna nobilis is a large bivalve mollusc (<120 cm shell length) endemic to the Mediterranean that lives one-third buried in soft substrata, generally in shallow coastal waters. We hypothesised that P. nobilis of different sizes would ingest different food sources, because small fan shells will inhale material from closer to the substratum than do large fan shells. We studied stomach contents and faeces of 18 fan shells, 6 small (mean 23.0 cm length), 6 medium-sized (mean 41.5 cm length) and 6 large (mean 62.7 cm length) living in a small area of a low-energy coastal detritic bottom characterised by mud, sand and macroalgae at Mali Ston Bay, Croatia. We found that all P. nobilis ingested copious quantities of undetermined detritus (probably at least 95% of ingested material), phytoplankton, micro and mesozooplankton and pollen grains. Large P. nobilis stomach contents showed a preponderance of water column calanoid copepods, while small fan shells had higher numbers of bivalve larvae. All fan shells took in high numbers of harpacticoid copepods that are benthonic, feeding on microbial communities of detritus and benthic vegetation. There was also a significant selection of phytoplankton species, some apparently occurring between inhalation and ingestion. The stomach contents of small P. nobilis had a higher organic matter content than either medium-sized or large fan shells; this indicated that small fan shells ingested detritus of higher organic content than did larger P. nobilis. As the faeces of all P. nobilis had similar organic matter content, this also indicates higher assimilation efficiencies in small fan shells. The demonstration of differential dietary selectivity by different sized animals has implications for future trophic studies of this endangered species. This study also provides the first demonstration of predation on zooplankton by P. nobilis.  相似文献   

9.
Seasonal changes in nano/micro-zooplankton grazing on pico-, nano- and micro-size phytoplankton and heterotrophic nano-flagellates (HNF) feeding on heterotrophic bacteria were quantified by the dilution technique in the surface layer off Cape Esan, southwestern Hokkaido, Japan. Pico- and nano-size phytoplankton were major components throughout the year except in spring when a diatom bloom was observed. Although there was little seasonal variation in bacteria and HNF biomass throughout the year, the micro-zooplankton biomass varied appreciably with a peak in spring. Nano/micro-zooplankton grazing or feeding on pico-size chl-a and bacteria were well balanced throughout the year. However, nano-size and micro-size chl-a growth were much greater than grazing in summer. Nano/micro-zooplankton ingestion of phytoplankton was greater than their ingestion of bacteria almost throughout the year, which suggests phytoplankton are more important as food sources of nano/micro-zooplankton in microbial food webs off Cape Esan than bacteria off Cape Esan. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A combined empirical and modelling study was conducted to further examine the potential importance of grazing by zooplankton in pelagic food webs in which Phaeocystis is a significant or dominant component. Laboratory experiments were designed to measure ingestion of Phaeocystis and other potential prey items which co-occur with Phaeocystis. Grazers included copepods and ciliates, and prey included Phaeocystis colonies and solitary cells, diatoms, ciliates, bacteria, and detritus. These data were expressed in the model currency of nitrogen units, and fit to hyperbolic tangent equations which included minimum prey thresholds. These equations and literature data were used to constrain a food web model whose purpose was to investigate trophic interactions rather than to mimic actual events. Nevertheless, the model output was similar to the general pattern and magnitude of development of Phaeocystis–diatom communities in some environments where they occur, e.g. north Norwegian waters. The model included three forms of nitrogen, three phytoplankton groups, bacteria, two zooplankton groups, and detritus, with detailed flows between compartments. An important component of the model was inclusion of variable prey preferences for zooplankton. The experiments and model simulations suggest several salient conclusions. Phaeocystis globosa colonies were eaten by a medium-sized copepod species, but ingestion appeared to be strongly dependent upon a proper size match between grazer and prey. If not, colonies were eaten little if at all. Phaeocystis solitary cells were ingested rapidly by ciliate microzooplankton, in agreement with prior literature observations. In contrast, detritus was eaten comparatively slowly by both ciliates and copepods. Both types of zooplankton exhibited apparent minimum prey thresholds below which grazing did not occur or was inconsequential. Model simulations implied that transitions between life cycle stages of Phaeocystis may potentially be important to phytoplankton–zooplankton interactions, and that relative rates of ingestion of Phaeocystis by various zooplankton may have significant impacts upon material fluxes through and out of Phaeocystis–diatom ecosystems. Indirect effects of trophic interactions appear to be equally significant as direct effects.  相似文献   

