首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terrestrial and aquatic ecological productivity are often nutrient limited in subarctic permafrost environments. High latitude regions are experiencing significant climatic change, including rapid warming and changing precipitation patterns, which may result in changes in nutrient dynamics within terrestrial and aquatic systems and hydrochemical transport between them. The objective of this research was to characterize changes in runoff quantity and quality within, and between peatlands and ponds throughout the snow‐free summer season. Two ponds and their catchments were monitored over the snow‐free season to measure changes in hydrologic storage, and to determine how water chemistry changed with the evolution of the frost table depth. Thresholds in hydrologic storage combined with frost table position (which inhibited infiltration and storage) produced nonlinear responses for runoff generation through highly conductive shallow peat layers while deeper, less conductive layers retarded flow. Greater inputs were required to exceed hydrologic storage (fill and spill) as a deepening frost table increased the hydrologically active portion of the soil, leading to seasonal variability in runoff pathways between peatlands and ponds. Runoff contributions to ponds were an integral component of the snow‐free water balance during the study period, contributing up to 60% of all snow‐free inputs. Groundwater chemistry (and pond chemistry following runoff events when ponds were connected with peatlands) reflected the different depths of peat and mineral soil accessed throughout the season. This work has improved scientific understanding of the combined controls of hydrologic inputs and ground frost on runoff and nutrient transport between peatlands and ponds, and sheds insight into how nutrient dynamics in cold regions may evolve under a changing climate.  相似文献   

2.
Seawater intrusion (SI) is a global issue, exacerbated by increasing demands for freshwater in coastal zones and predisposed to the influences of rising sea levels and changing climates. This review presents the state of knowledge in SI research, compares classes of methods for assessing and managing SI, and suggests areas for future research. We subdivide SI research into categories relating to processes, measurement, prediction and management. Considerable research effort spanning more than 50 years has provided an extensive array of field, laboratory and computer-based techniques for SI investigation. Despite this, knowledge gaps exist in SI process understanding, in particular associated with transient SI processes and timeframes, and the characterization and prediction of freshwater–saltwater interfaces over regional scales and in highly heterogeneous and dynamic settings. Multidisciplinary research is warranted to evaluate interactions between SI and submarine groundwater discharge, ecosystem health and unsaturated zone processes. Recent advances in numerical simulation, calibration and optimization techniques require rigorous field-scale application to contemporary issues of climate change, sea-level rise, and socioeconomic and ecological factors that are inseparable elements of SI management. The number of well-characterized examples of SI is small, and this has impeded understanding of field-scale processes, such as those controlling mixing zones, saltwater upconing, heterogeneity effects and other factors. Current SI process understanding is based mainly on numerical simulation and laboratory sand-tank experimentation to unravel the combined effects of tides, surface water–groundwater interaction, heterogeneity, pumping and density contrasts. The research effort would benefit from intensive measurement campaigns to delineate accurately interfaces and their movement in response to real-world coastal aquifer stresses, encompassing a range of geological and hydrological settings.  相似文献   

3.
Interactions between climate change and contaminants   总被引:1,自引:0,他引:1  
There is now general consensus that climate change is a global threat and a challenge for the 21st century. More and more information is available demonstrating how increased temperature may affect aquatic ecosystems and living resources or how increased water levels may impact coastal zones and their management. Many ecosystems are also affected by human releases of contaminants, for example from land based sources or the atmosphere, which also may cause severe effects. So far these two important stresses on ecosystems have mainly been discussed independently. The present paper is intended to increase awareness among scientists, coastal zone managers and decision makers that climate change will affect contaminant exposure and toxic effects and that both forms of stress will impact aquatic ecosystems and biota. Based on examples from different ecosystems, we discuss risks anticipated from contaminants in a rapidly changing environment and the research required to understand and predict how on-going and future climate change may alter risks from chemical pollution.  相似文献   

