首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过对115粒山东郯城砂矿金刚石样品进行矿物学和光谱学特征研究,结果显示郯城金刚石的粒径集中在1. 0~4. 0mm之间,晶体形态以菱形十二面体为主,其次八面体与菱形十二面体聚形,八面体较少;晶面形貌除倒三角凹坑、塑性变形滑移线、熔蚀沟、生长丘、生长阶梯、叠瓦状蚀象、滴状丘、晕线等原生形貌发育外,小部分发育有次生形貌 绿色色斑,且大多数金刚石的边棱清晰,磨圆程度不高。研究首次测得了郯城金刚石的拉曼特征峰的半高宽数据和金刚石包裹体拉曼谱图,显示郯城砂矿金刚石结晶程度差异较大,暗示其形成的金刚石地质生长条件和环境的复杂性;金刚石包裹体有橄榄石、黄铜矿、针铁矿、石墨矿物,其中橄榄石包裹体占比较高,表明郯城金刚石包裹体类型以橄榄岩型为主,测试结果与华北东部古老克拉通之下的岩石圈地幔大部分由橄榄岩组成的结论一致。对比郯城金刚石与蒙阴金刚石特征的异同,初步探讨了金刚石砂矿的物质来源,为揭示郯城砂矿金刚石的形成及演化提供了金刚石及其包裹体的新的证据。  相似文献   

2.
The crystallographic orientation of three diamonds and 19 olivine inclusions from Udachnaya kimberlite pipe was studied using monocrystal X-ray diffractometry. No epitaxial olivine inclusions were found.  相似文献   

3.
《Lithos》2007,93(1-2):199-213
Kimberlite pipes K11, K91 and K252 in the Buffalo Head Hills, northern Alberta show an unusually large abundance (20%) of Type II (no detectable nitrogen) diamonds. Type I diamonds range in nitrogen content from 6 ppm to 3300 ppm and in aggregation states from low (IaA) to complete (IaB). The Type IaB diamonds extend to the lowest nitrogen concentrations yet observed at such high aggregation states, implying that mantle residence occurred at temperatures well above normal lithospheric conditions. Syngenetic mineral inclusions indicate lherzolitic, harzburgitic, wehrlitic and eclogitic sources. Pyropic garnet and forsteritic olivine characterize the peridotitic paragenesis from these pipes. One lherzolitic garnet inclusion has a moderately majoritic composition indicating a formation depth of ∼ 400 km. A wehrlitic paragenesis is documented by a Ca-rich, high-chromium garnet and very CaO-rich (0.11–0.14 wt.%) olivine. Omphacitic pyroxene and almandine-rich garnet are characteristic of the eclogitic paragenesis. A bimodal δ13C distribution with peaks at − 5‰ and − 17‰ is observed for diamonds from all three kimberlite pipes. A large proportion (∼ 40%) of isotopically light diamonds (δ13C < −10‰) indicates a predominantly eclogitic paragenesis.The Buffalo Head Terrane is of Lower Proterozoic metamorphic age (2.3–2.0 Ga) and hence an unconventional setting for diamond exploration. Buffalo Hills diamonds formed during multiple events in an atypical mantle setting. The presence of majorite and abundance of Type II and Type IaB diamonds suggests formation under sublithospheric conditions, possibly in a subducting slab and resulting megalith. Type IaA to IaAB diamonds indicate formation and storage under lower temperature in normal lithospheric conditions.  相似文献   

4.
Mosaic diamonds from the Zarnitsa kimberlite (Daldyn field, Yakutian diamondiferous province) are morphologicaly and structurally similar to dark gray mosaic diamonds of varieties V and VII found frequently in placers of the northeastern Siberian craton. However, although being similar in microstructure, the two groups of diamonds differ in formation mechanism: splitting of crystals in the case of placer diamonds (V and VII) and growth by geometric selection in the Zarnitsa kimberlite diamonds. Selective growth on originally polycrystalline substrates in the latter has produced radial micro structures with grains coarsening rimward from distinctly polycrystalline cores. Besides the formation mechanisms, diamonds of the two groups differ in origin of mineral inclusions, distribution of defects and nitrogen impurity, and carbon isotope composition. Unlike the placer diamonds of varieties V and VII, the analyzed crystals from the Zarnitsa kimberlite enclose peridotitic minerals (olivines and subcalcic Cr-bearing pyropes) and have total nitrogen contents common to natural kimberlitic diamonds (0 to 1761 ppm) and typical mantle carbon isotope compositions (-1.9 to -6.2%c 513C; -4.2%c on average). The distribution of defect centers in the Zarnitsa diamond samples fits the annealing model implying that nitrogen aggregation decreases from core to rim.  相似文献   

