首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
Water yield issues in the jarrah forest of south-western Australia   总被引:2,自引:0,他引:2  
The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12–15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge this complexity and evaluate forest management strategies both at the large catchment scale and at long time-scales. The extensive network of small catchment experiments, regional studies, process studies and catchment modelling at both the small and large scale, which are carried out in the jarrah forest, are all considered as integral components of the research to develop these management strategies to optimise water yield from the jarrah forest, without forfeiting other forest values.  相似文献   

2.
Long-term changes in annual water yield are summarized and compared for 11 catchment studies in the northeastern USA. Substantial increases in water yield of up to 350 mm year−1 were obtained in the first year by clearing forest vegetation and controlling regrowth with herbicides. Commercial clearcutting with natural regrowth resulted in initial increases in water yield of 110–250 mm year−1. This range in response was due to differences in precipitation and configuration of cuttings. Unless regrowth was controlled with herbicides, yield increases declined quickly after cutting, seldom persisting for more than 10 years. However, yield increases were readily extended over 20 years or more with intermediate cuttings and/or repeated control of regrowth with herbicides. Nearly all increases in water yield occur during the growing season as augmentation of baseflow. Changes in species composition after forest cutting on several study catchments eventually resulted in decreased water yields compared with those from uncut, control catchments. Results are discussed in terms of implications for surface water supplies, global climate change, nutrient cycling, hydrological modeling, and long-term research.  相似文献   

3.
Ashley A. Webb 《水文研究》2009,23(12):1679-1689
Streamflows were measured in two Pinus radiata plantation catchments and one native eucalypt forest catchment in Canobolas State forest from 1999 to 2007. In 2002/2003, clearfall harvesting of 43·2 and 40·3% of two plantation catchments occurred, respectively. Water yields increased by 54 mm (52%), 71 mm (35%) and 50 mm (19%) in the first three years post‐harvest in treated catchment A and by 103 mm (118%), 157 mm (82%) and 119 mm (48%) in treated catchment B relative to the native forest control catchment. In the fourth post‐harvest water year annual rainfall was only 488 mm, which resulted in negligible run‐off in all catchments, regardless of forest cover. In both plantation catchments, monthly streamflows increased significantly (p = 0·01, p < 0·001) due to a significant increase in baseflows (p < 0·001) after harvesting. Monthly stormflows were not significantly affected by harvesting. Flow duration curve analyses indicated a variable response between the two plantation catchments. Treated catchment A was converted from an ephemeral stream flowing 42% of the time pre‐harvest to a temporary stream flowing 82% of the time post‐harvest. These changes occurred throughout all seasons of the year but were most pronounced during summer and autumn when baseflows were maintained post‐harvest but were not observed under native forest or mature pine plantations. By contrast, flow duration increased in treated catchment B from 12% of the time pre‐harvest to 38% of the time post‐harvest with the greatest changes measured during the winter and spring months when streamflow would normally occur under native forest conditions. These observations have important implications for the development of models of plantation water use to be utilized in water resource planning in Australia. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Forestal Arauco (FA), a global manufacturer of forest products, manages more than 1 million ha of forest plantations and oversees the conservation of more than half a million hectares of native forest and vegetation in Brazil, Argentina and Chile. In 2008, FA responded to local concerns about the effect of plantations on water resources and commenced streamflow monitoring in catchments in the coastal range of central-southern Chile between 35° and 39° of latitude south. This data note presents an overview of daily streamflow and rainfall records for 10 small catchments (18–112 ha) from 2008 to 2018. The catchments are covered by three different forest types, namely native forest (2), pine plantations of different ages (6) and eucalypt plantations (2). All of these catchments share similar metamorphic geology. A 90° V notch weir was built at each catchment outlet and data collected at 5 min interval using a pressure transducer that was calibrated monthly. The dataset is part of a research programme aiming to improve our understanding about the role of forest plantations on water balance at a stand and catchment level. It also includes the rainfall data from these catchments estimated using a combination of local rain gauges and data from the longer term records of the Chilean Directorate of Water. This dataset can be used in hydrological modelling and in a wide range of research questions and water management issues regarding forest plantations in a Mediterranean climate.  相似文献   