4.
The aim of this 6?year study was to assess whether freshwater inputs (rainfall and dam discharges) were acting as physical, physiological or trophic forcing factors on phytoplankton pigment concentrations and the dominant mysids of a temperate estuary (Guadalquivir estuary; SW, Spain). The effects of natural and human-controlled freshwater inputs modified the physico-chemical conditions and consequently biological production (bottom up control). Nutrient (nitrogen hypernutrification), suspended particulate matter and allochthonous photosynthetic pigment imports linked to freshwater inputs from adjacent habitats were observed, as well as light-limited autochthonous primary production. Seasonal and/or spatial patterns were shown by all study variables, including mysids. Freshwater management effects on dominant mysids differed depending on the species?? salinity tolerance (physiological forcing) and preferred prey availability (trophic forcing). Moreover, high inorganic matter content had a negative effect on the density of Mesopodopsis slabberi (physical forcing), which led to an increased detritivory/herbivory ratio (Neomysis integer/M. slabberi ratio). In conclusion, freshwater inputs appeared to effect estuarine lower trophic levels via a combination of different forcing mechanisms. Although several general patterns can be derived, the response of the system to freshwater inputs was not always univocal.  相似文献   

5.
The shore zones of the Hudson River, like those of many developed waterways, are highly varied, containing a mix of seminatural and highly engineered shores. Our goal was to document the biodiversity supported by different kinds of shore zones in the Hudson. We chose six common types of shore zones, three of them ??natural?? (sand, unconsolidated rock, and bedrock), and three of them engineered (riprap, cribbing, and bulkheads). We measured selected physical characteristics (shore zone width, exposure, substrate roughness and grain size, shoreline complexity) of three examples of each of these shore types, and also sampled communities of terrestrial plants, fishes, and aquatic and terrestrial invertebrates. Community composition of most taxa differed across shore types, and frequently differed between wide, sheltered shores and narrow, exposed shores. Alien plant species were especially well represented along engineered shores. Nevertheless, a great deal of variation in biological communities was not explained by our six-class categorization of shore zones or the physical variables that we measured. No single shore type supported the highest values of all kinds of biodiversity, but engineered shore zones (especially cribbing and bulkheads) tended to have less desirable biodiversity characteristics than ??natural?? shore zones.  相似文献   

6.
溶解性有机质与水生生物的直接相互作用研究进展   总被引:4,自引:0,他引:4  
溶解性有机质广泛存在于天然水体中,具有重要的生态与环境意义.然而在环境科学领域内,天然水体中的溶解性有机质长期以来仅仅被作为惰性的吸附剂对待,其自身的与生物的直接作用却一直被忽视.近年来,越来越多的研究证据表明溶解性有机质自身即具有生物效应.它能在生物表面吸附.并影响细胞膜的电化学性质与膜渗透性,能被生物吸收,进而诱导...  相似文献   

