首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
该文利用2015、2016年5—10月赤水河沿岸的茅台站、二郎站、赤水站3个水文监测站以及赤水站、习水站两个气象站逐小时采集存储的水文气象数据,基于多元线性回归、岭回归和套索回归3种机器学习方法,构建预测赤水河中下游未来6 h水位趋势的模型。结果表明,基于机器学习的方法可以较好的预测赤水河中下游未来6 h的水位情况,而利用72 h滞后量作为输入集的LASSO回归模型能取得RMSE为0.192 m的预测效果。  相似文献   

2.
利用余庆河流域内余庆国家基本气象站1981—2019年降水资料及5个区域气象站2012—2019年降水资料,结合团结水库水位特征和历史暴雨洪涝灾情资料,分析余庆河流域"三个叫应"气象服务标准。结果表明:以24 h区域平均雨量为统计量,团结水库24 h前的水位在602 m、603 m、604 m、605 m时,余庆河流域一级叫应临界雨量阈值分别为85 mm、80 mm、75 mm、70 mm;二级叫应临界雨量阈值分别为70 mm、65 mm、60 mm、55 mm;三级叫应临界雨量阈值分别为65 mm、60 mm、55 mm、50 mm。根据致灾临界雨量阈值确定的余庆河流域"三个叫应"气象服务标准,符合余庆县防汛实际情况,可以为防御中小河流域暴雨洪涝赢得宝贵时间。  相似文献   

3.
为提高对中小河流强降水引发山洪的预报预警能力,尽可能减少山洪灾害造成的人民生命财产损失,基于伊春市近10 a(2011-2020年)中小河流山洪灾害和对应的暴雨、短时强降水资料,分析了暴雨和短时强降水发生时的天气形势,统计了易发山洪的降水面雨量阈值。结果表明:伊春市暴雨和短时强降水发生时的天气形势主要为副高北抬阻挡低涡东移型、高空槽配合地面低压型和低涡配合地面低压型。通过雨量统计,得出6-8月易发山洪的降水面雨量阈值,6月份,同一区域48 h累计雨量达到85 mm,降水期间部分时段有短时强降水,小时雨强达到20 mm/h,并连续出现2-3 h;7月份,同一区域48 h累计雨量达到90 mm,或局地小时雨强超过30 mm/h;8月份,同一区域48 h累计雨量达到110 mm,或局地小时雨强达到30 mm/h。基于研究结果,建立了伊春市山洪预警流程。  相似文献   

4.
目的】在极端天气频发的气候背景下,有必要进一步分析习水县暴雨天气时空分布特征。【方法】利用1959—2022年贵州省习水国家基本气象站逐日降水资料、2010—2022年24个乡镇区域站日降水资料,运用统计学及空间插值等方法,对习水县的暴雨时空分布特征及成因进行分析。【结果】习水县暴雨多发生在习水河谷和赤水河谷的迎风坡及东部喇叭口地形区域,空间分布特征为北多南少;年区域性暴雨日数呈增长趋势;区域性暴雨月变化呈“单峰”型分布特征,主要出现在5—9月,占比94%;区域性大暴雨日数月分布呈“双峰”型分布,峰值在6月、8月。习水县暴雨具有明显日变化特征,夜雨特征明显,大暴雨夜雨占比81.1%;区域性暴雨天气过程主要降水时段集中在19时—次日06时,占比76.9%。习水从春季至秋季都有暴雨出现,暴雨日数频次大值区自西向东移动,夏季暴雨出现最多,占比69%。将造成区域性暴雨天气的影响系统分为低涡切变型、冷锋低槽型、梅雨锋型、台风外围型等4种类型。低涡切变型产生暴雨最多,占比77.3%。【结论】习水县暴雨空间分布呈北多南少,区域性暴雨主要出现在5—9月,夜雨特征明显,该研究成果可为更好地开展习水县暴雨灾害性天气预报及气象服务工作提供参考。  相似文献   