5.
Superdeep diamonds from the Juina area, Mato Grosso State, Brazil   总被引:4,自引:1,他引:3  
Alluvial diamonds from the Juina area in Mato Grosso, Brazil, have been characterized in terms of their morphology, syngenetic mineral inclusions, carbon isotopes and nitrogen contents. Morphologically, they are similar to other Brazilian diamonds, showing a strong predominance of rounded dodecahedral crystals. However, other characteristics of the Juina diamonds make them unique. The inclusion parageneses of Juina diamonds are dominated by ultra-high-pressure ("superdeep") phases that differ both from "traditional" syngenetic minerals associated with diamonds and, in detail, from most other superdeep assemblages. Ferropericlase is the dominant inclusion in the Juina diamonds. It coexists with ilmenite, Cr-Ti spinel, a phase with the major-element composition of olivine, and SiO2. CaSi-perovskite inclusions coexist with titanite (sphene), "olivine" and native Ni. MgSi-perovskite coexists with TAPP (tetragonal almandine-pyrope phase). Majoritic garnet occurs in one diamond, associated with CaTi-perovskite, Mn-ilmenite and an unidentified Si-Mg phase. Neither Cr-pyrope nor Mg-chromite was found as inclusions. The spinel inclusions are low in Cr and Mg, and high in Ti (Cr2O3<36.5 wt%, and TiO2>10 wt%). Most ilmenite inclusions have low MgO contents, and some have very high (up to 11.5 wt%) MnO contents. The rare "olivine" inclusions coexisting with ferropericlase have low Mg# (87-89), and higher Ca, Cr and Zn contents than typical diamond-inclusion olivines. They are interpreted as inverted from spinel-structured (Mg, Fe)2Si2O4. This suite of inclusions is consistent with derivation of most of the diamonds from depths near 670 km, and adds ilmenite and relatively low-Cr, high-Ti spinel to the known phases of the superdeep paragenesis. Diamonds from the Juina area are characterized by a narrow range of carbon isotopic composition ('13C=-7.8 to -2.5‰), except for the one majorite-bearing diamond ('13C=-11.4‰). There are high proportions of nitrogen-free and low-nitrogen diamonds, and the aggregated B center is predominant in nitrogen-containing diamonds. These observations have practical consequences for diamond exploration: Low-Mg olivine, low-Mg and high-Mn ilmenite, and low-Cr spinel should be included in the list of diamond indicator minerals, and the role of high-Cr, low-Ti spinel as the only spinel associated with diamond, and hence as a criterion of diamond grade in kimberlites, should be reconsidered.  相似文献   

6.
《International Geology Review》2012,54(13):1658-1667
The identification of syngenetic inclusions in diamond (i.e. inclusions of minerals that crystallized at the same time and by the same genesis as their host) has long been of paramount importance in diamond studies. However, the widespread assumption that many or most inclusions in diamonds are syngenetic is based on qualitative morphological criteria and few direct measurements. In order to provide statistically significant information on inclusion–host genetic relations for at least one kimberlite, we have determined the crystallographic orientations of 43 olivine inclusions with diamond-imposed morphology, a feature generally interpreted to indicate syngenesis, in 20 diamonds from the Udachnaya kimberlite (Siberia). Our unprecedented large data set indicates no overall preferred orientation of these olivines in diamond. However, multiple inclusions within a single diamond frequently exhibit similar orientations, implying that they were derived from original single monocrystals. Therefore, regardless of the possible chemical re-equilibration during diamond-forming processes, at least some of the olivines may have existed prior to the diamond (i.e. they are protogenetic). Our results imply that a diamond-imposed morphology alone cannot be considered as unequivocal proof of syngenicity of mineral inclusions in diamonds.  相似文献   