7.
Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This study aims to assess watershed‐scale impacts of changing climate on sediment, phosphorus, nitrogen and pesticide (atrazine) fluxes over the 21st century at the watershed scale. In particular, changes in dissolved and particulate forms of water quality constituents in response to climate change are investigated. The hydrologic model Soil and Water Assessment Tool was calibrated and evaluated in a primarily agricultural watershed in the Midwestern United States to simulate hydrologic and water quality processes on a daily basis over the 2015–2099 time horizon. The model was then driven with 112 distinct statistically downscaled climate projections representing Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) low, moderate and high greenhouse gas emission scenarios. Projected hydrologic and water quality responses were categorized according to the three IPCC SRES emission scenarios for summarizing and synthesizing results over early‐century (2015–2034), mid‐century (2045–2064) and late‐century (2080–2099) assessment. Results revealed clear warming trends in the study area, whereas small increases in precipitation were predicted. Streamflow, sediment and total nutrient loads did not differ noticeably between assessment periods. However, the proportion of dissolved to total nutrients increased significantly from early‐century to late‐century periods. With the exception of total atrazine in the mid‐century period, predicted pollutant loads for a given assessment period did not differ between emission pathways for a given assessment period. Changes in pollutant fluxes showed pronounced monthly variability. The projected increase in readily available forms of nutrients has important implications for the ecological health of water systems and management of drinking water supplies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In coastal areas, sea level rise (SLR) and changing wave climates are expected to be the main oceanic drivers of shoreline adjustments. These drivers have been shown to vary on a wide spectrum of spatial and temporal scales. Nonetheless, a general rule about how this variability impacts global shorelines remains to be articulated. Here, we discuss the impacts of wave climate changes and SLR on the evolution of a barrier spit–inlet system over the last 250 years. The distal end of the Cap Ferret barrier spit, SW France, has undergone large-scale oscillations that were well correlated with variations of the decadal average of the winter North Atlantic Oscillation (NAO) index. The local wave climate hindcast supports that increased alongshore wave energy fluxes associated with the positive phase of the NAO were responsible for the updrift retreat of the spit. By opposition, the spit has elongated downdrift when waves were less energetic and more shore normal, as during the negative phase of the NAO. In addition, lower rates of SLR appeared to be necessary for the spit to develop, as higher rates of SLR very likely forced the adjacent inlet to enlarge, at the expense of the spit. These results should help to predict and detect coastal adjustments driven by climate change and by climate variability. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Located to the far West of Western Europe, France has a western maritime coastal zone of more than 3800 km, which is widely influenced by the North-eastern Atlantic. The English Channel, an epi-continental shallow sea with very strong tides, runs along 650 km of the French coast and 1100 km of the English coast. It is also a bio-geographical crossroad encompassing a much wider range of ecological conditions than other European seas. France's Atlantic coast north of the Gironde estuary is a succession of rocky and sandy shorelines, including a sizeable intertidal zone, a wide continental shelf, and two major estuaries (Loire and Gironde). South of the Gironde, the 260 km of coastline is low, sandy and straight, with a narrowing continental shelf further on South due to the presence of the Cape Breton canyon in the bathyal and abyssal zones. Interface between the continental and oceanic systems, these bordering seas--North Sea, English Channel and Atlantic Ocean--have been the subject of many recent research programmes (the European Mast-FLUXMANCHE and INTERREG programmes; the national coastal environment programme and the LITEAU programme in France), designed to improve comprehension of the functions, production, and dynamics of these seas as well as their future evolution. Given the many conflicting practices in these littoral zones, integrated coastal zone management appears to be essential in order to cope with both natural phenomena, such as the infilling of estuarine zones, cliff erosion, and rising sea levels, and chronic anthropogenic pressures, such as new harbour installations (container dikes, marinas), sea aggregate extraction for human constructions, and offshore wind mill farms. This article provides as complete an overview as possible of the research projects on these bordering seas, both those that have recently been accomplished and those that are currently in progress, in order to highlight the main characteristics of these ecosystems and to underline the future challenges for European marine research in terms of the integrated coastal zone management of these highly significant coastal zones.  相似文献   

13.
The input and fate of dissolved organic matter (DOM) can have important consequences for coastal zone productivity in large lakes and oceans. Chromophoric DOM (CDOM) is often delivered to coastal zones from rivers and streams and affects light penetration in a water column. CDOM can protect biota from damaging ultraviolet (UV) light by acting as sunscreen, resulting in increased ecosystem productivity. Alternatively, CDOM can decrease ecosystem productivity by absorbing light needed for photosynthesis and forming photoreaction products that are harmful to coastal zone biota. Increased urbanization of watersheds and seasonal differences in weather patterns change the delivery pathways, reactivity, input, and energy flow of DOM (and its CDOM component) into aquatic systems. This study investigated the effects of watershed and season on the concentrations and potential photodegradation of stream-derived DOM in Lake Superior tributaries, chosen to be geographically and geologically similar but differing in land use. Organic carbon analysis, UV–Visible spectrophotometry, and terrestrial (land use) analysis were used to investigate differences among samples and sample treatments. The major differences in DOM concentration and photochemical response appeared seasonal rather than site specific, with snow-melt samples showing stronger and more consistent changes in UV–Visible parameters while base-flow samples showed stronger and more consistent losses in DOC.  相似文献   

