首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2 marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.  相似文献   

2.
0-group sea bass,Dicentrarchus labrax, colonize intertidal marsh creeks of Mont Saint Michel Bay, France, on spring tides (e.g., 43% of the tides) during flood and return to coastal waters during ebb. Most arrived with empty stomachs (33%), and feed actively during their short stay in the creeks (from 1 to 2 h) where they consumed on average a minimum of 8% of their body weight. During flood tide, diet was dominated by mysids,Neomysis integer, which feed on marsh detritus. During ebb, when young sea bass left tidal marsh creeks, the majority had full stomachs (more than 98%) and diet was dominated by the most abundant marsh (including vegetated tidal flats and associated marsh creeks) resident amphipod,Orchestia gammarellus. Temporal and tidal effects on diet composition were shown to be insignificant. Foraging in vegetated flats occurs very rarely since they are only flooded by about 5% of the tides. It was shown that primary and secondary production of intertidal salt marshes play a fundamental role in the feeding of 0-group sea bass. This suggests that the well known nursery function of estuarine systems, which is usually restricted to subtidal and intertidal flats, ought to be extended to the supratidal, vegetated marshes and mainly to intertidal marsh creeks.  相似文献   

3.
Turnagain Arm is a macrotidal fjord‐style estuary. Glacier Creek is a small, glacially fed stream which enters the estuary tangentially near Girdwood, Alaska. Trenches and daily sedimentation measurements were made in a mudflat along the fluvio–estuarine transition of Glacier Creek during several summers since 2003. Each year, the flats appear to erode during the winter and then accrete vertically in the spring and summer. In each of the years studied, tidal laminae in vertically thickening and thinning laminae bundles were deposited by twice daily tides in neap–spring tidal cycles. In 2004, bundles of thickening and thinning laminae couplets were noted in trenches cut into the flats. Five laminae bundles alternated between thicker and thinner bundles, corresponding to the perigean (high spring) and apogean (low spring) tides. Well‐preserved apogean–perigean cycles have rarely been documented in modern tidal flat sediments. At this location, vertical accretion of tidal rhythmites with well‐developed neap–spring cyclicity is possible because of the near‐complete removal of the flat from the previous year, which creates accommodation space for vertical accretion without significant reworking. Macrotidal conditions, no reworking by infaunal invertebrates, protection from the main tidal channel by a gravel bar and protection from storm waves and fluvial erosion by a recess in the sedge marsh that surrounds the flats all aid in preservation of rhythmites during aggradation. The position of the flats relative to tidal range allows for accumulation of complete spring cycles and incomplete neap cycles. In the summer of 2004, apogee and perigee were closely aligned with the new and full moons, resulting in successive strong perigee and apogee tides which probably aided in the accumulation of successive thick–thin spring cycles encoding the apogean and perigean tidal cycle. The apogean–perigean signal was not observed in subsequent years.  相似文献   

4.
One of the steepest depositional coasts of western James Bay is found along the west shores of Akimiski Strait, north of the mouth of the Ekwan River. This shore receives considerable amounts of sediment during the spring break-up of the rivers. The sediments are stored on the steep narrow tidal flats and marshes, and in thinner (up to 80 cm) drapes on till-cored shoals that parallel and protect the coast. The low areas between the shoals and the mainland are swept and reworked by relatively powerful (2 m s?1) reversing currents due to flooding and ebbing of tides into the strait.A series of distinct environments and sedimentary facies develop on this western coast and its antecedent longshore shoal. The outer part of the shoal is characterized by tidal bedding, Macoma balthica burrows and considerable ice scour. The inner part of the shoal has winnowed sand, the greatest abundance of Macoma, and well-developed flaser bedding. The longshore tidal channel separating the shoal from the mainland has coarse sand lags in the shallower parts and silty sand in deeper protected areas. The steep tidal flats develop laminated silty sands locally saturated and slumping toward the channel. The high saturation of the sediments inhibits colonization of the flats by Macoma. The narrow marshes have characteristic vegetation zonation, with Puccinellia phryganodes colonizing the lower marsh. The sedimentary sequence of the marsh displays irregular, bioturbated laminated sequences of silt, silty sand and organic matter.  相似文献   