5.
沙澧河流域致洪预警系统基于中小河流致洪预警气象服务需求,以气象与水文相结合,应用地理信息(GIS)先进技术,利用气象常规数据、地面自动雨量站资料、数值模式、卫星雷达资料及水文雨量、水位数据等资料,运用动力学诊断和统计分析、多元线性回归方法、模式输出法、相似预报等方法,输出暴雨和水位增量预报模型。该系统通过C/C++语言编程,集气象水文信息显示分析、数据库、预报模型和用户界面于一体,建立了涵盖流域暴雨预报、水位增量监测预测、洪涝灾害预警服务等多功能的可视化业务技术平台。在本地基层台站首次将气象和水文两个学科结合,建立降水、水文和洪涝数据库;首次对沙澧河流域进行暴雨形势分型,并建立流域暴雨预报模型;首次建立沙澧河流域五大水库水位增量预报模型。自系统运行以来,成功对沙澧河流域出现的几次致洪暴雨进行了预警,服务效果明显。  相似文献   

6.
利用逐日气象水文资料,针对贺江流域进行HBV水文模型率定与验证,获得降水-流量关系,结合广西贺州市信都水文站的水位-流量关系,推算得到3个洪水风险预警级别对应的临界雨量,并通过2次历史洪水过程,检验该临界雨量在暴雨洪涝灾害风险预警中的应用效果。结果表明:(1)由HBV水文模型确定的贺江流域3个不同洪水风险等级下24h、48h的致灾临界雨量,预警效果较好;(2)HBV模型能很好地反映降水对贺江水文过程的影响,可为贺江流域暴雨洪涝灾害防御工作提供决策参考。  相似文献   

7.
<正>重要天气过程概述江西省气象台郑婧1暴雨过程据气象记录统计,江西省7—9月发生区域性暴雨天气平均每年3.8次。2014年7—9月,江西10站以上区域性暴雨日达5 d(表1),其中7月暴雨频繁,降水较历年同期偏多。7月13—16日为连续暴雨过程,江西中北部多数区域出现对流性暴雨和大暴雨天气。7月24日"麦德姆"台风在江西逗留7 h,带来明显的风雨。降水对流性强、局地雨量大,九江市德安县短历时暴雨强度超百年一遇,23日15时至24日15时德安县丰林镇累计降水量826.7 mm,其中7月24日06时、07时降水量分别达65.3和204.6 mm,强降水使江西局部出现洪涝和地质灾害,德安城区街道内涝、金带河漫堤。  相似文献   

8.
利用2009-2013年上海市加密观测自动站降水资料和110报警信息资料,对上海市短时强降水进行统计分析,了解其地理分布特征、概率分布特点的同时,找出降水极端性与暴雨红色预警标准的对应关系,以及110报警次数与短时强降水的关系。结果表明:1)自动站1 h雨量≥30 mm、≥50 mm和3 h雨量≥50 mm、≥100 mm的5 a累计频数的大值区基本集中在市区及其周边地区,郊区次数明显减少,出现次数最多的是3 h雨量≥50 mm的情况,出现次数最少的为3 h雨量≥100 mm的情况。2)从不同降水强度的发生概率分布来看,郊区弱降水发生概率大于市区的,市区强降水(1 h雨量≥25 mm)发生概率大于郊区的。3)对流降水情况下,降水累积概率为1%时,对应的1 h雨量市区为63.6 mm、郊区为58.7 mm,接近暴雨红色预警标准;对应的3 h雨量市区为90.8 mm、郊区为86.8 mm,较暴雨红色预警标准的阈值小。4)报警次数与降水量的关系:1当1 h雨量40 mm或3 h雨量60mm时,报警次数变化不大,基本在10次以下;当1 h雨量≥40 mm或3 h雨量≥60 mm时,报警次数逐渐增多,大部分在20次以上;当1 h雨量≥60 mm(达到暴雨红色预警标准)、3 h雨量≥80 mm(未达到暴雨红色预警标准)时,报警次数明显增多,基本超过30次,最多达100次以上。从报警次数的角度来看,暴雨红色预警的3 h标准设定为80~90 mm更合适。2当逐1 h和逐3 h雨量不是很大、但累积降水量较大(特别是累积降水量超过100 mm)时,报警次数急剧增多,很多超过100次,说明报警次数还与降水的持续时间有关。3当累积降水量、逐1 h和逐3 h雨量都增加时,报警次数增加最快。4报警次数的极值并非都出现在逐1 h和逐3 h雨量大值时,在1 h雨强不是很强,但降水持续时间长,累积降水量大的时候,也十分容易出现报警极值。  相似文献   