11.
The ontogenetic, seasonal, bathymetric and regional variations in the feeding spectrum of 922 specimens of southern blue whiting Micromesistius australis and 512 specimens of hoki Macruronus magellanicus were studied on the Falkland Islands’ shelf (Southwest Atlantic) between November 1999 and April 2003. A total of 49 different prey items were found in the stomach contents of the two species, with the hyperiid Themisto gaudichaudii and Euphausiacea being amongst the most important prey. Although the species composition did not change over fish size, the proportions of individual prey items in their diets did, with an increase in T. gaudichaudii and Euphausiacea with increasing fish size in southern blue whiting. The opposite occurred in hoki. Seasonal variations in the diet were found to mirror the seasonal abundance of prey around the Falkland Islands for the two species. Intra-specific differences in the diet of both predators reflected the distribution of prey, which in turn was determined by the water structure in the two regions sampled, leading to very different diets. In the limited time that the two species occupied the same space there was little or no competition resulting in almost total segregation of their trophic niches in space and time.  相似文献   

12.
Grazing impacts of calanoid copepods on size-fractionated phytoplankton biomass [chlorophyll (Chl)-a] were measured in Jangmok Bay, Geoje Island, Korea, monthly from November 2004 to October 2005. The ingestion rate of calanoid copepods on total phytoplankton biomass ranged between 1 and 215 ng Chl-a copepod?1 day?1 during bottle incubations. Results indicated that microphytoplankton (> 20 μm) was the primary food source for calanoid copepods in grazing experiments on 3 phytoplankton size categories (< 3 μm, 3–20 μm, and > 20 μm). The ingestion rate on microphytoplankton showed a significant increase (r = 0.93, p < 0.01) with Chl-a concentration. Nanophytoplankton (3–20 μm) showed a negative ingestion rate from June 2005 to October 2005, but the reason is not completely understood. Calanoid copepods were unable to feed efficiently on picophytoplankton (< 3 μm) due to unfavorable size. Calanoid copepods removed between 0.1% and 27.7% (average, 3.6 ± 15.8%) of the phytoplankton biomass daily during grazing experiments. Grazing pressure was high in winter and early spring (January–March: 15.6–27.7%), while low in summer (June–August: ?33.1–0.0%) and autumn (September–November: ?1.4–5.1%). Results suggest that calanoid copepods play an important role in controlling the biomass and size structure of phytoplankton in winter and early spring.  相似文献   

13.
As part of a broader field study examining the potentially deleterious effects of diatoms on planktonic food webs, we examined the abundance, stage composition, diet, and feeding success of the chaetognath, Sagitta elegans, and the abundance and morphometric condition of larval Pacific hake, Merluccius productus. Our objective was to look for a relationship between spring phytoplankton blooms and planktonic predators, as mediated by their copepod prey, with special reference to possible deleterious effects of diatoms. Zooplankton were collected weekly during February–May and in mid-summer of 2002 and 2003 in Dabob Bay, Washington State, USA. S. elegans abundance was high in summer of both years and was higher in spring 2003 than spring 2002. Larval chaetognaths dominated the population in early spring and remained present throughout sampling. S. elegans consumed mostly copepods. The abundance of larval S. elegans was correlated with the abundance of copepodites, although no relationship between chaetognath feeding success and prey abundance was found. Larval Pacific hake abundance was high (1200 larvae per square meter) in late February and early March of 2002 and 2003 and decreased rapidly in late spring. The morphometric condition of M. productus was not significantly related to copepod abundance. These results indicate that any deleterious effects of diatoms on copepod abundance, at the scale seen during spring 2002 and 2003 in Dabob Bay, did not greatly affect the next higher trophic level.  相似文献   