5.
淤长型泥质潮滩双凸形剖面形成机制   总被引:1,自引:0,他引:1       下载免费PDF全文
以江苏中部淤长型泥质潮滩为例,建立了基于过程的潮滩动力地貌演变数学模型,研究了在沿岸潮流作用、供沙充分情况下双凸形潮滩横剖面形成机制。在向岸方向,流速自潮下带至低潮位线附近急速减小,潮间带区域流速则缓慢减小,泥沙在流速急变区域迅速堆积形成上凸点。潮下带中部在小潮期的淤积量大于大潮期冲刷量,总体淤积率较高;加之潮间带中部较弱的落潮流不足以将其上风处底沙掀动并向海输运,导致落潮后期潮下带上部含沙量小、沉积率相对较低,最终在潮下带中部形成下凸点。随着滩面淤长抬升,上、下凸点位置逐步向高、低潮位线附近移动。与前人关于双凸形剖面形成机制的定性分析成果相比,尚有不一致之处,需通过现场观测等进一步探讨。  相似文献   

6.
通过近年来对江苏沿海有影响的台风暴潮作用前后的滩面高程观测,结合台风浪资料分析,探究了江苏中部沿海潮滩对风暴潮的响应过程。结果显示:潮滩剖面在风暴潮期间呈现"低滩侵蚀、沿岸输运、高滩稳定",明显区别于沙质海岸在台风浪作用下"高滩侵蚀、离岸输运、低滩淤积"的演变特征。应用Delft3D平面二维水沙动力数学模型,模拟了正常天气和台风浪情况下的滩面演变,从动力学角度解释了潮滩间不同区域演变特征差异的原因,论证了台风浪对地貌演变的短历时"插曲式"作用,阐明了涨潮优势流是风暴侵蚀后泥沙沿岸向输运的主控因子。  相似文献   

7.
长江三角洲南汇潮滩沉积速率及其影响因素   总被引:1,自引:1,他引:0  
近100余年来,南汇潮滩尤其是中、高潮滩,以淤涨为主,使岸线迅速向海推进。但潮滩沉积并 非连续,而是以冲、淤相间,长期净淤积的方式进行。潮滩沉积剖面主要由风暴成因的小型层序组成,粗、细 粒交替分别代表风暴与平静天气的产物。潮滩沉积环境的不稳定性使其难以满足两种常用来计算210Pb沉积速率 的方法---CIC (稳定的初始比度) 模型和CRS(稳定的沉降通量) 模型的前提条件。在实验时,如果只选择 代表平静天气沉积的细颗粒层进行210Pb活度分析,则可能得到一组相对符合CIC模型的数据,利用此方法计算 出南汇潮间带环境的平均沉积速率为6.11~6.23 cm/yr。对历史海图数字化建立的数字高程模型(DEM) 分析 表明,中、高潮滩近50余年的平均沉积速率为1.91~2.05cm/yr,不及210Pb沉积速率的一半。造成这种差异的 原因有:(1) DEM法在高程推算过程中使用简单的潮滩纵剖面模型,导致计算的沉积速率偏低;(2)210Pb法受 到沉积过程中强烈的物理混合作用和沉积后的生物扰动、化学迁移作用等影响,使计算的沉积速率偏高。推断 近50余年来,南汇中、高潮滩的沉积速率为4~5cm/yr。  相似文献   

8.
In order to test the assumption that accretion rates of intertidal salt marshes are approximately equal to rates of sea-level rise along the Rhode Island coast,210Pb analyses were carried out and accretion rates calculated using constant flux and constant activity models applied to sediment cores collected from lowSpartina alterniflora marshes at four sites from the head to the mouth of Narragansett Bay. A core was also collected from a highSpartina patens marsh at one site. Additional low marsh cores from a tidal river entering the bay and a coastal lagoon on Block Island Sound were also analyzed. Accretion rates for all cores were also calculated from copper concentration data assuming that anthropogenic copper increases began at all sites between 1865 and 1885. Bulk density and weight-loss-on-ignition of the sediments were measured in order to assess the relative importance of inorganic and organic accumulation. During the past 60 yr, accretion rates at the eight low marsh sites averaged 0.43±0.13 cm yr?1 (0.25 to 0.60 cm yr?1) based on the constant flux model, 0.40±0.15 cm yr?1 (0.15 to 0.58 cm yr?1) based on the constant activity model, and 0.44±0.11 cm yr?1 (0.30 to 0.59 cm yr?1) based on copper concentration data, with no apparent trend down-bay. High marsh rates were 0.24±0.02 (constant flux), 0.25±0.01 (constant activity), and 0.47±0.04 (copper concentration data). The cores showing closest agreement between the three methods are those for which the excess210Pb inventories are consistent with atmospheric inputs. These rates compare to a tide gauge record from the mouth of the bay that shows an average sea-level rise of 0.26±0.02 cm yr?1 from 1931 to 1986. Low marshes in this area appear to accrete at rates 1.5–1.7 times greater than local relative sea-level rise, while the high marsh accretion rate is equal to the rise in sea level. The variability among the low marsh sites suggests that marshes may not be poised at mean water level to within better than ±several cm on time scales of decades. Inorganic and organic dry solids each contributed about 9% by volume to low marsh accretion, while organic dry solids contributed 11% and inorganic 4% to high marsh accretion. Water/pore space accounted for the majority of accretion in both low and high marshes. If water associated with the organic component is considered, organic matter accounts for an average of 91% of low marsh and 96% of high marsh accretion. A dramatic increase in the organic content at a depth of 60 to 90 cm in the cores from Narragansett Bay appears to mark the start of marsh development on prograding sand flats.  相似文献   