9.
评估分析了欧洲中期天气预报中心(European Centre for Medium-range Weather Forecasts,ECMWF)细网格模式(以下简称EC-thin)在长三角地区汛期(5—9月)的暴雨预报评分及ECMWF降水极端天气预报指数(EFI)对暴雨预警的指示作用。研究发现:(1) EC-thin降水和降水EFI对暴雨预报的ETS评分随着预报时效的延长而明显降低,在短时效内,细网格模式降水预报占优,超过60 h后,降水EFI的评分相对更好。(2)对EC-thin降水而言,在不同的预报时效采用不同的降水阈值来预报暴雨,可望达到最佳的评分效果。短期时效内该阈值随着预报时效的延长,大致从55 mm逐渐下降到35 mm。(3)对于降水EFI而言,12—36 h内EFI为0.65~0.7时,暴雨预报ETS评分最高。随着预报时效的延长逐渐下降,60—84 h内EFI为0.55~0.6时,暴雨预报ETS评分最高。(4)在不同预报时效内,采用合理的方式和阈值综合考虑EC-thin降水和降水EFI,可望得到更高的暴雨预报评分。  相似文献   

10.
为了将WRF集合预报更好地应用于济南大城市精细化预报,提高暴雨预报准确率,利用2013—2014年汛期济南龟山观测站和市区及历城区36个区域自动观测站的降水资料,检验WRF集合预报24h确定性降水量对暴雨的TS评分、空报率、漏报率以及平均绝对误差和均方根误差,并且检验24h暴雨概率的可信度。2013年和2014年的空报率和漏报率均较高,2013年暴雨预报TS评分明显好于2014年。确定性预报24h降水量达到30mm以上,且天气形势和各物理量满足产生暴雨的条件时,可考虑预报暴雨;低层湿度大时确定性降水最易出现暴雨空报;24h暴雨概率预报对济南局地性较强的暴雨有较好的指示意义。  相似文献   

11.
提出并推导二阶位涡物理量,并利用美国NCEP/NCAR 0.5°×0.5°GFS的24 h预报资料,计算了东北冷涡暴雨、锋面暴雨、低槽暴雨、台风暴雨等类型暴雨500—850 h Pa二阶位涡绝对值的垂直积分,与相对应时刻的24 h累积地面观测降水量进行对比。结果表明:二阶位涡的水平分布与暴雨落区有较好的对应关系,其对观测降水具有指示预测作用。2013年6—8月华南地区(20°—35°N,105°—125°E)24 h预报的6 h累计降水量大于10 mm的ETS评分表明,二阶位涡预报降水的平均ETS评分高于美国GFS预报降水的平均ETS评分,其对降水有较好的指示作用。  相似文献   

12.
基于西南区域数值预报模式(SWC-WARMS)2019年5~8月00时起报的24h累计降水预报资料和四川省气象站点降水观测资料,采用频率匹配法对6月1日~8月31日降水预报值进行了偏差订正。结果表明:模式预报的24h累计降水量总体为湿偏差;订正后降水量平均绝对误差减小;大雨和暴雨的偏差评分提高;小雨、中雨、大雨的TS评分提高,暴雨TS评分降低;各量级的空报率均有所降低,小雨和中雨漏报率减小,大雨和暴雨漏报率增大,尤其是暴雨漏报率显著增加;当模式对暴雨降水落区预报较好(差)时,频率匹配订正能提高(降低)TS评分。   相似文献   