7.
U-type paragenesis inclusions predominate (94.7%) among the crystalline inclusion suite of 115 diamonds (−4+2 mm) obtained from the recently discovered Snap Lake/King Lake (SKL) kimberlite dyke system, Southern Slave, Canada. The most common inclusions are olivine (90) and enstatite (22). Sulfide, Cr-pyrope, chromite and Cr-diopside inclusion are less abundant (15, 10, 5 and 1, respectively). Results of the inclusion composition study demonstrate the following. (a) The relatively enriched character of the mantle parent rocks of the U-type diamonds. The average Mg# of olivine inclusions is 92.1, and of enstatite inclusions average 93.3. CaO content in Cr-pyrope inclusions is relatively high (3.73–5.75 wt.%). (b) Four of ten U-type Cr-rich pyrope inclusions contain a majoritic component up to 16.8 mol.% which requires pressures of 110 kbar. Carbon isotopes compositions for 34 diamonds with U-type inclusions have a δ13C range from −3.2‰ to −9‰ with a strong peak around −3.5‰. This is much heavier than the ratios of U-type diamonds from Siberia and South Africa (4.5‰). Diamonds with olivine inclusions can be divided into two groups based on their δ13C values as well as the Mg# and Ni/Fe ratio in the olivines. Most show a narrow range of δ13C values from −3.2‰ to −4.8‰ (average −3.72‰) and have olivine inclusions with Mg# less than 92.3 and relatively high Fe/Ni ratios. A second group is characterized by a much wider variation of C isotope composition (δ13C varies from −3.8‰ to −9.0‰, average −5.97‰), and the olivine inclusions having a higher Mg# (up to 93.6) and relatively low Fe/Ni ratios. This difference in the C isotope composition may have several explanations: (a) peculiarities of asthenosphere degassing coupled with an abnormal thickness of lithosphere; (b) the abnormal thickness and enriched character of lithospheric mantle; (c) involvement of subducted C of crustal origin in the processes of the diamond formation. The presence of subcalcic Cr-rich majorite (up to 17 mol.%) pyropes of low-Ca harzburgite paragenesis among the crystalline inclusion suite of SKL diamonds is strong evidence for the existence of diamondiferous depleted peridotite in lithospheric mantle at depth near 300 km beneath Southern Slave area and is postulated to be one of the main reasons for the much heavier C isotope composition of SKL U-type diamonds in comparison with those from Siberian and South African kimberlites.  相似文献   

8.
Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia   总被引:9,自引:0,他引:9  
The Sputnik kimberlite pipe is a small “satellite” of the larger Mir pipe in central Yakutia (Sakha), Russia. Study of 38 large diamonds (0.7-4.9 carats) showed that nine contain inclusions of the eclogitic paragenesis, while the remainder contain inclusions of the peridotitic paragenesis, or of uncertain paragenesis. The peridotitic inclusion suite comprises olivine, enstatite, Cr-diopside, chromite, Cr-pyrope garnet (both lherzolitic and harzburgitic), ilmenite, Ni-rich sulfide and a Ti-Cr-Fe-Mg-Sr-K phase of the lindsleyite-mathiasite (LIMA) series. The eclogitic inclusion suite comprises omphacite, garnet, Ni-poor sulfide, phlogopite and rutile. Peridotitic ilmenite inclusions have high Mg, Cr and Ni contents and high Nb/Zr ratios; they may be related to metasomatic ilmenites known from peridotite xenoliths in kimberlite. Eclogitic phlogopite is intergrown with omphacite, coexists with garnet, and has an unusually high TiO2 content. Comparison with inclusions in diamonds from Mir shows general similarities, but differences in details of trace-element patterns. Large compositional variations among inclusions of one phase (olivine, garnet, chromite) within single diamonds indicate that the chemical environment of diamond crystallisation changed rapidly relative to diamond growth rates in many cases. P-T conditions of formation were calculated from multiphase inclusions and from trace element geothermobarometry of single inclusions. The geotherm at the time of diamond formation was near a 35 mW/m2 conductive model; that is indistinguishable from the Paleozoic geotherm derived by studies of xenoliths and concentrate minerals from Mir. A range of Ni temperatures between garnet inclusions in single diamonds from both Mir and Sputnik suggests that many of the diamonds grew during thermal events affecting a relatively narrow depth range of the lithosphere, within the diamond stability field. The minor differences between inclusions in Mir and Sputnik may reflect lateral heterogeneity in the upper mantle.  相似文献   