14.
The Peruvian anchovy or anchoveta (Engraulis ringens) forages on plankton and is a main prey for marine mammals, seabirds, fish, and fishers, and is therefore a key element of the food web in the Humboldt Current system (HCS). Here, we present results from the analysis of 21,203 anchoveta stomach contents sampled during 23 acoustic surveys over the period 1996–2003. Prey items were identified to the genus level, and the relative dietary importance of different prey was assessed by determination of their carbon content. Variability in stomach fullness was examined relative to the diel cycle, the distance from the coast, sea surface temperature, and latitude, using generalized additive models (GAMs). Whereas phytoplankton largely dominated anchoveta diets in terms of numerical abundance and comprised >99% of ingested prey items, the carbon content of prey items indicated that zooplankton was by far the most important dietary component, with euphausiids contributing 67.5% of dietary carbon followed by copepods (26.3%). Stomach fullness data showed that anchoveta feed mainly during daytime between 07h00 and 18h00, although night-time feeding also made a substantial contribution to total food consumption. Stomach fullness also varied with latitude, distance from the coast, and temperature, but with substantial variability indicating a high degree of plasticity in anchoveta feeding behaviour. The results suggest an ecological role for anchoveta that challenges current understanding of its position in the foodweb, the functioning of the HCS, and trophic models of the HCS.  相似文献   

15.
The northern Mid-Atlantic Ridge, from Iceland to the Azores (MAR), is the largest topographical feature in the Atlantic Ocean. Despite its size, few studies have described dietary patterns of pelagic fishes along the MAR. MAR-ECO, a Census of Marine Life field project, aimed to describe the food web structure of abundant fish species along the ridge through a series of research expeditions to the MAR. Among the midwater fishes sampled during the MAR-ECO project, Bathylagus euryops (Osmeriformes: Bathylagidae) was the biomass-dominant pelagic species and ranked third in total abundance. In this paper, we describe the dietary composition of B. euryops along the MAR. Overall, copepods represented the dominant prey group consumed by B. euryops. Multivariate analyses, including a cluster analysis and a canonical correspondence analysis, revealed that fish size significantly influenced the diet of B. euryops with ostracods representing the most important prey group at small sizes (<95 mm) and decapod shrimp and calanoid copepods becoming more important with increasing fish size. Due to the high abundance and biomass observed along the MAR combined with its role as a link for energy transfer between zooplankton and higher trophic level predators, B. euryops appears to be an ecologically important species in the oceanic food web of the North Atlantic Ocean.  相似文献   

16.
This work concerns the trophic web positioning of the alien crab Rhithropanopeus harrisii and other common marine invertebrate species and fishes in the benthic ecosystem of the shallows of Taman Bay, Sea of Azov. The base of the trophic web in this system is composed of phytoplankton, macrophytes (algae and marine grasses), and reeds that use atmospheric carbon for photosynthesis. Analysis of the isotopic composition of nitrogen and carbon has shown that although marine grasses are dominating primary producers in the shallows of the bay, primary consumers (such as Cerastoderma glaucum, Porifera gen. sp., Gammarus aequicauda, Deshayesorchestia deshayesii and Idotea balthica) only partially use this organic source; instead, they use a combination of different sources of primary production. It has been shown that the food source of the alien crab is primarily of animal origin. In Taman Bay, R. harrisii is on the same trophic level as other carnivores/scavengers: benthic fishes Syngnathus nigrolineatus, Gobius spp. and native crab Pilumnus hirtellus and shrimp Palaemon adspersus.  相似文献   

17.
Laboratory experiments were conducted to determine the feeding performances of Uca zoeae and the estuarine copepods Acartia tonsa and Tortanus setacaudatus when these zooplankton preyed upon the co-occurring tintinnids Favella panamensis (length 265 μm) and Tintinnopsis tubulosa (length 148 μm). Predation by Favella on Tintinnopsis was also studied. Over the range of experimental prey densities used, Acartia ingested Tintinopsis at rates linearly related to prey density. Favella was ingested by Aractia at higher rates than was Tintinnopsis. Tortamus ingested Favella more readily than did Acartia, but Tortanus did not ingest Tintinnopsis. Uca ingested both Tintinnopsis and Favella while Tintinnopsis was also ingested by the larger tintinnid Favella. Comparisons of Acartia predation on tintinnids with published data on ingestion of nauplii and phytoplankton showed that when the phytoplankton are dominated by small (diameters < 10 μm) species, tintinnids in concentrations exceeding 103 organisms 1?1 can be important items in the diets of Acartia. At lower tintinnid concentrations or when algal species with diameters > 10 μm are present in significant concentrations, tintinnids merely supplement algae in the diet of Acartia. Generally, tintinnids are more important food items for Acartia than are comparably sized nauplii. Only at concentrations exceeding 104 cop. m?3 can Acartia depress tintinid population growth.  相似文献   

