首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia   总被引:9,自引:0,他引:9  
The Sputnik kimberlite pipe is a small “satellite” of the larger Mir pipe in central Yakutia (Sakha), Russia. Study of 38 large diamonds (0.7-4.9 carats) showed that nine contain inclusions of the eclogitic paragenesis, while the remainder contain inclusions of the peridotitic paragenesis, or of uncertain paragenesis. The peridotitic inclusion suite comprises olivine, enstatite, Cr-diopside, chromite, Cr-pyrope garnet (both lherzolitic and harzburgitic), ilmenite, Ni-rich sulfide and a Ti-Cr-Fe-Mg-Sr-K phase of the lindsleyite-mathiasite (LIMA) series. The eclogitic inclusion suite comprises omphacite, garnet, Ni-poor sulfide, phlogopite and rutile. Peridotitic ilmenite inclusions have high Mg, Cr and Ni contents and high Nb/Zr ratios; they may be related to metasomatic ilmenites known from peridotite xenoliths in kimberlite. Eclogitic phlogopite is intergrown with omphacite, coexists with garnet, and has an unusually high TiO2 content. Comparison with inclusions in diamonds from Mir shows general similarities, but differences in details of trace-element patterns. Large compositional variations among inclusions of one phase (olivine, garnet, chromite) within single diamonds indicate that the chemical environment of diamond crystallisation changed rapidly relative to diamond growth rates in many cases. P-T conditions of formation were calculated from multiphase inclusions and from trace element geothermobarometry of single inclusions. The geotherm at the time of diamond formation was near a 35 mW/m2 conductive model; that is indistinguishable from the Paleozoic geotherm derived by studies of xenoliths and concentrate minerals from Mir. A range of Ni temperatures between garnet inclusions in single diamonds from both Mir and Sputnik suggests that many of the diamonds grew during thermal events affecting a relatively narrow depth range of the lithosphere, within the diamond stability field. The minor differences between inclusions in Mir and Sputnik may reflect lateral heterogeneity in the upper mantle.  相似文献   

2.
The petrography, major element, and trace element (TE) compositions of minerals from two types of modal metasomatites (metasomatized peridotites and pyroxenites) from kimberlite pipes Udachnaya and Komsomol'skaya-Magnitnaya, Yakutia, have been studied. It is shown that texturally and chemically equilibrated metasomatites A consist of a set of superimposed minerals: phlogopite + diopside ± ilmenite ± apatite ± sulfides ± graphite. Their major and trace element compositions have specific features. The contents of TEs in garnet and clinopyroxene from these metasomatites are close to those in garnet and clinopyroxene from low-temperature coarse-grained peridotites richest in TEs. The distribution of a significant portion of TEs between garnet and clinopyroxene from A-type metasomatites and from coarse-grained lherzolites rich in TEs is close to experimental values reported for minerals coexisting with carbonatitic and basaltic fluids. We assume that this metasomatic process was nearly synchronous with the global metamorphism and cratonization of the mantle lithosphere and that high-density silicate–carbonate fluidmelts were metasomatizing agents.Another large mantle metasomatism process in the lithosphere of the Siberian craton was associated with the Middle Paleozoic kimberlite magmatic event, induced by the Yakutian thermochemical plume. Metasomatic minerals (Mg phlogopite + Cr diopside + chromite ± sulfides ± graphite) intensely replaced the minerals of the primary paragenesis, particularly, garnet. These reaction metasomatites show a sine-shaped REE pattern in garnet and disequilibrium between garnet and clinopyroxene. It is supposed that the reaction metasomatism in the mantle lithosphere of the Siberian craton was associated with ingress of reduced asthenospheric fluids at early stages of the kimberlite formation cycle. Metasomatic graphite formed in metasomatites of both types, and this fact evidences for two diamond formation epochs in the history of the mantle lithosphere of the Siberian craton.  相似文献   