14.
Artificial neural networks (ANNs) were developed to accurately predict highly time-variable specific conductance values in an unconfined coastal aquifer. Conductance values in the fresh water lens aquifer change in response to vertical displacements of the brackish zone and fresh water-salt water interface, which are caused by variable pumping and climate conditions. Unlike physical-based models, which require hydrologic parameter inputs, such as horizontal and vertical hydraulic conductivities, porosity, and fluid densities, ANNs can "learn" system behavior from easily measurable variables. In this study, the ANN input predictor variables were initial conductance, total precipitation, mean daily temperature, and total pumping extraction. The ANNs were used to predict salinity (specific conductance) at a single monitoring well located near a high-capacity municipal-supply well over time periods ranging from 30 d to several years. Model accuracy was compared against both measured/interpolated values and predictions were made with linear regression, and in general, excellent prediction accuracy was achieved. For example, although the average percent change of conductance over 90-d periods was 39%, the absolute mean prediction error achieved with the ANN was only 1.1%. The ANNs were also used to conduct a sensitivity analysis that quantified the importance of each of the four predictor variables on final conductance values, providing valuable insights into the dynamics of the system. The results demonstrate that the ANN technology can serve as a powerful and accurate prediction and management tool, minimizing degradation of ground water quality to the extent possible by identifying appropriate pumping policies under variable and/or changing climate conditions.  相似文献   

15.
Littoral zones of lakes are important for carbon and nutrient recycling because of the accumulation and decomposition of organic matter (OM) coming from terrestrial and aquatic plants. Here, we aimed to study OM decomposition from the most abundant riparian trees (Nothofagus dombeyi and Myrceugenia exsucca), and an emergent macrophyte (Schoenoplectus californicus), in the littoral zone of an ultraoligotrophic North-Patagonian Andean lake. We analysed the initial 2-days leaching, and litter mass loss and litter nutrient changes after one year of decomposition in a litter-bag experiment. The three studied species had very slow decay rates (k < 0.005 day−1), and initial nutrient release by leaching was not related to differences in decomposition rates. However, differences in leaf traits (lignin content) were related to interspecific variation in decomposition rates. The highest decomposition rates were observed for the macrophyte S. californicus, the species with the lower lignin content, while the opposite was observed in the Myrtaceae M. exsucca. In the three studied species, nitrogen content increased during decomposition. Our results indicated that in the shore of ultra-oligotrophic lakes, litter remains for long periods with net nutrient immobilization, thus OM of the riparian vegetation represents a carbon and nutrient sink.  相似文献   

16.
为削减东太湖养殖污染,改善湖泊水质,苏州市于2018年底基本完成东太湖养殖围网拆除工作.围网拆除后,湖泊生态环境对此如何响应,已成为学者及相关管理部门关注的重点.水生植被在维持湖泊生态系统平衡、物质循环和净化水质方面发挥着重要的作用,是诊断湖泊生态系统健康状态的关键指标.本研究基于Sentinel-2卫星数据,利用分类...  相似文献   

17.
We report the complex spatial and temporal dynamics of hyporheic exchange flows (HEFs) and nitrogen exchange in an upwelling reach of a 200 m groundwater-fed river. We show how research combining hydrological measurement, geophysics and isotopes, together with nutrient speciation techniques provides insight on nitrogen pathways and transformations that could not have been captured otherwise, including a zone of vertical preferential discharge of nitrate from deeper groundwater, and a zone of rapid denitrification linking the floodplain with the riverbed. Nitrate attenuation in the reach is dominated by denitrification but is spatially highly variable. This variability is driven by groundwater flow pathways and landscape setting, which influences hyporheic flow, residence time and nitrate removal. We observed the spatial connectivity of the river to the riparian zone is important because zones of horizontal preferential discharge supply organic matter from the floodplain and create anoxic riverbed conditions with overlapping zones of nitrification potential and denitrification activity that peaked 10–20 cm below the riverbed. Our data also show that temporal variability in water pathways in the reach is driven by changes in stage of the order of tens of centimetres and by strength of water flux, which may influence the depth of delivery of dissolved organic carbon. The temporal variability is sensitive to changes to river flows under UK climate projections that anticipate a 14%–15% increase in regional median winter rainfall and a 14%–19% reduction in summer rainfall. Superimposed on seasonal projections is more intensive storm activity that will likely lead to a more dynamic and inherently complex (hydrologically and biogeochemically) hyporheic zone. We recorded direct evidence of suppression of upwelling groundwater (flow reversal) during rainfall events. Such flow reversal may fuel riverbed sediments whereby delivery of organic carbon to depth, and higher denitrification rates in HEFs might act in concert to make nitrate removal in the riverbed more efficient.  相似文献   