13.
利用气象卫星、常规气象观测资料和水文部门提供的中尺度水情观测资料对2005年汉江秋汛进行气象水文特征分析。得出如下结论:汉江秋汛与西太平洋副热带高压的位置、强弱密切相关;在汉江上游整个流域累计面雨量达到100mm以上,如果汉江上游地区再出现一场强暴雨,将造成汉江流域发生较大的洪水;汉江上游强降水是由中尺度系统造成的,中β暴雨云团存在合并-加强-分裂的过程,其合并加强的方式有气旋式和追赶式两种;2005年汉江秋汛是仅次于1983年的大洪水,洪水的形成与降水和地质条件密切相关;汉江上游洪水的流量差与区域降水的累积值有很好的相关,洪峰由区域性的强降水造成;汉江上游洪水传播的时间具有一定的规律,由石泉到丹江口水库洪水传播的时间为36~48h,其中石泉到白河平均传播时间为24 h,白河到丹江口传播时间为12~18 h;根据降水预报,运用库容和水位的统计关系,按照一定的算法可以预测水库水位。  相似文献   

14.
从2018年7月16日北京暴雨过程雨情和地质灾害灾情出发,介绍了此次过程的地质灾害气象预警及检验;并基于北京区域地质灾害易发度信息,结合多源融合定量降水估测(QPE)驱动CREST水文模型模拟径流量与土壤湿度特征、过程雨强特征,分析了北京本次地质灾害气象成因。结果表明,北京北部和西部处于地质灾害中、高易发区,区(县)小时累计面雨量达到50 mm以上易发生灾害,降水持续24 h后是地质灾害的高发时段,灾害常发生于雨强较大峰值后的15 h内;基于雨强-降水持续时间推求的地质灾害致灾临界雨量阈值对北京地区地质灾害气象预警有一定的借鉴意义;基于水文模型的北京区域径流量、坡面径流深、土壤湿度等水文过程要素模拟对预警也有较好的指导意义。  相似文献   

15.
利用安庆市逐日降水实况资料,针对2011—2016年ECMWF细网格降水预报产品对安庆地区的12 h、24 h分辨率晴雨和降水分级预报质量进行检验,基于检验结果对此降水预报产品进行解释应用。结果表明,ECMWF细网格数值降水预报在安庆地区晴雨预报正确率无明显区域差异,夏季晴雨预报正确率明显低于其他各季节,对夜间的预报能力明显优于白天。TS评分中,小雨最高,中雨次之,大雨及以上量级较低且无明显规律。若将冬、春两季0.2 mm以下、夏季1.0 mm以下和秋季0.8 mm以下的降水预报进行消空处理,则晴雨预报正确率会有所提升,且小雨预报的TS评分达最佳;若将≥40 mm的降水预报修正为暴雨,则暴雨预报TS评分提高接近1倍,且大雨和暴雨的预报偏差更接近1。  相似文献   

16.
利用常规气象观测资料、NCEP/NCAR再分析资料以及雷达、卫星等资料,对2013年6月21日和2014年8月11日遵义市习水河流域两次局地特大暴雨的天气形势场,热力、动力和水汽条件,结合地形特征进行对比分析。结果表明:16.21暴雨大陆高压控制我国中东部地区,受高压阻挡,低层低涡切变主要影响四川中东部,低涡未整体东移,仅850 h Pa冷式切变影响遵义西北部;8.11暴雨降水区中低层处于槽前正涡度区,高层200 h Pa处于南亚高压脊线附近,垂直方向上存在正向环流圈,受副高稳定维持阻挡,中低层低涡切变及地面辐合线东移缓慢,较长时间停留在强降水区域。2两次过程雷达回波反射率因子均呈带状分布,且回波移动方向与带状回波长轴一致,具有典型的"列车效应",剖面显示均为低质心结构,降水效率高。36.21暴雨能量条件比8.11暴雨好,但水汽条件和动力条件不及8.11暴雨。4受习水河谷地形影响,6.21暴雨和8.11暴雨强降雨落区分别与习水河谷赤水段和习水段走向一致。  相似文献   

17.
正1天气实况2016年7月23日20时-24日20时黑龙江省共计有3个国家站降水量超过50 mm,达到了暴雨级别,最大降水量为79.4 mm出现在哈尔滨的通河站;有16个站出现了大雨以上量级的降水。降水主要分布在伊春南部、哈尔滨、鹤岗、佳木斯、双鸭山等地,大雨以上量级降水集中在哈尔滨东部及佳木斯西部地区。统计24日08-20时的12 h降雨量分布,  相似文献   