3.
Two diamond bearing xenoliths found at Finsch Mine are coarse garnet lherzolites, texturally and chemically similar to the dominant mantle xenoliths in that kimberlite. A total of 46 diamonds weighing 0.053 carats have been recovered from one and 53 diamonds weighing 0.332 carats from the other. The diamonds are less corroded than diamonds recovered from the kimberlite. Geothermobarometric calculations indicate that the xenoliths equilibrated at 1,130° C and pressures 50 kb which is within the diamond stability field; this corresponds to depths of 160 km and would place the rocks on a shield geotherm at slightly greater depths than most coarse garnet lherzolites from kimberlite. The primary minerals in the two rocks are very similar to each other but distinctly different to the majority of mineral inclusions in Finsch diamonds. This suggests a different origin for the diamonds in the kimberlite and the diamonds in the xenoliths although the equilibration conditions for both suites are approximately coincident and close to the wet peridotite solidus.  相似文献   

4.
A comparison of the diamond productions from Panda (Ekati Mine) and Snap Lake with those from southern Africa shows significant differences: diamonds from the Slave typically are un-resorbed octahedrals or macles, often with opaque coats, and yellow colours are very rare. Diamonds from the Kaapvaal are dominated by resorbed, dodecahedral shapes, coats are absent and yellow colours are common. The first two features suggest exposure to oxidizing fluids/melts during mantle storage and/or transport to the Earth's surface, for the Kaapvaal diamond population.

Comparing peridotitic inclusions in diamonds from the central and southern Slave (Panda, DO27 and Snap Lake kimberlites) and the Kaapvaal indicates that the diamondiferous mantle lithosphere beneath the Slave is chemically less depleted. Most notable are the almost complete absence of garnet inclusions derived from low-Ca harzburgites and a generally lower Mg-number of Slave inclusions.

Geothermobarometric calculations suggest that Slave diamonds originally formed at very similar thermal conditions as observed beneath the Kaapvaal (geothermal gradients corresponding to 40–42 mW/m2 surface heat flow), but the diamond source regions subsequently cooled by about 100–150 °C to fall on a 37–38 mW/m2 (surface heat flow) conductive geotherm, as is evidenced from touching (re-equilibrated) inclusions in diamonds, and from xenocrysts and xenoliths. In the Kaapvaal, a similar thermal evolution has previously been recognized for diamonds from the De Beers Pool kimberlites. In part very low aggregation levels of nitrogen impurities in Slave diamonds imply that cooling occurred soon after diamond formation. This may relate elevated temperatures during diamond formation to short-lived magmatic perturbations.

Generally high Cr-contents of pyrope garnets (inside and outside of diamonds) indicate that the mantle lithosphere beneath the Slave originally formed as a residue of melt extraction at relatively low pressures (within the stability field of spinelperidotites), possibly during the extraction of oceanic crust. After emplacement of this depleted, oceanic mantle lithosphere into the Slave lithosphere during a subduction event, secondary metasomatic enrichment occurred leading to strong re-enrichment of the deeper (>140 km) lithosphere. Because of the extent of this event and the occurrence of lower mantle diamonds, this may be related to an upwelling plume, but it may equally just reflect a long term evolution with lower mantle diamonds being transported upwards in the course of “normal” mantle convection.  相似文献   


5.
Low-Ca garnet harzburgite xenoliths contain garnets that are deficient in Ca relative to those that have equilibrated with diopside in the iherzolite assemblage. Minor proportions of these harzburgites are of wide-spread occurrence in xenolith suites from the Kaapvaal craton and are of particular interest because of their relation to diamond host rocks. The harzburgite xenoliths are predominantly coarse but one specimen from Jagersfontein and another from Premier have deformed textures similar to those of high-temperature peridotites. Analyses for many elements in the harzburgites and associated iherzolites form concordant overlapping trends. On the average, however, the harzburgites are deficient in Si, Ca, Al and Fe but enriched in Mg and Ni relative to the lherzolites. Both the harzburgites and lherzolites are enstatite-rich with mg numbers [100.Mg/(Mg+Fetotal)] greater than 92 and in these respects differ markedly from residues generated by extraction of MORB. Equilibration temperatures and depths calculated for the harzburgites have the ranges 600–1,400°C and 50–200 km. Those of deepest origin overlap the interval between low-and high-temperature lherzolites that commonly is observed in temperature-depth plots for the Kaapvaal craton, suggesting that some harzburgites may be concentrated relative to lherzolites at the base of the lithosphere. The low-Ca harzburgites and lherzolite xenoliths have overlapping depths of origin, gradational bulk chemical characteristics and similar textures, and therefore both are believed to have formed as residues of Archaen melting events. The harzburgites differ from the lherzolites only in that they are more depleted. Garnets and associated minerals in harzburgite xenoliths differ from minerals of the same assemblage that are included in diamonds in that the latter are more Cr-rich, Mg-rich and Ca-poor. Coarse crystals of low-Ca garnet with the compositional characteristics of diamond inclusions commonly occur as disaggregated grains in diamondiferous kimberlites. Their host rocks are presumed to have been harzburgites and dunites. The differences in composition between the disaggregated grains that are similar to diamond inclusions and those comprising xenoliths imply some differences in origin. Possibly the disaggregated harzburgites with diamond-inclusion mineralogy have undergone repeated partial melting and depletion near the base of the lithosphere subsequent to their primary depletion and aggregation in the craton. Equilibration with magnesite may have reduced the Ca contents of their garnets and decomposition of the magnesite during eruption may have caused their disaggregation.  相似文献   