9.
Trace element concentrations of peridotitic garnet inclusions in diamonds from two Chinese kimberlite pipes were determined using the ion microprobe. Garnet xenocrysts from the same two kimberlite pipes were also analyzed for comparison. In contrast to their extremely refractory major element compositions, all harzburgitic garnets showed enrichment in light rare earth elements (REE) relative to chondrite, resulting in sinuous REE patterns. Both normal and sinuous REE patterns were observed from the lherzolitic garnets. Concentrations of REE in garnets changed significantly from diamond to diamond and no specific correlations were observed with their major element compositions. Analyses of randomly selected two to three points within every grain of a large number of garnet inclusions by the ion microprobe demonstrated that there was no evident compositional heterogeneity, and multiple grains of one phase from a single diamond host also exhibit very similar compositions. This implies that the trace element heterogeneity within one grain or among multiple inclusions from the same diamond host, as reported from Siberian diamonds, is not a common feature for these Chinese diamonds. Concentrations of Na, Ti, and Zr tend to decrease when garnets become more refractory, but variations of Sr and Li are more complex. Compositions rich in light REE and relatively poor in high field strength elements (HFSE) of the harzburgitic garnet inclusions in diamonds are generally consistent with metasomatism by carbonatite melts. The trace element features observed from the garnet inclusions in Chinese diamonds may be caused by carbonatite melt infiltration and partial melt extraction. Spatial and temporal gradients in melt/rock ratio and temperature are the main reasons for the large variations of REE patterns and other trace element concentrations. Received: 27 April 1999 / Accepted: 1 March 2000  相似文献   

10.
The results of integrated studies of inclusion-containing diamonds from kimberlites of the Snap Lake dike complex (Canada) are presented. Features of the morphology, defect–impurity composition, and internal structure of the diamonds were determined by optic and scanning microscopy. The chemical composition of crystalline inclusions (olivine, garnet, and pyroxene) in diamonds was studied using a microanalyzer with an electronic probe. The inclusions of ultramafic paragenesis in the diamond (87%) are predominant. Carbonates, sulfide and hydrated silicate phases were found only in multiphase microinclusions. The large phlogopite inclusion studied was similar in composition to earlier studied nanosize inclusions of high-silica mica in diamonds from Snap Lake kimberlites. Revealed features of studied diamonds and presence of high-silica mica suggest that diamonds from Snap Lake have formed as the result of interaction between enriched in volatile and titanium high-potassium carbonate–silicate melts and peridotitic substrate at the base of thick lithospheric mantle.  相似文献   

11.
We analyzed mineral microinclusions in fibrous diamonds from the Wawa metaconglomerate (Superior craton) and Diavik kimberlites (Slave craton) and compared them with published compositions of large mineral inclusions in non-fibrous diamonds from these localities. The comparison, together with similar datasets available for Ekati and Koffiefontein kimberlites, suggest a general pattern of metasomatic alteration imposed on the ambient mantle by formation of fibrous diamond. Calcium and Fe enrichment of peridotitic garnet and pyroxenes and Fe enrichment of olivine associated with fibrous diamond-forming fluids contributes to refertilization of the cratonic mantle. Saline—carbonatitic—silicic fluid trapped by fibrous diamonds may represent one of the elusive agents of mantle refertilization. Calcium enrichment of peridotitic garnet and pyroxenes is expected in local mantle segments during fibrous diamond production, as Ca in the carbonatitic fluids is deposited into the surrounding mantle when oxidized carbon is reduced to diamond. Harzburgitic garnet evolves towards Ca-rich compositions even when it interacts with Ca-poor saline fluids. An unusual trend of Mg enrichment to Fo95–98 is observed in some olivine inclusions in Wawa fibrous diamonds. The trend may result from the carbonatitic composition of the fluid that promotes crystallization of magnesian olivine and preferentially oxidizes the fayalite component. We propose a generic model of fibrous and non-fibrous diamond formation from carbonatitic fluids that explains enrichment of the mantle in mafic magmaphile and incompatible elements and accounts for locally metasomatized compositions of diamond inclusions.  相似文献   