18.
由于人类活动和全球气候变化的叠加影响,湖泊富营养化和蓝藻水华仍是未来相当长一段时间内的水生态环境问题.蓝藻水华暴发会引发湖泊生态系统的灾害和饮用水安全风险,因此湖内蓝藻水华防控必不可少.现有蓝藻水华防控长效方法主要基于营养盐控制理论、浅水湖泊稳态转换理论和生物操纵理论,技术措施包括内源营养盐控制、生态修复、生物操纵.应...  相似文献   

19.
Anthropogenic alteration of terrestrial shorelines can have pronounced effects on marine environments at the upland-marsh boundary. Possible terrestrial development effects on several physical and biological variables of high-marsh habitats were examined along developed and undeveloped shorelines in an ocean-dominated, southeastern US estuary. Analyses of sediment characteristics suggested development of the upland boundary affected physical conditions within the high-marsh. For example, pore water salinities were greater along undeveloped shorelines during a non-drought period even after rain events. Significant floral and faunal differences also existed between shoreline treatments. Black needle rush stems were significantly taller and marsh periwinkle densities significantly greater, but eastern coffee bean snail densities were significantly reduced along developed shorelines. Benthic infaunal community abundance and composition also were significantly different between shoreline treatments with sand fly larvae, human pest precursors, either only present or present in greater densities along developed shorelines. Sediment respirometry experiments indicated significant differences in heterotrophic and autotrophic processes occurring between shoreline treatments. Greater sediment surface temperatures along developed shorelines provided one possible mechanism driving high-marsh responses to boundary alteration. The history and extent of shoreline development along with a tendency in ocean-dominated southeastern marshes to resist change likely influenced current ecological conditions within our high-marsh study areas. A greater understanding of the driving mechanisms producing localized effects on salt marshes and recognizing regional differences in marsh resistance to change will facilitate predictions of shoreline development consequences and help in proposing effective management strategies for coastal boundaries.  相似文献   

20.
This paper presents data for the temporal and spatial distribution of nutrients in Liverpool Bay between 2003 and 2009 and an analysis of inputs of nutrients from the major rivers. The spatial distribution of winter nutrient concentrations are controlled by the region of freshwater influence (ROFI) in Liverpool Bay through the mixing of riverine freshwater and Irish Sea water, with strong linear relationships between nutrient concentration and salinity between December and February. The location of highest spring and summer phytoplankton biomass reflects the nutrient distributions as controlled by the ROFI. Analysis of 7 years of data showed that the seasonal cycle of winter maximum nutrient concentrations in February and drawdown in April/May is a recurrent feature of this location, with the timing of the drawdown varying by several weeks between years. A comparison of observed nutrient concentrations in Liverpool Bay with those predicted from inputs from rivers has been presented. Nutrient concentrations in the rivers flowing into Liverpool Bay were highly variable and there was reasonable agreement between predicted freshwater nutrient concentrations using data from this study and riverine nutrient concentrations weighted on the basis of river flow, although the exact nature of mixing between the rivers could not be determined. Predicted Irish Sea nutrient concentrations in the winter were lower than those reported for the input waters of the North Atlantic, supporting findings from previous work that nitrogen is lost through denitrification in the Irish Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号