6.
We have performed dissections of two diamondiferous eclogites (UX-1 and U33/1) from the Udachnaya kimberlite, Yakutia in order to understand the nature of diamond formation and the relationship between the diamonds, their mineral inclusions, and host eclogite minerals. Diamonds were carefully recovered from each xenolith, based upon high-resolution X-ray tomography images and three-dimensional models. The nature and physical properties of minerals, in direct contact with diamonds, were investigated at the time of diamond extraction. Polished sections of the eclogites were made, containing the mould areas of the diamonds, to further investigate the chemical compositions of the host minerals and the phases that were in contact with diamonds. Major- and minor-element compositions of silicate and sulfide mineral inclusions in diamonds show variations among each other, and from those in the host eclogites. Oxygen isotope compositions of one garnet and five clinopyroxene inclusions in diamonds from another Udachnaya eclogite (U51) span the entire range recorded for eclogite xenoliths from Udachnaya. In addition, the reported compositions of almost all clinopyroxene inclusions in U51 diamonds exhibit positive Eu anomaly. This feature, together with the oxygen isotopic characteristics, is consistent with the well-established hypothesis of subduction origin for Udachnaya eclogite xenoliths. It is intuitive to expect that all eclogite xenoliths in a particular kimberlite should have common heritage, at least with respect to their included diamonds. However, the variation in the composition of multiple inclusions within diamonds, and among diamonds, from the same eclogite indicates the involvement of complex processes in diamond genesis, at least in the eclogite xenoliths from Yakutia that we have studied.  相似文献   

7.
D. Phillips  J.W. Harris  K.S. Viljoen 《Lithos》2004,77(1-4):155-179
Silicate and oxide mineral inclusions in diamonds from the geologically and historically important De Beers Pool kimberlites in Kimberley, South Africa, are characterised by harzburgitic compositions (>90%), with lesser abundances from eclogitic and websteritic parageneses. The De Beers Pool diamonds contain unusually high numbers of inclusion intergrowths, with garnet+orthopyroxene±chromite±olivine and chromite+olivine assemblages dominant. More unusual intergrowths include garnet+olivine+magnesite and an eclogitic assemblage comprising garnet+clinopyroxene+rutile. The mineral chemistry of the De Beers Pool inclusions overlaps that of most worldwide localities. Peridotitic garnet inclusions exhibit variable CaO (<5.8 wt.%) and Cr2O3 contents (3.0–15.0 wt.%), although the majority are harzburgitic with very low calcium concentrations (<2 wt.% CaO). Eclogitic garnet inclusions are characterised by a wide range in CaO (3.3–21.1 wt.%) with low Cr2O3 (<1 wt.%). Websteritic garnets exhibit intermediate compositions. Most chromite inclusions contain 63–67 wt.% Cr2O3 and <0.5 wt.% TiO2. Olivine and orthopyroxene inclusions are magnesium-rich with Mg-numbers of 93–97. Olivine inclusions in chromite exhibit the highest Mg-numbers and also contain elevated Cr2O3 contents up to 1.0 wt.%. Peridotitic clinopyroxene inclusions are Cr-diopsides with up to 0.8 wt.% K2O. Eclogitic and websteritic clinopyroxene inclusions exhibit overlapping compositions with a wide range in Mg-numbers (66–86).