12.
The paper reports the results obtained by the detailed studying of carbonado (the first find in a gold placer in Primorie) and a collection of diamonds that was confiscated in 1937 from a poaching small digger and was kept safe at the Nezametnyi mine (near the village of Vostretsovo), which had developed this placer deposit. In the concentrate from the placer, carbonado is associated with green corundum, various ilmenite, zircon titanian amphiboles and pyroxenes, rutile, anatase, and fragments of subvolcanic biotite picrites. All of these minerals, native aluminum, and tin occur as inclusions in the diamonds. The carbonado from Primorie was determined to be practically identical to this mineral from Brazil, has a porous structure, is characterized by orange luminescence, contains inclusions of Y, Ce, La, Ba, and Sr phosphates, and has an isotopically light composition of its carbon (13C from ?25 to ?32‰). Pores of the carbonado aggregates contain clusters of diamond crystals. The collection of diamonds from an unknown source included six gem-quality transparent crystals, one rounded ballas, two cuboctahedral crystals (one of greenish and the other of silver-gray color, both with outer coats), and one black carbonado grain. The data obtained on the mineralogy of the diamonds have demonstrated that they are completely identical to this mineral from kimberlites and lamproites but bear traces of intense dissolution, fragmentation, multiple recrystallization, and graphitization at defects, which are the most widespread in the ballas. One of the crystals was determined to contain inclusions: aggregates of potassic omphacite (0.50 wt % K2O) and corundum. Ilmenite (containing up to 8 wt % MgO), titanaugite, kaersutite (4 wt % TiO2, 0.8 wt % K2O), and churchite (aqueous phosphate) were obtained from the core of the ballas. The titanaugite, kaersutite, and ilmenite were proven to be compositionally analogous to these minerals from picrites occurring near the placer. The carbon isotopic composition δ13C of the cores of the single diamond crystals varies from ?6 to ?11‰. The margins of the grains were proved to be enriched in the light carbon isotope (δ13C from ?19 to ?21‰). The gem-quality transparent diamond crystals are characterized by blue luminescence, and the color of luminescence in the carbonado varies from orange red in the bulk of the aggregate to yellowish green in its core. The aforementioned transformations of diamonds were likely caused by their transportation in pipes of micaceous picrites of the Jurassic meymechite complex. The carbonado are thought to correspond to the final stage of the metastable recrystallization (in pores, within the temperature range of the rutile-anatase transition) of the original isotopically heavy diamonds under the effect of various oxidizers (H2O, CO2, F, and others) and in the presence of catalytically acting REE, Ti, and P. The primary diamond source (kimberlite or lamproite) can be older and more distant from the study area. The complete geological analogy between the study area in Primorie, Kalimantan Island in Indonesia, and West Australia (where no sources of the placers are known) led us to consider the territory of Primorie as promising for exploration for diamondiferous placers.  相似文献   

13.
对已经发表的数十篇关于澳大利亚金刚石的英文文献进行了梳理,从其金刚石的品质、颜色类型、形态及表面特征、生长结构及微量元素、包裹体、C同位素等方面探索了澳大利亚不同区域金刚石可能存在的产地来源特征.研究显示,澳大利亚金刚石可分为岩石圈地幔成因、超深地幔成因和俯冲环境来源等成因类型;大部分澳大利亚金刚石都因经历过强烈的晶格变形或熔蚀作用而晶体圆化,但不同产地来源的金刚石在颜色组合、橄榄岩型和榴辉岩型金刚石比例、C同位素组成特征等方面存在一定差异.上述结果表明,总体上,澳大利亚不同区域金刚石具有一定的产地来源个性,但无法简单确认澳大利亚金刚石“整体”的产地来源特征;只有结合成因来源进行分析,才能够较深入地理解不同区域金刚石的特征组合及其意义,从而为理解其产地来源的特殊性提供帮助.  相似文献   

14.
 Multianvil experiments were carried out at 10–15 GPa and 1600–1700 °C to match the compositions of majoritic garnet inclusions from diamonds, and to determine the compositions of other phases potentially coexisting with these inclusions in the source. Most experiments produced coexisting majoritic garnet, diopsidic clinopyroxene, one or more (Mg,Fe)2SiO4 polymorphs, and quenched carbonatic melt. The experimental garnets had relatively high Ca and Fe contents similar to the observed Ca and Fe contents of the inclusions. The resulting Si contents confirmed that the depth of origin of the inclusion with the highest Si content did not exceed 410 km, thus none of the majoritic garnet inclusions found so far originated in the transition zone (410–660 km). The evidence from inclusions and experiments is consistent with the presence of an eclogite layer occurring globally between 200 and 410 km. Compositional variations observed among more than 100 majoritic garnet inclusions with their Si content, which is a measure of pressure and depth, are consistent with the origin of the eclogite layer by crystal fractionation in a magma ocean. The compositions of olivine coexisting with majoritic garnet in the experimental products had the average Fe/(Fe + Mg) ratios between 0.16 and 0.28. Inclusions with such high Fe contents have not been found; the Fe/(Fe + Mg) ratio of the olivine inclusions in diamonds usually varies between 0.05 and 0.09. Hence, the mantle between 200 and 410 km may not contain olivine. In the absence of olivine, the discontinuity at 410 km is most likely a chemical boundary between the 200-km-thick eclogite layer and a more mafic transition zone. Received: 15 March 2001 / Accepted: 14 September 2001  相似文献   