18.
2021年“21·7”河南特大暴雨打破我国大陆小时气象观测纪录,该极端天气事件位列2021年中国十大天气气候事件第2位。已有研究使用气象地面站雨量观测资料对此次过程进行雨情分析和极值统计,但降水时空分布不均匀,单一来源资料存在不确定性。通过对比气象站和水文站雨量资料,分析两套业务观测系统记录“21·7”河南特大暴雨过程的异同,发现气象站和水文站雨量在时间和空间分布上具有很好的一致性,两者不同等级的累积降雨落区、逐日和逐时降雨演变趋势均一致性强,但累积雨量和雨强极值的空间分布和数值存在差异,两套资料在暴雨中心(过程雨量大于600 mm)的系统性偏差小于1%。气象站和水文站的融合资料呈现比单一资料更细致的降雨分布、更全面的演变特征。此外,基于融合资料发现累积雨量排名前3位的城市(郑州、鹤壁、新乡)均具有累积雨量大、小时雨强极强、强降雨集中、雨强突然增长的特征,鹤壁和新乡最强降雨时段分别比郑州晚26 h和28 h。  相似文献   

19.
四川盆地暖区暴雨特征分析   总被引:2,自引:0,他引:2  
给出四川盆地暖区暴雨的定义,并根据天气形势和影响系统将其分为西南涡型、副热带高压边缘型、西南急流型和东南风型四类。然后利用2008—2018年5—9月常规和自动站逐时降水资料统计分析四类暖区暴雨的时空分布特征和降水性质,并选取典型个例,对暴雨中尺度特征和成因进行了分析。主要结论包括:四类暖区暴雨易发于山脉迎风坡、喇叭口地形、平原和丘陵山地不均匀下垫面附近。西南涡型和西南急流型暴雨范围广且成片,西南涡型暴雨主要位于盆地中部和南部,西南急流型暴雨主要出现在盆地中部到龙门山脉北段和大巴山脉;副热带高压边缘型和东南风型暴雨分散,主要出现在盆地西部;降水都具有明显的日变化,呈现为单峰型,夜间加强,白天减弱;暖区暴雨由对流性和稳定性降水组成,降水量级越大,对流性越明显,其中,副热带高压边缘型和东南风型对流性降水明显,西南涡型和西南急流型稳定性降水明显;暖区暴雨直接由β中尺度云团发展造成,西南涡型和西南急流型中尺度对流系统持续时间≥6 h,副热带高压边缘型和东南风型中尺度对流系统持续时间≤6 h,但四类暖区暴雨单站对流性降水(20~50 mm·h-1)的持续时间一般不超过3 h,≥50 mm·h-1的短时强降水维持时间不超过1 h,若超过1 h易造成极端降水事件,西南涡型和西南急流型容易出现极端强降水;四类暖区暴雨发生在高能高湿不稳定环境条件下,平均CAPE值超过1000 J·kg-1,K指数在40℃左右,850 hPa平均假相当位温在85℃左右,平均比湿可达16 g·kg-1。  相似文献   

20.
基于2008—2020年青海省的灾情记录,利用灾损指数分析了青海省洪涝灾害的时空分布特征,确定了青海省的洪涝灾害高风险区。同时采用2017—2020年多源融合的CLDAS降水数据,利用机器学习算法建立了洪涝灾害预报模型,确定了致灾雨量阈值。结果表明:(1)青海省洪涝灾害2018年最多,共98次,2014年最少,共16次,7—8月是洪涝灾害的高风险时段。空间变化表现为,基于年平均灾害次数的高风险区为海南州-海西州东部,基于年平均灾损指数的高风险区为海东市-西宁市。(2)利用多种机器学习算法,得到基于CLDAS数据的1 h、2 h和24 h雨强是预警灾害的降水因子,海南州-海西州东部1 h或2 h最大雨强达到6.8 mm,或者24 h最大雨强达到11.1 mm,是预警洪涝灾害的降水阈值。海东市-西宁市及邻近地区1 h或2 h最大雨强达到13 mm,或者24 h最大雨强达到18.2 mm,是其预警洪涝灾害的降水阈值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号