Calculated temperatures for non-touching inclusion pairs from individual diamonds range from 1082 to 1320 °C (average=1197 °C), whereas pressures vary from 4.6 to 7.7 GPa (average=6.3 GPa). Touching inclusion assemblages are characterised by equilibration temperatures of 995 to 1182 °C (average=1079 °C) and pressures of 4.2–6.8 GPa (average=5.4 GPa). Provided that the non-touching inclusions represent equilibrium assemblages, it is suggested that these inclusions record the conditions at the time of diamond crystallisation (1200 °C; 3.0 Ga). The lower average temperatures for touching inclusions are attributed to re-equilibration in a cooling mantle (1050 °C) prior to kimberlite eruption at 85 Ma. Pressure estimates for touching garnet–orthopyroxene inclusions are also skewed towards lower values than most non-touching inclusions. This apparent difference may be an artefact of the Al-exchange geobarometer and/or the result of sampling bias, due to limited numbers of non-touching garnet–orthopyroxene inclusions. Alternatively pressure differences could be caused by differential uplift in the mantle or possibly variations in thermal compressibility between diamond and silicate inclusions. However, thermodynamic modelling suggests that thermal compressibility differences would cause only minor changes in internal inclusion pressures (<0.2 GPa/100 °C).  相似文献   


8.
Two xenoliths of garnet harzburgite from the Finsch kimberlite, South Africa, have been found to contain diamond. One of the xenoliths has mineral compositions typical of low-T coarse textured garned peridotites, whereas minerals in the other are similar but not identical to most peridotite-suite minerals included in diamonds, especially in the low-CaO content of garnet. Geothermobarometric calculations show both xenoliths equilibrated at temperatures above 1,100°C and pressures>55 kbar, which is near the low-pressure end of the range of equilibration conditions for diamond-free garnet lherzolites and garnet harzburgites from Finsch. The chemistries of the minerals in the two rocks are distinctly different to most of the mineral inclusions in Finsch diamonds. This, as well as the different 13C compositions between xenolith diamonds (-2.8 to-4.6) and diamonds in the kimberlite (generally<-4.3) suggest different origins or sources for the diamonds.  相似文献   

9.
The diamonds from the Swartruggens dyke swarm are mainly tetrahexahedra, with subsidiary octahedral and cuboid crystals. They are predominantly colourless, with subordinate yellows, browns, and greens. The existence of discrete cores and oscillatory growth structures within the diamonds, together with the recognition of harzburgite, lherzolite, at least two eclogitic and a websteritic diamond paragenesis, variable nitrogen contents, and both Type IaAB and Type Ib–IaA diamonds provides evidence for episodic diamond growth in at least six different environments. The predominance of plastic deformation in the diamonds, the state of nitrogen aggregation, and the suite of inclusion minerals recovered are all consistent with a xenocrystic origin for the diamonds, with the Type Ib–IaA diamonds being much younger than the rest. Mantle storage at a time-averaged temperature of ±1100 °C is inferred for the Type IaAB diamonds. The distribution of mantle xenocrysts of garnet and chromite within the high-grade Main kimberlite dyke compared to the low-grade Changehouse kimberlite dyke strongly suggests that the difference in diamond content is due to an increased eclogitic component of diamonds in the Main kimberlite dyke.  相似文献   

10.
Trace element concentrations of peridotitic garnet inclusions in diamonds from two Chinese kimberlite pipes were determined using the ion microprobe. Garnet xenocrysts from the same two kimberlite pipes were also analyzed for comparison. In contrast to their extremely refractory major element compositions, all harzburgitic garnets showed enrichment in light rare earth elements (REE) relative to chondrite, resulting in sinuous REE patterns. Both normal and sinuous REE patterns were observed from the lherzolitic garnets. Concentrations of REE in garnets changed significantly from diamond to diamond and no specific correlations were observed with their major element compositions. Analyses of randomly selected two to three points within every grain of a large number of garnet inclusions by the ion microprobe demonstrated that there was no evident compositional heterogeneity, and multiple grains of one phase from a single diamond host also exhibit very similar compositions. This implies that the trace element heterogeneity within one grain or among multiple inclusions from the same diamond host, as reported from Siberian diamonds, is not a common feature for these Chinese diamonds. Concentrations of Na, Ti, and Zr tend to decrease when garnets become more refractory, but variations of Sr and Li are more complex. Compositions rich in light REE and relatively poor in high field strength elements (HFSE) of the harzburgitic garnet inclusions in diamonds are generally consistent with metasomatism by carbonatite melts. The trace element features observed from the garnet inclusions in Chinese diamonds may be caused by carbonatite melt infiltration and partial melt extraction. Spatial and temporal gradients in melt/rock ratio and temperature are the main reasons for the large variations of REE patterns and other trace element concentrations. Received: 27 April 1999 / Accepted: 1 March 2000  相似文献   