5.
6.
An experiment in mountain ash forests in Melbourne's water supply catchments in south-east Australia investigated the impact on long-term water yield of reducing forest density. Fifty-four per cent of basal area was removed from a 17 ha catchment (Black Spur 1) by patch cutting, and the patches were regenerated with mountain ash. A 50% reduction was implemented in Black Spur 3, an 8 ha catchment, through uniform thinning. Uniform thinning was shown to be more effective in enhancing streamflow than patch cutting. A streamflow increase of 25–30% (130–150 mm year−1) was observed after treatment in both catchments. Eleven years later, a treatment effect of 15% was still evident in the selectively thinned catchment (Black Spur 3), but the effect had completely decayed in the patch cut catchment (Black Spur 1).

Research by Melbourne Water has established that streamflow is significantly influenced by forest age. It is hypothesised that this relationship, and the observed decay after patch cutting in Black Spur 1, is largely the result of variation in transpiration. To study the relationship between forest age and transpiration in detail, sap velocity was measured over two summers in four mountain ash plots using the heat-pulse method. The trees on these plots were 50, 90, 150 and 230 years old. On days when measurements were made, the mean sap velocity was not significantly different in the 50-, 90- 230-year-old stands, but was significantly smaller by 14% in the 150-year-old stand. Overstorey sapwood area gradually decreased with plot age, and was 57% lower in the 230-year-old plot than in the 50-year-old plot. When combined with the sap velocity measurements, these data indicated that over the six warmest months of the year, transpiration in the 50-year-old plot was 190 mm more than in the 230-year-old plot. These results support a hypothesis that differences in streamflow between 50-year-old and 230-year-old mountain ash forest can largely be accounted for by differences in transpiration. Further heat-pulse studies in young regrowth and in thinned and unthinned 1939 regrowth will be needed if the streamflow changes in Black Spur 1 and Black Spur 3 are to be fully explained.  相似文献   


7.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   

8.
Elevated wildfire activity in many regions in recent decades has increased concerns about the short- and long-term effects on water quantity, quality, and aquatic ecosystem health. Often, loss of canopy interception and transpiration, along with changes in soil structural properties, leads to elevated total annual water yields, peak flows, and low flows. Post-fire land management treatments are often used to promote forest regeneration and mitigate effects to terrestrial and aquatic ecosystems. However, few studies have investigated the longer-term effects of either wildfire or post-fire land management on catchment hydrology. Our objectives were to quantify and compare the short- and longer-term effects of both wildfire and post-fire forest management treatments on annual discharge, peak flows, low flows, and evapotranspiration (AET). We analyzed ten years of pre-fire data, along with post-fire data from 1 to 7 and 35 to 41 years after wildfire burned three experimental catchments in the Entiat Experimental Forest (EEF) in the Pacific Northwest, USA. After the fire, two of the catchments were salvage logged, aerially seeded, and fertilized, while the third catchment remained as a burned reference. We observed increases in annual discharge (150–202%), peak flows (234–283%), and low flows (42–81%), along with decreases in AET (34–45%), across all three study catchments in the first seven year period after the EEF wildfire. Comparatively, annual discharge, peak flows, lows flows, and AET had returned to pre-fire levels 35–41 years after the EEF fire in the two salvage logged and seeded catchments. Surprisingly, in the catchment that was burned but not actively managed, the annual discharge and runoff ratios remained elevated, while AET remained lower, during the period 35–41 years after the EEF fire. We posit that differences in long-term hydrologic recovery across catchments were driven by delayed vegetation recovery in the unmanaged catchment. Our study demonstrates that post-fire land management decisions have the potential to produce meaningful differences in the long-term recovery of catchment-scale ecohydrologic processes and streamflow.  相似文献   