18.
《Journal of Sea Research》2000,43(3-4):345-356
During spring blooms 1998 and 1999, three complementary methods were used to evaluate the in situ feeding activities of the dominant copepod species of the Belgian coastal zone: gut pigment content analysis using HPLC, the 14C tracer method, and cell count experiments. The results obtained by all three methods consistently showed that Phaeocystis globosa is not an adequate food source for the spring copepods in the Belgian coastal zone. Our results demonstrated that, among the potential prey, copepods strongly selected diatoms and microzooplankton, and that these types of prey accounted for the major part of the ingested carbon. However, diatoms and microzooplankton ingestion did not always seem sufficient in terms of carbon to avoid food limitation. Comparison of clearance rates exerted on different potential prey types during the P. globosa peak with those before and after the P. globosa peak showed that the copepods' feeding pressure on diatoms was reduced during the P. globosa peak while that on microzooplankton was not. The low grazing pressure on P. globosa, together with the preferential grazing on diatoms, which reduces the competition for nutrients, and the predation on microzooplankton organisms, which reduces the microzooplankton grazing pressure on P. globosa cells, are likely to favour the P. globosa bloom in the Southern Bight of the North Sea.  相似文献   

19.
Mysid shrimps are an important component of estuarine food webs because they play a key role in energy transfer as intermediate prey. We investigated the seasonal, tidal and depth specific variation in the diet of the estuarine mysids Neomysis integer and Rhopalophthalmus tartessicus and explored its implications for the planktonic community structure of a temperate estuary (Guadalquivir Estuary, SW Spain). Neomysis integer is an opportunistic omnivore feeding mainly on mesozooplankton and on members of the detrital–microbial loop, shifting prey seasonally according to availability. In contrast, R. tartessicus showed a more carnivorous diet and shifted its target prey during seasons of low resource availability. Despite statistically significant differences in diet composition, both species shared prey of similar size, particularly juvenile Mesopodopsis slabberi, the most abundant mysid species in this estuary, and copepods. Although these similarities imply inter-specific resource competition, their co-existence is achieved by niche partitioning and spatial segregation: the higher osmoregulatory capacity and foraging plasticity of N. integer confers a broader niche breadth for this species allowing N. integer to inhabit the more stressful oligohaline region of the estuary where R. tartessicus cannot survive. We propose that this mechanism relaxes the potential for competition between N. integer and R. tartessicus.  相似文献   

20.
European sardine (Sardina pilchardus) and European anchovy (Engraulis encrasicolus) are two species of economical and ecological significance in the Bay of Biscay (north-east Atlantic). However, the trophic ecology of both species is still poorly known in the area, and more generally, few studies have considered the potential trophic overlap between sardines and anchovies worldwide. This study aims to highlight the trophic links between the mesozooplankton and adults of these two pelagic fish in the Bay of Biscay, through carbon and nitrogen stable isotope analysis (SIA). Mesozooplankton and individuals of sardines and anchovies were collected during one season (spring 2010), over spatially contrasted stations within the study area. First, the potential effect of preservation (ethanol vs. freezing) and of delipidation (by cyclohexane) on mesozooplankton δ13C and δ15N values was assessed. Results demonstrated the necessity to correct for the preservation effect and for lipid contents in mesozooplankton for further analyses of sardines' and anchovies' diet through SIA. Next, this study highlighted the interest of working on identified mesozooplanktonic organisms instead of undetermined assemblages when unravelling food sources of planktivorous fish using stable isotopes. The inter-specific variability of isotope values within a planktonic assemblage was effectively high, probably depending on the various feeding behaviours that can occur among mesozooplankton species. Intra-specific variability was also significant and related to the spatial variations of baseline signatures in the area. To investigate the foraging areas and potential diet overlap of S. pilchardus and E. encrasicolus, mixing models (SIAR) were applied. Both fish species appeared to feed mainly in the neritic waters of the Bay of Biscay in spring and to select mainly small- to medium-sized copepods (e.g. Acartia sp., Temora sp.). However, E. encrasicolus showed a greater trophic plasticity by foraging more offshore and on a wider range of prey sizes, while S. pilchardus seemed more limited to coastal areas and the mesozooplanktonic species of these waters for feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号