9.
潮间带周期性淹水区域水深、流速的变化过程是潮滩水动力过程的基本组成部分,也是潮流与泥沙相互作用的基础。通过2002年4月至2003年1月4个季节的野外实测,获得了平静天气条件下,崇明东滩滩面潮流水深、流速与流向的变化过程数据。结果表明,崇明东滩盐沼和邻近光滩处涨潮历时均小于落潮历时,水深过程变化呈现出“陡涨缓落”的特点。光滩与盐沼交界处光滩一侧流速过程呈“双峰型”特征,涨落潮均出现流速峰值;盐沼(植物生长期)流速过程具有“单峰型”特点,仅在涨潮初出现峰值。研究区潮流不对称性明显,主要表现为涨潮优势,且由光滩向盐沼上部不断增强,潮沼植物和地形变化是加强盐沼区涨潮优势的主要原因。流速变化过程的差异和潮流不对称性使盐沼区域发生稳定的泥沙淤积,盐沼前缘光滩则会出现较频繁的冲淤变化,平静天气条件下,它们是控制崇明东滩泥沙输移和潮滩动力地貌过程的动力基础。  相似文献   

10.
Vertical accretion of impounded marsh and adjacent natural marsh at four sites in southwestern Louisiana was estimated in 1994 by determining the depth of a stratum containing137Cs deposited in 1963. With relative marsh elevation, soil bulk density, organic matter content, and organic and mineral matter accumulation rates were used to describe soil formation. Three sites were impounded in 1956 and one site in 1951. Impounded marshes had lower marsh surface elevation than natural marshes because of hydrologic isolation from tidal sediment subsidies and substrate oxidation during forced drying. The elevation of natural marshes ranged from 12 cm to 42 cm higher than the elevation of the impounded marshes in 1963 and from 20 cm to 32 cm higher in 1994. Vertical accretion between 1963 and 1994 ranged from 9 cm to 28 cm in impounded marsh and from 15 cm to 21.5 cm in natural marsh. Only in impounded marsh that remained permanently flooded was accretion greater than in natural marsh.  相似文献   

11.
赵秧秧  高抒 《沉积学报》2015,33(1):79-90
以江苏如东潮滩为研究区,采用沉积动力学垂向二维概念模型来模拟正常天气和台风期间潮滩沉积的空间分布特征,探讨台风风暴潮对潮滩正常沉积层序的改造作用.模拟结果表明,在涨落潮时间-流速对称特征明显的如东海岸,潮汐作用使潮滩沉积呈显著的分带性,且剖面形态向“双凸形”演化,两个“凸点”分别位于平均高潮位和平均低潮位附近.在台风期间风暴增水效应下,开边界悬沙浓度差异将导致潮滩冲淤和沉积分布格局的变化,潮上带和潮间带上部均堆积泥质沉积物,潮间带中下部在风暴过程中普遍遭受不同程度的砂质沉积物侵蚀或之后堆积泥质沉积物,在沉积层序中形成风暴冲刷面.因此,潮滩的风暴沉积记录存在于潮间带上部或更高部位.以此模型为基础,可进一步综合考虑极浅水边界层水动力结构、沉积物粒度分布变化、波-流联合作用、台风降水、互花米草等生物活动、潮沟摆动及人工围垦等因素,从而建立风暴事件在沉积层序中的时间序列,更好地解译沉积记录中的古环境信息.  相似文献   