9.
The purpose of the two catchment studies reported here was to allow the effects on water quality of road use and maintenance to be separated from the effects of a logging operation. In the first project, known as the Myrtle experiment, two small catchments in an old-growth mountain ash (Eucalyptus regnans) forest were chosen for a paired catchment study of the effects on physical and chemical water quality (baseflow and stormflow) of logging under a strict code of practice and with no roads crossing runoff producing areas. In the second project, known as the Road 11 experiment, the effect on sediment production from unsealed forest roads of vehicle use and level of road maintenance was assessed. The Myrtle experiment showed that the harvesting and regeneration operation did not have a major impact on the stream physical or chemical water quality. Increases were detected in turbidity, iron and suspended solids at baseflows, but these were small in absolute terms and of similar magnitude to the measurement error. The stormflow data revealed no significant influence of the logging operation. The suspension of logging during wet weather, the protection of the runoff producing areas with buffer strips and the management of runoff from roads, snig tracks and log landing areas eliminated intrusion of contaminated runoff into the streams, thereby avoiding the adverse effects of logging. The Road 11 study determined that annual sediment production from forest roads was in the range of 50–90 t of sediment per hectare of road surface per year, with approximately two-thirds being suspended sediment and one-third coarse material. The use of gravel reduced sediment production, provided a sufficient depth of material was used. Increasing the level of road maintenance with increasing traffic load controlled sediment production rates, but when maintenance was not increased, sediment production increased by approximately 40%. The results indicate that by identifying the areas that produce runoff it is possible to prevent contaminated runoff reaching the streams. Roads, on the other hand, produce large quantities of sediment, even when well maintained, so careful consideration of their placement and management is paramount.  相似文献   

10.
The intensity of soil loss and sediment delivery, representing hydrologic and geomorphic processes within a catchment, accelerates with rapid changes in land cover and rainfall events. An underlying component of sustainable management of water resources is an understanding of spatial and temporal variability and the adverse influences of regional parameters involved in generating sediment following widespread changes in land cover. A calibrated algorithm of soil loss coupled with a sediment delivery ratio (SDR) was applied in raster data layers to improve the capability of a combined model to estimate annual variability in sediment yields related to changes in vegetation cover identified by analyses of SPOT imagery. Four catchments in Kangaroo River State forest were assessed for annual changes in sediment yields. Two catchments were selectively logged in 2007, while the two other sites remained undisturbed. Results of SDR estimates indicated that only a small proportion of total eroded sediment from hillslopes is transported to catchment outlets. Larger SDR values were estimated in regions close to catchment outlets, and the SDR reduced sharply on hillslopes further than 200–300 m from these areas. Estimated sediment yield increased by up to 30% two years after land cover change (logging) in 2009 when more storm events were recorded, despite the moderate density of vegetation cover in 2009 having almost recovered to its initial pre‐logging (2005) condition. Rainfall had the most significant influence on streamflow and sediment delivery in all catchments, with steeply sloping areas contributing large amounts of sediment during moderate and high rainfall years in 2007 and 2009. It is concluded that the current scenario of single‐tree selection logging utilized in the study area is an acceptable and environmentally sound land management strategy for preservation of soil and water resources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Gravel-filled traps were buried in the beds of streams draining steep logged and unlogged catchments of the Dazzler Range in northern Tasmania, Australia, and removed after storm events, to assess infiltration of fine (less than 1 mm) material into the bed. All stream catchments were geomorphically similar, over similar altitude ranges and had moderately erodible sandy-clay soils on 25–35° slopes. Study catchments were selected to control for aspect, logging treatment and coupe age. Fine sediment infiltration into the stream bed was assessed for 15 tributary ephemeral streams in logged areas and 11 streams in unlogged areas. The logged catchments had been clearfelled in three time periods — 1990–1991, 1988–1989 and 1986–1987 — all by skyline cable logging. Trap yield was also assessed in riffles of the perennial valley floor streams upstream and downstream of the junction of six logged and six unlogged tributaries and upstream and downstream of four old but actively used road crossings. Trap yield was significantly higher in logged than in unlogged ephemeral streams for size fractions ranging from less than 125 to 500 μm, by factors ranging from two to three, but not for sediment between 0.5 and 1.0 mm. Trap yield of organic sediment of less than 125 μm declined with time after logging and burning, whereas inorganic sediment yield showed no clear trend with coupe age. Trap yield of 0.5–1.0 mm organic sediment was also significantly enhanced by logging and by burning. Sediment yield of streams logged in 1986–1987 was not significantly higher than for control streams, whereas inorganic sediment and 0.5–1.0 mm organic sediment yields were highest for recently burnt coupes. A significantly greater number of increases in trap yield occurred between riffle pairs of valley floor streams adjacent to junctions of logged tributaries, when compared with control riffle pairs. Logged tributary junctions were associated with an increase in the organic content of sediment. Road crossings were associated with large increases in infiltration in adjacent riffle pairs, 30–50 years after construction. Current forest practices do not protect ephemeral headwater streams from enhanced sediment inputs, the long-term significance of which is unknown. Recovery of sediment fluxes in these streams to background levels appears to take 5 years or longer.  相似文献   