11.
The kimberlites of the Kharamai field intruded through the Siberian Traps shortly after their eruption in Permo-Triassic time. The composition and thermal state of the subcontinental lithospheric mantle (SCLM) beneath the Kharamai field in lower Triassic time have been reconstructed using major- and trace-element analyses of 345 Cr-pyrope garnet xenocrysts from six of the kimberlites, supplemented by a small suite of mantle-derived peridotite xenoliths. The data define a geotherm lying near a 38 mW/m2 conductive model to a depth of ca 170 km, where the base of the depleted lithosphere is defined by a marked increase in melt-related metasomatism and by an inflected geotherm. Compared to the SCLM sampled by Devonian (pre-Trap) kimberlites in the same and adjacent terranes, the Kharamai SCLM in Triassic time was warmer and was cooling from a previous thermal high. It was also thinner than the SCLM beneath the Daldyn and Alakit kimberlite fields, and had been strongly metasomatised. The metasomatism lowered the mean Fo content of olivine (from ≥Fo93 to Fo92), greatly reduced the proportion of subcalcic harzburgites, and increased the proportion of fertile lherzolites, especially in the depth range of 80–130 km. The overall pattern of metasomatism is similar to that observed in the SCLM sampled by the Group I kimberlites of the SW Kaapvaal Craton, and inferred to be related to the Karoo thermal event. These observations suggest that events such as the eruption of the Karoo basalts and Siberian Traps change the composition of the SCLM, but do not necessarily destroy it, at distances of several hundred kilometres from the main eruption centres.  相似文献   

12.
The composition, structure and thermal state of the lithosphere beneath the Slave craton have been studied by analysing over 300 peridotitic mantle xenoliths or multiphase xenocrysts entrained within kimberlites in the Lac de Gras area. These xenoliths are derived from seven kimberlites located on the Ekati Diamond Mine™ property and define a detailed stratigraphic profile through the central Slave lithosphere from less than 120 km down to 200 km. Two dominant peridotite types are present, namely garnet-bearing harzburgite and lherzolite with rare occurrences of chromite-facies peridotite, websterite and wehrlite. The pressures and temperatures (PT's) defined by the entire data-set range from 28 to 62 kbar and 650 to 1250 °C, respectively, and approximately intersect the diamond stability field at 900 °C and 42 kbar. There is no apparent change in the geotherm with depth that is discernable beyond the resolution of the various thermobarometers. The peridotites can be divided into two compositional zones—a shallow layer dominated by garnet harzburgite that straddles the diamond–graphite boundary and a deeper layer that is strongly dominated by garnet lherzolite. Compositionally, the harzburgites (and to a lesser extent, the shallow lherzolites) are ultra-depleted relative to the more fertile deeper layer, irrespective of whether they reside within the graphite or diamond stability field. This ultra-depleted layer beneath Ekati continues to 150 km.  相似文献   