12.
为研究多因子共同作用下的潮滩演变机制,开发了基于植被生长和潮动力作用的潮滩剖面演变数学模型。在不考虑植被作用下,模拟得到了潮滩中长期演变后的上凸形剖面特征;泥沙供给是决定潮滩宽度的因素,供给越充分,潮滩宽度越大。模型考虑植被过程时,结果表明不同的植被生物量分布形式对潮滩水动力的影响程度不同,在潮间带上部,生物量抛物线分布时的减流效果强于生物量线性分布形式;而在潮间带下部则相反。模拟结果显示盐沼和光滩之间出现陡坎,且随着滩面的逐步淤高,陡坎逐步向海移动。  相似文献   

13.
汪寿松  陈昌明  Irion  G 《沉积学报》1988,6(2):78-96
本文目的在于说明有限区域内潮坪小环境沉积物的矿物学和地球化学特点及沉积过程的改造作用。沉积物样品取自汪额诺格岛与联邦德国的德国湾南岸之间的障壁潮坪。粒度分析表明,障壁潮坪由大体平行于大陆的泥坪、混合坪到砂坪三个带组成。粘土矿物以伊利石为主,其次为蒙脱石、高岭石和绿泥石,与北海粘土矿物组合一致。粘土矿物组成和重金属Fe、Mn、Cu、Pb、Zn含量在潮坪不同部位相差无几,说明沉积物受到潮汐水流反覆侵蚀和再沉积作用的混合作用。近潮口附近有机碳含量增高是潮汐水流从北海通过进潮口携入有机物的结果。  相似文献   

14.
Flax Pond is a small (0.5 km2) salt marsh on the north shore of Long Island, New York. Two 1 m2 plots within each of the following environments were covered with a marker layer of either brick dust or aluminum glitter: 1) bare mud flats; 2) areas newly colonized by Spartina alterniflora; and 3) high intertidal. S. alterniflora peat surfaces. Monthly cores revealed the amount of sediment that accumulated since placement of the marker. Accretion rates from October, 1974 to February, 1976 were as follows: bare mud flats ?20.5 to 45.5 mm/yr; recently vegetated mud flats ?9.5 to 37.0 mm/yr; and high intertidal peat surfaces ?2.0 to 4.25 mm/yr. Sedimentation rates decrease with increasing elevation because of the reduced tidal submergence time and decreased height of the overlying water column. In areas of low elevation, ice and storms cause either erosion or a reduced rate of accretion during the winter months. The average mud accretion rate over the past 173 years is 3.4 mm/yr. Differences between the short-term rate and the long-term rate indicate substantial annual variation in the accumulation of mud in salt marshes. Short-term rates of peat accretion are similar to long-term estimates, indicating that rates of peat accretion are relatively constant over long intervals.  相似文献   

15.
Hummock-hollow microtopography is characteristic of many freshwater wetland systems. It is comprised of elevated, vegetated hummocks and lower elevation hollows; the latter are usually unvegetated, with reducing conditions in sediments unfavorable for plant growth. This microtopography is also often found in interior regions of brackish marshes, where flood duration is high and salinity fluctuations are prominent. Previous investigation showed this spatial patterning to be relatively stable over time and suggested that these microenvironments are produced by the plants themselves. This study investigates the possible mechanisms and controlling factors of this microtopography and considers the effect of different salinity regimes. We examined microtopographic variability of vegetation and sediment biogeochemistry in two interior tidal marshes, a freshwater-oligohaline marsh and a mesohaline marsh, both of which exhibited fine-scale spatial variability. Within a 2-yr period, the freshwater-oligohaline site demonstrated a labile response of both vegetation and sediment chemistry to interannual variability in salinity and sulfide concentrations, whereas the microscale spatial variability of the mesohaline system persisted. Geochronological assessment of the mesohaline marsh, where microtopographic variability was relatively stable, supported the hypothesis that the formation of the hummock-hollow topography is driven by the plants, rather than developing as a result of underlying physical variability. We propose that brackish marsh vegetation alters the sedimentary environment in such a way as to maximize growth under high-stress, variable conditions. The adaptive advantage of this strategy was illustrated in the accretion rates measured at the higher salinity marsh, which were indistinguishable between the interior hummock sediments and those of an adjacent homogeneous bank marsh.  相似文献   