12.
All previous versions of a physically based land-surface model SWAP have assumed for simplicity that vegetation is fully covered by snow during the cold season. Such assumption is reasonable only for the regions dominated by short vegetation or for warm climates where snow processes are absent. The major goals of this paper are (i) modification of the latest version of SWAP by incorporation of tall vegetation into the cold-season parameterizations to make the model applicable for simulating heat and water transfer within a boreal forest biome and (ii) validation of the modified version using the data from a forested catchment located in the boreal zone. Modification of SWAP required to parameterize radiative and turbulent exchange between the forest crown and forest floor, partitioning snowfall between interception by the canopy (in doing so, snow interception differs from rain interception) and falling to the ground, formation of snow cover on the forest crown and forest floor including snow accumulation (both in solid and liquid fractions), snow evaporation, and snowmelt. The advanced model was validated using a set of hydrometeorological data measured during 18 years (1966–1983) at the Tayozhniy catchment (covered by boreal spruce forest), Valdai, Russia. Simulations of annual and monthly snow/rain interception, daily runoff at the catchment outlet, snow density, snow depth, snow water equivalent, soil water storage in three layers (0–20, 0–50 and 0–100 cm), and monthly evapotranspiration from the catchment were compared with observations. Analysis of the results of validation shows that the new version of the model SWAP reproduces the heat and water exchange processes occurring in mid-latitude boreal forest quite reasonable.  相似文献   

13.
Periods of summertime low flows are often critical for fish. This study quantified the impacts of forest clear‐cutting on summertime low flows and fish habitat and how they evolved through time in two snowmelt‐dominant headwater catchments in the southern interior of British Columbia, Canada. A paired‐catchment analysis was applied to July–September water yield, the number of days each year with flow less than 10% of mean annual discharge, and daily streamflow for each calendar day. The postharvest time series were divided into treatment periods of approximately 6–10 years, which were analysed independently to evaluate how the effects of forestry changed through time. An instream flow assessment using a physical habitat simulation‐style approach was used to relate streamflow to the availability of physical habitat for resident rainbow trout. About two decades after the onset of logging and as the extent of logging increased to approximately 50% of the catchments, reductions in daily summertime low flows became more significant for the July–September yield (43%) and for the analysis by calendar day (11–68%). Reductions in summertime low flows were most pronounced in the catchment with the longest postharvest time series. On the basis of the temporal patterns of response, we hypothesize that the delayed reductions in late‐summer flow represent the combined effects of a persistent advance in snowmelt timing in combination with at least a partial recovery of transpiration and interception loss from the regenerating forests. These results indicate that asymptotic hydrological recovery as time progresses following logging is not suitable for understanding the impacts of forest harvesting on summertime low flows. Additionally, these reductions in streamflow corresponded to persistent decreases in modelled fish habitat availability that typically ranged from 20% to 50% during the summer low‐flow period in one of the catchments, suggesting that forest harvest may have substantial delayed effects on rearing salmonids in headwater streams.  相似文献   