15.
We discuss the chemistry of exceptionally rare phlogopite inclusions coexisting with ultramafic (peridotitic) and eclogitic minerals in kimberlite-hosted diamonds of Yakutia, Arkhangelsk, and Venezuela provinces. Phlogopite inclusions in diamonds are octahedral negative crystals following the diamond faceting in all 34 samples (including polymineralic inclusions). On this basis phlogopite inclusions have been interpreted as syngenetic and in equilibrium with the associated minerals. In ultramafic diamonds phlogopites coexist with subcalcic high-Cr2O3 pyrope and/or chromite, olivine and enstatite (dunite/harzburgite (H) paragenesis) or with clinopyroxene, enstatite, and/or olivine and pyrope (lherzolite (L) paragenesis). Ultramafic phlogopites have high Mg# [100?Mg/(Mg+Fe)] from 92.4 to 95.2 and Cr2O3 higher than TiO2 in H-phlogopites (1.5–2.5 wt.% versus 0.1–0.4 wt.%, respectively) but lower in L-phlogopites (0.15–0.5 wt.% versus 1.3–3.5 wt.%, respectively). Eclogitic (E) phlogopites show Mg# from 47.4 to 85.3 inclusive, and very broad ranges of TiO2 up to 12 wt.%. The primary syngenetic origin of phlogopite is indicated, besides other factors, by its compositional consistency with the associated minerals. The analyzed phlogopites are depleted in BaO (0.10–0.79 wt.%), and their F and Cl contents are highly variable reaching 1.29 and 0.49 wt.%, respectively. The latter is in line with high Cl enrichment in some unaltered kimberlites and in nanometric fluid inclusions from diamonds. The presence of syngenetic phlogopite in kimberlite-hosted diamonds provides important evidence that volatiles participated in diamond formation and that at least a part of diamonds may have been related to early stages of kimberlites formation.  相似文献   

16.
Diamonds and their mineral inclusions are valuable for studying the genesis of diamonds, the characteristics and processes of ancient lithospheric mantle and deeper mantle. This has been paid lots of attentions by geologists both at home and abroad. Most diamonds come from lithospheric mantle. According to their formation preceded, accompanied or followed crystallization of their host diamonds, mineral inclusions in diamonds are divided into three groups: protogenetic, syngenetic and epigenetic. To determine which group the mineral inclusions belong to is very important because it is vital for understanding the data’s meaning. According to the type of mantle source rocks, mineral inclusions in diamonds are usually divided into peridotitic (or ultramafic) suite and eclogitic suite. The mineral species of each suite are described and mineralogical characteristics of most common inclusions in diamonds, such as olivine, clinopyroxene, orthopyroxene, garnet, chromite and sulfide are reviewed in detail. In this paper, the main research fields and findings of diamonds and their inclusions were described: ①getting knowledge of mineralogical and petrologic characteristics of diamond source areas, characteristics of mantle fluids and mantle dynamics processes by studying the major element and trace element compositions of mineral inclusions; ②discussing deep carbon cycle by studying carbon isotopic composition of diamonds; ③determining forming temperature and pressure of diamonds by using appropriate assemblages of mineral inclusions or single mineral inclusion as geothermobarometry, by using the abundance and aggregation of nitrogen impurities in diamonds and by measuring the residual stress that an inclusion remains under within a diamond ; ④estimating the crystallization ages of diamonds by using the aggregation of nitrogen impurities in diamonds and by determine the radiometric ages of syngenetic mineral inclusions in diamonds. Genetic model of craton lithospheric diamonds and their mineral inclusion were also introduced. In the end, the research progress on diamonds and their inclusions in China and the gap between domestic and international research are discussed.  相似文献   

17.
彩色钻石是一种极端珍稀的矿产与宝石财富.本文较全面论述了中国已经发现的主要彩钻产地及矿体的简要地质特征,从原生矿和砂矿角度,分别论述了山东、辽宁、湖南、贵州等地的彩钻矿体地质特点,并总结了中国彩钻的主要特点:含量极低,晶体完整度不一,多含有包裹体,晶体蚀象发育,透明度高,以山东彩钻为代表的中国彩钻的颗粒度相对较大,可做高端宝石应用.本文还指出,中国彩钻的价值从根本上还没有得到发掘,市场价值从根本上尚未得到体现.  相似文献   