13.
Integrated models of diamond formation and craton evolution   总被引:4,自引:0,他引:4  
Two decades of diamond research in southern Africa allow the age, average N content and carbon composition of diamonds, and the dominant paragenesis of their syngenetic silicate and sulfide inclusions to be integrated on a cratonwide scale with a model of craton formation. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the mid-Proterozoic and display little correspondence with the prominent variations in the P-wave velocity (±1%) that the mantle lithosphere shows at depths within the diamond stability field (150–225 km). Silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane show a regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity relative to the craton average correlates with a greater proportion of eclogitic vs. peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds. The oldest formation ages of diamonds support a model whereby mantle that became part of the continental keel of cratonic nuclei first was created by middle Archean (3.2–3.3 Ga or older) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of eclogitic sulfide inclusions in the 2.9 Ga age population links late Archean (2.9 Ga) subduction–accretion events to craton stabilization. These events resulted in a widely distributed, late Archean generation of eclogitic diamonds in an amalgamated craton. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite. Similar age/paragenesis systematics are seen for the more limited data sets from the Slave and Siberian cratons.  相似文献   

14.
The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ilmenite and clinopyroxene megacrysts.Deformed peridotites contain high-temperature Fe-rich clinopyroxenes,sometimes associated with picroilmenites,which are products of interaction of the lithospheric mantle with protokimberlite related melts.The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe.Coarse granular xenoliths fall on a geotherm of 35 mWm-2 whereas deformed varieties yield a 45 mWm-2)geotherm in the 2-7.5 GPa pressure interval.The chemistry of the constituent minerals including garnet,olivine and clinopyroxene shows trends of increasing Fe~#(=Fe/(Fe+Mg))with decreasing pressure.This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels.Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals,determined by LA-ICP-MS.Orthopyroxenes,some clinopyroxenes and rare garnets are depleted in Ba,Sr,HFSE and MREE and represent relic lithospheric mantle.Re-fertilized garnet and clinopyroxene are more enriched.The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene.Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets.Olivines show decreases in Ni and increases in Al,Ca and Ti from Mg-rich varieties to the more Fe-rich,deformed and refertilized ones.Minerals showing higher Fe~#(0.11-0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels.In P-f(O_2) diagrams,garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at-5 log units below a FMQ buffer.However,Cr-poor clinopyroxenes,together with ilmenite and some Fe-Ca-rich garnets,demonstrate a more oxidized trend in the lower part of lithosphere at-2 to 0 log units relative to FMQ.Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite.The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts,which is greater at the base of the lithosphere.  相似文献   

15.
The diamond population from the Jagersfontein kimberlite is characterized by a high abundance of eclogitic, besides peridotitic and a small group of websteritic diamonds. The majority of inclusions indicate that the diamonds are formed in the subcratonic lithospheric mantle. Inclusions of the eclogitic paragenesis, which generally have a wide compositional range, include two groups of eclogitic garnets (high and low Ca) which are also distinct in their rare earth element composition. Within the eclogitic and websteritic suite, diamonds with inclusions of majoritic garnets were found, which provide evidence for their formation within the asthenosphere and transition zone. Unlike the lithospheric garnets all majoritic garnet inclusions show negative Eu-anomalies. A narrow range of isotopically light carbon compositions (δ13C −17 to −24 ‰) of the host diamonds suggests that diamond formation in the sublithospheric mantle is principally different to that in the lithosphere. Direct conversion from graphite in a subducting slab appears to be the main mechanism responsible for diamond formation in this part of the Earth’s mantle beneath the Kaapvaal Craton. The peridotitic inclusion suite at Jagersfontein is similar to other diamond deposits on the Kaapvaal Craton and characterized by harzburgitic to low-Ca harzburgitic compositions.  相似文献   

16.
Mantle xenoliths and xenocrysts were retrieved from three of the 88–86 Ma Buffalo Hills kimberlites (K6, K11, K14) for a reconnaissance study of the subcontinental lithospheric mantle (SCLM) beneath the Buffalo Head Terrane (Alberta, Canada). The xenoliths include spinel lherzolites, one garnet spinel lherzolite, garnet harzburgites, one sheared garnet lherzolite and pyroxenites. Pyroxenitic and wehrlitic garnet xenocrysts are derived primarily from the shallow mantle and lherzolitic garnet xenocrysts from the deep mantle. Harzburgite with Ca-saturated garnets is concentrated in a layer between 135–165 km depth. Garnet xenocrysts define a model conductive paleogeotherm corresponding to a heat flow of 38–39 mW/m2. The sheared garnet lherzolite lies on an inflection of this geotherm and may constrain the depth of the lithosphere–asthenosphere boundary (LAB) beneath this region to ca 180 km depth.