14.
The effects of afforestation on water yield from catchments are reviewed. In the light of research findings and an assessment of the method currently used in South Africa to determine reductions of water production associated with afforestation, the ACRU agrohydrological model is adapted to account for changes in critical land use related processes as a forest grows in time by incorporation of a dynamic land use information file. First tests with this model on a catchment at Cathedral Peak in the Natal Drakensberg, which was afforested in 1951, indicate that forest hydrological effects can be modelled successfully with a dynamic land use file. Further model development is outlined.  相似文献   

15.
Long-term watershed experiments provide the opportunity to understand forest hydrology responses to past logging, road construction, forest regrowth, and their interactions with climate and geomorphic processes such as road-related landslides. We examined a 50-year record from paired-watershed experiments in the H. J. Andrews Experimental Forest, Oregon, USA in which 125 to 450-year-old conifer forests were harvested in the 1960s and 1970s and converted to planted conifer forests. We evaluated how quickflow and delayed flow for 1222 events in treated and reference watersheds changed by season after clearcutting and road construction, including 50 years of growth of planted forest, major floods, and multi-decade reductions in snowpack. Quickflow runoff early in the water year (fall) increased by up to +99% in the first decade, declining to below pre-harvest levels (−1% to −15%) by the third to fifth decade after clearcutting. Fall delayed flow responded more dramatically than quickflow and fell below pre-treatment levels in all watersheds by the fifth decade, consistent with increased transpiration in the planted forests. Quickflow increased less (+12% to 70%) during the winter and spring but remained higher than pre-treatment levels throughout the fourth or fifth decade, potentially impacted by post-harvest burning, roads, and landslides. Quickflow remained high throughout the 50-year period of study, and much higher than delayed flow in the last two decades in a watershed in which road-related changes in flow routing and debris flows after the flood of record increased network connectivity. A long-term decline in regional snowpack was not clearly associated with responses of treated vs. reference watersheds. Hydrologic processes altered by harvest of old-growth conifer forest more than 50 years ago (transpiration, interception, snowmelt, and flow routing) continued to modify streamflow, with no clear evidence of hydrologic recovery. These findings underscore the importance of continued long-term watershed experiments.  相似文献   

16.
In temperate humid catchments, evapotranspiration returns more than half of the annual precipitation to the atmosphere, thereby determining the balance available to recharge groundwaters and support stream flow and lake levels. Changes in evapotranspiration rates and, therefore, catchment hydrology could be driven by changes in land use or climate. Here, we examine the catchment water balance over the past 50 years for a catchment in southwest Michigan covered by cropland, grassland, forest, and wetlands. Over the study period, about 27% of the catchment has been abandoned from row‐crop agriculture to perennial vegetation and about 20% of the catchment has reverted to deciduous forest, and the climate has warmed by 1.14 °C. Despite these changes in land use, the precipitation and stream discharge, and by inference catchment‐scale evapotranspiration, have been stable over the study period. The remarkably stable rates of evapotranspirative water loss from the catchment across a period of significant land cover change suggest that rainfed annual crops and perennial vegetation do not differ greatly in evapotranspiration rates, and this is supported by measurements of evapotranspiration from various vegetation types based on soil water monitoring in the same catchment. Compensating changes in the other meteorological drivers of evaporative water demand besides air temperature—wind speed, atmospheric humidity, and net radiation—are also possible but cannot be evaluated due to insufficient local data across the 50‐year period. Regardless of the explanation, this study shows that the water balance of this landscape has been resilient in the face of both land cover and climate change over the past 50 years.  相似文献   