16.
It is often presumed that salt marshes provide a predation refuge for small fishes, but predation risks have rarely been compared in intertidal and subtidal habitats, making the importance of salt marshes as a predation refuge speculative. We measured relative survival of tethered mummichog (Fundulus heteroclitus) in four habitats in a salt marsh?Ctidal creek system: unvegetated and vegetated intertidal areas and the subtidal creek at high and low tide. At high tide, mummichog in the intertidal zone had significantly higher survival than in the subtidal creek in June through August. Survival rates in unvegetated and vegetated intertidal habitats were not significantly different, suggesting that higher intertidal survival was due to less abundant predators compared with the creek, rather than predators being less effective in vegetation. The lower predation risk experienced by mummichog in the intertidal marsh suggests that access to intertidal habitats will be important for production of small estuarine fishes.  相似文献   

17.
Sea level variability in Long Island Sound is examined at both tidal and subtidal frequencies over a 1-yr period. The sound is found to be decoupled effectively from the lower Hudson Estuary at tidal frequencies. The predominantly semidiurnal tides in the sound are forced by the oceanic tides transmitted from the mouth. There is a near fourfold amplification of the semi-diurnal tides within the sound due to resonance. Diurnal tides are much weaker in the sound, and there is also no evidence of significant amplification in the interior. At subtidal frequencies, the pressure-adjusted sea level in the interior of the sound is forced by a combination of co-oscillation with coastal sea level at the mouth and direct setup induced by local wind forcing over the surface of the sound. Because the longitudinal axis of Long Island Sound is roughly aligned with the open coast from Montauk Point to Sandy Hook, these two mechanisms work in concert to produce larger subtidal sea level fluctuations in the western sound relative to those in the eastern sound. A linearized, frequency-dependent analytical model is developed to aid the interpretation of field observations.  相似文献   

18.
We used137Cs-dating to determine vertical accretion rates of 15 salt marshes on the Bay of Fundy, the Gulf of St. Lawrence, and the Atlantic coast of Nova Scotia. Accretion rates are compared to a number of factors assumed to influence vertical marsh accretion: rates of relative sea-level rise, climatic parameters (average daily temperatures and degree days) and latitude (related to insolation and day length), sediment characteristics (organic matter inventory, bulk, mineral, and organic matter density), distance of the core site from the nearest source of tidal waters, and the tidal range. Uniques to our study is a consideration of climatic parameters and latitude, which should influence organic matter production, and thus vertical accretion rates. Significant predictors of accretion rates (in order of importance) were found to be organic matter inventory, distance from a creek, and range of mean tides. Contrary to conclusions from previous studies, we found that accretion rates decreased with increasing tidal range, probably because we considered a wider span of tidal ranges, from micro- to macrotidal. Although four marshes with low organic matter inventories also show a deficit in accretion with respect to relative sea-level rise, organic matter is not limiting in two-thirds of the marshes studied, despite shorter growing seasons.  相似文献   

19.
We describe the use of flume nets for passively, quantitatively, and nondestructively sampling fishes and macrocrustaceans on tidal marsh surfaces. We captured 3,765 organisms of 23 species in 118 samples using six such nets in a Virginia tidal freshwater marsh in 1984. Efficiency estimates for four common species of fishes range from 53 to 80%. Flume nets are most suited to the collection of long-term data and are particularly useful in elucidating seasonal trends in species composition and relative abundance. These nets are also useful in comparing different microhabitats within and between marshes. This method is most applicable to intertidal habitats with predictable lunar tides, including mud flats, mangrove swamps, and other wetlands.  相似文献   

20.
We report electrochemical profiles from unvegetated surficial sediments of a Georgia salt marsh. In creek bank sediments, the absence of Sigma H2S or FeSaq and the presence of Fe(III)-organic complexes suggest that Mn and Fe reduction dominates over at least the top ca. 5 cm of the sediment column, consistent with other recent results. In unvegetated flats, accumulation of Sigma H2S indicates that SO42- reduction dominates over the same depth. A summer release of dissolved organic species from the dominant tall form Spartina alterniflora, together with elevated temperatures, appears to result in increased SO42- reduction intensity and hence high summer concentrations of Sigma H2S in flat sediments. However, increased bioturbation and/or bioirrigation seem to prevent this from happening in bank sediments. Studies of biogeochemical processes in salt marshes need to take such spatial and temporal variations into account if we are to develop a good understanding of these highly productive ecosystems. Furthermore, multidimensional analyses are necessary to obtain adequate quantitative pictures of such heterogeneous sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号