A loss of >20% partial melt is recorded by spinel lherzolites and up to 60% by the garnet harzburgites, which may be related to lithosphere formation. The mantle was subsequently modified during at least two metasomatic events. An older metasomatic event is evident in incompatible-element enrichments in homogeneous equilibrated garnet and clinopyroxene. Silicate melt metasomatism predominated in the deep lithosphere and led to enrichments in the HFSE with minor enrichments in LREE. Metasomatism by small-volume volatile-rich melts, such as carbonatite, appears to have been more important in the shallow lithosphere and led to enrichments in LREE with minor enrichments in HFSE. An intermediate metasomatic style, possibly a signature of volatile-rich silicate melts, is also recognised. These metasomatic styles may be related through modification of a single melt during progressive interaction with the mantle. This metasomatism is suggested to have occurred during Paleoproterozoic rifting of the Buffalo Head Terrane from the neighbouring Rae Province and may be responsible for the evolution of some samples toward unradiogenic Nd and Hf isotopic compositions.

Disturbed Re–Os isotope systematics, evident in implausible model ages, were obtained in situ for sulfides in several spinel lherzolites and suggest that many sulfides are secondary (metasomatic) or mixtures of primary and secondary sulfides. Sulfide in one peridotite has unradiogenic 187Os/188Os and gives a model age of 1.89±0.38 Ga. This age coincides with the inferred emplacement of mafic sheets in the crust and suggests that the melts parental to the intrusions interacted with the lithospheric mantle.

A younger metasomatic event is indicated by the occurrence of sulfide-rich melt patches, unequilibrated mineral compositions and overgrowths on spinel that are Ti-, Cr- and Fe-rich but Zn-poor. Subsequent cooling is recorded by fine exsolution lamellae in the pyroxenes and by arrested mineral reactions.

If the lithosphere beneath the Buffalo Head Terrane was formed in the Archaean, any unambiguous signatures of this ancient origin may have been obliterated during these multiple events.  相似文献   


17.
Several thousand clinopyroxene, garnet, and phlogopite inclusions of mantle rocks from Jurassic and Triassic kimberlites in the northeastern Siberian craton have been analyzed and compared with their counterparts from Paleozoic kimberlites, including those rich in diamond. The new and published mineral chemistry data make a basis for an updated classification of kimberlite-hosted clinopyroxenes according to peridotitic and mafic (eclogite and pyroxenite) parageneses. The obtained results place constraints on the stability field of high-Na lherzolitic clinopyroxenes, which affect the coexisting garnet and decrease its Ca contents. As follows from analyses of the mantle minerals from Mesozoic kimberlites, the cratonic lithosphere contained more pyroxenite and eclogite in the Mesozoic than in the Paleozoic. It virtually lacked ultradepleted harzburgite-dunite lithologies and contained scarce eclogitic diamonds. On the other hand, both inclusions in diamond and individual eclogitic minerals from Mesozoic kimberlites differ from eclogitic inclusions in diamond from Triassic sediments in the northeastern Siberian craton. Xenocrystic phlogopites from the D’yanga pipe have 40Ar/39Ar ages of 384.6, 432.4, and 563.4 Ma, which record several stages of metasomatic impact on the lithosphere. These phlogopites are younger than most of Paleozoic phlogopites from the central part of the craton (Udachnaya kimberlite). Therefore, hydrous mantle metasomatism acted much later on the craton periphery than in the center. Monomineral clinopyroxene thermobarometry shows that Jurassic kimberlites from the northeastern craton part trapped lithospheric material from different maximum depths (170 km in the D’yanga pipe and mostly < 130 km in other pipes). The inferred thermal thickness of cratonic lithosphere decreased progressively from ~ 260 km in the Devonian-Carboniferous to ~ 225 km in the Triassic and to ~ 200 km in the Jurassic, while the heat flux (Hasterok-Chapman model) was 34.9, 36.7, and 39.0 mW/m2, respectively. Dissimilar PT patterns of samples from closely spaced coeval kimberlites suggest different emplacement scenarios, which influenced both the PT variations across the lithosphere and the diamond potential of kimberlites.  相似文献   