17.
18.
Two small experimental catchments were established in the south-west of Western Australia to study the effects of logging and subsequent regeneration on the mechanism of streamflow generation. Following a six year pre-treatment calibration period (1976–1981), one catchment (March Road) was logged and reforested in 1982 and the other (April Road South) remained as a control. Logging resulted in an increase in groundwater levels and subsequently groundwater discharge area. The deep, permanent groundwater levels in the valley and upslope areas rose until 1986 and then began to decline. The maximum rise was 5 m in the upslope areas. The duration of shallow, intermittent groundwater system, perched on underlying clay, was extended from 2–3 months in winter before logging to 5–6 months after logging. The shallow groundwater level rose in the valley and began to discharge at the ground surface in 1986. Logging resulted in an increase in streamflow. The maximum increase (≈18% of annual rainfall) was in 1983, one year after logging. The increase in streamflow was due to a substantial decrease in interception and evapotranspiration, increased recharge to the shallow groundwater system, decreased soil moisture deficit and consequently an increase in throughflow. The increase in base flow was about twice that of quick flow. The changes in streamflow and its components in the subsequent years were closely related to the groundwater discharge area. Most of the quick flow was generated as saturation excess overland flow from the groundwater discharge area in the valley. The expansion of the groundwater discharge area, increased soil moisture content, higher groundwater level and the presence of the shallow groundwater system for the extended periods were responsible for the process of streamflow generation.  相似文献   

19.
Few investigations link post‐fire changes to sediment sources and erosion processes with sediment yield response at the catchment scale. This linkage is essential if downstream impacts on sediment transport after fire are to be understood in the context of fire effects across different forest environments. In this study, we quantify changing source contributions to fine sediment (<63 µm) exported from a eucalypt forest catchment (136 ha) burnt by wildfire. The study catchment is one of a pair of research catchments located in the East Kiewa River valley in southeastern Australia that have been the subject of a research program investigating wildfire effects on runoff, erosion, and catchment sediment/nutrient exports. This previous research provided the opportunity to couple insights gained from a range of measurement techniques with the application of fallout radionuclides 137Cs and 210Pbex to trace sediment sources. It was found that hillslope surface erosion dominated exports throughout the 3·5‐year post‐fire measurement period. During this time there was a pronounced decline in the proportional surface contribution from close to 100% in the first six months to 58% in the fourth year after fire. Over the study period, hillslope surface sources accounted for 93% of the fine sediment yield from the burnt catchment. The largest decline in the hillslope contribution occurred between the first and second years after fire, which corresponded with the previously reported large decline in sediment yield, breakdown of water repellency in burnt soils, substantial reduction in hillslope erodibility, and rapid surface vegetation recovery. Coupling the information on sediment sources with hillslope process measurements indicated that only a small proportion of slopes contributed sediment to the catchment outlet, with material derived from near‐channel areas dominating the post‐fire catchment sediment yield response. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Estimation of interception capacity of the forest floor   总被引:29,自引:0,他引:29  
Methods of measuring interception capacity of the understorey (grasses) and litter layer have been developed to estimate the forest floor interception capacity of a 15-year-old Pinus radiata plantation and a native dry sclerophyll eucalypt forest at Lidsdale State Forest, Australia.

In this study, interception by various types of forest floor have been measured in the laboratory using a technique of applying artificial rain to undisturbed samples of the forest floor. These laboratory experiments separately measure the interception storage capacity of the pine needle mat, the leaf/twig/bark debris mat in the eucalypt forest, and of the understorey (grasses). The results indicate that the interception storage capacity of all components of the forest floor of both vegetation types were proportional to the mass per unit area of forest floor cover. It was also shown that the interception storage capacity of the pine needle mat and the leaf/twig bark debris mat under eucalypt were proportional to the thickness of the surface debris. For standing grasses the capacity was proportional to the percentage of ground cover. These laboratory results were then used to estimate the forest floor interception storage capacity of two experimental catchments each covered by one of the two forest types.

In each case the forest floor was extremely heterogeneous, and so a large number of undisturbed samples were examined. Approximate forest floor interception capacity of the pine catchment was 2.8 mm and of eucalypt was 1.7 mm. The contribution of leaf litter, stem and branch litter, and grass vegetation to the overall interception capacity was similar for both catchments at 47%, 8% and 45%, respectively.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号