18.
 Sulfide inclusions in diamonds may provide the only pristine samples of mantle sulfides, and they carry important information on the distribution and abundances of chalcophile elements in the deep lithosphere. Trace-element abundances were measured by proton microprobe in >50 sulfide inclusions (SDI) from Yakutian diamonds; about half of these were measured in situ in polished plates of diamonds, providing information on the spatial distribution of compositional variations. Many of the diamonds were identified as peridotitic or eclogitic from the nature of coexisting silicate or oxide inclusions. Known peridotitic diamonds contain SDIs with Ni contents of 22–36%, consistent with equilibration between olivine, monosulfide solid solution (MSS) and sulfide melt, whereas SDIs in eclogitic diamonds contain 0–12% Ni. A group of diamonds without silicate or oxide inclusions has SDIs with 11–18% Ni, and may be derived from pyroxenitic parageneses. Eclogitic SDIs have lower Ni, Cu and Te than peridotitic SDIs; the ranges of the two parageneses overlap for Se, As and Mo. The Mo and Se contents range up to 700 and 300 ppm, respectively; the highest levels are found in peridotitic diamonds. Among the in-situ SDIs, significant Zn and Pb levels are found in those connected by cracks to diamond surfaces, and these elements reflect interaction with kimberlitic melt. Significant levels of Ru (30–1300 ppm) and Rh (10–170 ppm) are found in many peridotitic SDIs; SDIs in one diamond with wustite and olivine inclusions and complex internal structures have high levels of other platinum-group elements (PGEs) as well, and high chondrite-normalized Ir/Pd. Comparison with experimental data on element partitioning between crystals of monosulfide solid solution (MSS) and sulfide melts suggests that most of the inclusions in both parageneses were trapped as MSS, while some high-Cu SDIs with high Pd±Rh may represent fractionated sulfide melts. Spatial variations of SDI composition within single diamonds are consistent with growth histories shown by cathodoluminescence images, in which several stages of growth and resorption have occurred within magmatic environments that evolved during diamond formation. Received: 5 July 1995 / Accepted: 21 February 1996  相似文献   

19.
津巴布韦马朗(Marange)金刚石矿以产出混合习性(八面体与近立方体)金刚石为特征,其石墨包裹体仅存在于近立方体区.石墨包裹体的形态、分布及金刚石的异常双折射与应变特征,能反映其从开始结晶到被搬运至地表过程中经历的地质作用.因此,对津巴布韦混合习性金刚石及石墨包裹体的研究不仅能提供与其他产地金刚石有对比意义的数据,且...  相似文献   

20.
Proton-microprobe analyses of trace elements in garnet and chromite inclusions in diamonds (DI) from the Mir, Udachnaya, Aikhal and Sytykanskaya kimberlites in Yakutia, CIS, provide new insights into the processes that form diamond. Equivalent data on garnet and chromite concentrates from these pipes yield information on the thermal state and chemical stratification of the Siberian lithosphere. Peridotite-suite diamonds from Yakutia have formed over a temperature interval of ca. 600°C, as measured by Ni and Zn thermometry on garnet and chromite inclusions in diamonds. Individual diamonds contain inclusions recording temperature intervals of >400°C; ranges of >100°C are common. Diamond formation followed a severe depletion event(s), and a separate enrichment in Sr. Comparison of temperatures on DI garnet and spinel with temperatures derived from diamondiferous harzburgites, exposed inclusions in boart and concentrate minerals suggests that the diamond-containing part of the lithosphere has cooled significantly since the Siberian diamonds crystallized. The peridotite-suite diamonds probably formed mainly in response to one or more relatively short-lived thermal events, related to magmatic intrusion. The northern part of the Daldyn-Alakit district may have had a typical cratonic geotherm at the time of diamond formation, and during kimberlite intrusion. The southern part of the district, and the Malo-Botuobiya kimberlite field, probably had a relatively low geotherm (ca. 35 mW/m2). The vertical distribution of garnet and chromite types indicates that the mantle above 120 km depth is dominated by lherzolites, whereas the deeper parts of the lithosphere are a mixture of lherzolites and more depleted harzburgites and dunites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号