18.
We report new textural and chemical data for 10 garnet peridotite xenoliths from the Udachnaya kimberlite and examine them together with recent data on another 21 xenoliths from the 80–220 km depth range. The samples are very fresh (LOI near zero), modally homogeneous and large (>100 g). Some coarse-grained peridotites show incipient stages of deformation with <10 % neoblasts at grain boundaries of coarse olivine. Such microstructures can only be recognized in very fresh rocks, because fine-grained interstitial olivine is strongly affected by alteration, and may have been overlooked in previous studies of altered peridotite xenoliths in the Siberian and other cratons. Some of the garnet peridotites are similar in composition to low-opx Udachnaya spinel harzburgites (previously interpreted as pristine melt extraction residues), but the majority show post-melting enrichments in Fe and Ti. The least metasomatized coarse peridotites were formed by 30–38 % of polybaric fractional melting between 7 and 4 GPa and ≤1–3 GPa. Our data together with experimental results suggest that garnet in these rocks, as well as in some other cratonic peridotites elsewhere, may be a residual mineral, which has survived partial melting together with olivine and opx. Many coarse and all deformed garnet peridotites from Udachnaya underwent modal metasomatism through interaction of the melting residues with Fe-, Al-, Si-, Ti-, REE-rich melts, which precipitated cpx, less commonly additional garnet. The xenoliths define a complex geotherm probably affected by thermal perturbations shortly before the intrusion of the host kimberlite magmas. The deformation in the lower lithosphere may be linked to metasomatism.  相似文献   

19.
R. Burgess  G.B. Kiviets  J.W. Harris 《Lithos》2004,77(1-4):113-124
Ar–Ar age measurements are reported for selected eclogitic clinopyroxene and garnet inclusions in Orapa diamonds and clinopyroxene inclusions in Venetia diamonds. Laser drilling of encapsulated clinopyroxene inclusions within Venetia diamonds released a maximum of 3% of the total 40Ar, indicating little diffusive transfer and storage of radiogenic 40Ar at the diamond–inclusion boundary. Apparent ages obtained during stepped heating of three diamonds are consistent with diamond crystallisation occurring just prior to the kimberlite eruption 520 Ma ago. Stepped heating of three clinopyroxene-bearing Orapa diamonds gave ages of 906–1032 Ma, significantly above the eruption age, but consistent with previously determined isotopic ages. A few higher apparent ages hint at the presence an older generation of Orapa diamonds that formed >2500 Ma ago. Orapa garnets also contain measurable K contents, and record a range of ages between 1000 and 2500 Ma. The old apparent ages and lack of significant interface 40Ar released by the laser probe, suggests that pre-eruption radiogenic 40Ar and mantle-derived 40Ar components are trapped in microinclusions within the pyroxene and garnet inclusions.  相似文献   

20.
Peridotitic clinopyroxene (cpx) and pyrope garnet xenocrysts from four kimberlite pipes in the Kaavi–Kuopio area of Eastern Finland have been studied using major and trace element geochemistry to obtain information on the vertical compositional variability of the underlying mantle. The xenocryst data, when combined with the petrological constraints provided by peridotite xenoliths, yield a relatively complete section through the lithospheric mantle. Single-grain cpx thermobarometry fits with a 36-mW/m2 geotherm calculated using heat flow constraints and xenolith modes and geophysical properties. Ni thermometry on pyrope xenocrysts gives 700–1350 °C and, based on the cpx xenocryst/xenolith geotherm, indicates a wide sampling interval, ca. 80–230 km. Plotting pyrope major and trace element compositions as a function of temperature shows there are three distinct layers in the local lithospheric mantle:
(1) A low-temperature (<850 °C) harzburgite layer distinguished by Ca-rich but Ti-, Y- and Zr-depleted pyropes. The xenoliths originating from this layer are all fine-grained garnet-spinel harzburgites with secondary cpx.
(2) A variably depleted lherzolitic, harzburgitic and wehrlitic horizon from 950 to 1150 °C or 130 to 180 km.
(3) A deep layer from 180 to 240 km composed largely of fertile material.
The peridotitic diamond window at Kaavi–Kuopio stretches from the top of the diamond stability field at 140 km to the base of the harzburgite-bearing mantle at about 180 km, implying a roughly 40-km-wide prospective zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号