首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gold-bearing quartz veins of the Taihua Group consisting of Archean metavolcanic rocks are a main gold deposit type in the Xiao Qinling area,one of the three biggest gold production areas in China.The quartz veins experienced strong alteration characterized by a typical mesothermal hydrothermal altered mineral assemblage.The grade of gold is affected by the contents of sulphides,e.g.galena,pyrite and chalcopyrite.Results of minor elements analysis for the of gold-bearing quartz veins indicate higher contents of Au and high contents of Ag,Pb,Cu,Cd,W,and Mo.Abundant fluid inclusions were found in the gold-bearing quartz veins.Three types of fluid inclusions were identified:(1) aqueous inclusions;(2) CO 2-bearing inclusions;and(3) daughter crystal-bearing fluid inclusions.Homogenization temperatures ranged from 110 to 670℃ with low and high peaks appearing at 160 180℃ and 280 300℃,respectively.The salinity of aqueous inclusions varies between 1.8 wt% and 38.2 wt% NaCl.The homogenization temperature and salinity show a positive correlation.The H and O isotopes of fluid inclusions in the gold-bearing quartz veins indicate that magmatic solution and metamorphic hydrothermal solution,together with meteoric water,were involved in the formation of gold-bearing fluid.Mesozoic magma activities related to granite intrusions should be the main source of CO 2 fluid with higher temperature and salinity.  相似文献   

2.
《Ore Geology Reviews》2009,35(4):580-596
The Semna gold deposit is one of several vein-type gold occurrences in the central Eastern Desert of Egypt, where gold-bearing quartz veins are confined to shear zones close to the boundaries of small granitoid stocks. The Semna gold deposit is related to a series of sub-parallel quartz veins along steeply dipping WNW-trending shear zones, which cut through tectonized metagabbro and granodiorite rocks. The orebodies exhibit a complex structure of massive and brecciated quartz consistent with a change of the paleostress field from tensional to simple shear regimes along the pre-existing fault segments. Textural, structural and mineralogical evidence, including open space structures, quartz stockwork and alteration assemblages, constrain on vein development during an active fault system. The ore mineral assemblage includes pyrite, chalcopyrite, subordinate arsenopyrite, galena, sphalerite and gold. Hydrothermal chlorite, carbonate, pyrite, chalcopyrite and kaolinite are dominant in the altered metaggabro; whereas, quartz, sericite, pyrite, kaolinite and alunite characterize the granodiorite rocks in the alteration zones. Mixtures of alunite, vuggy silica and disseminated sulfides occupy the interstitial open spaces, common at fracture intersections. Partial recrystallization has rendered the brecciation and open space textures suggesting that the auriferous quartz veins were formed at moderately shallow depths in the transition zone between mesothermal and epithermal veins.Petrographic and microthermometric studies aided recognition of CO2-rich, H2O-rich and mixed H2O–CO2 fluid inclusions in the gold-bearing quartz veins. The H2O–CO2 inclusions are dominant over the other two types and are characterized by variable vapor: liquid ratios. These inclusions are interpreted as products of partial mixing of two immiscible carbonic and aqueous fluids. The generally light δ34S of pyrite and chalcopyrite may suggest a magmatic source of sulfur. Spread in the final homogenization temperatures and bulk inclusion densities are likely due to trapping under pressure fluctuation through repeated fracture opening and sealing. Conditions of gold deposition are estimated on basis of the fluid inclusions and sulfur isotope data as 226–267 °C and 350–1100 bar, under conditions transitional between mesothermal and epithermal systems.The Semna gold deposit can be attributed to interplay of protracted volcanic activity (Dokhan Volcanics?), fluid mixing, wallrock sulfidation and a structural setting favoring gold deposition. Gold was transported as Au-bisulfide complexes under weak acid conditions concomitant with quartz–sericite–pyrite alteration, and precipitated through a decrease in gold solubility due to fluid cooling, mixing with meteoric waters and variations in pH and fO2.  相似文献   

3.
The Lalla Zahra W-(Cu) prospect of northeastern Morocco is hosted in a Devonian volcaniclastic and metasedimentary sequence composed of graywacke, siltstone, pelite, and shale interlayered with minor tuff and mudstone. Intrusion of the 284?±?7 Ma Alouana concentrically zoned, two micas, calc-alkaline, and post-collisional Alouana granitoid pluton has contact metamorphosed the host rocks, giving rise to a metamorphic assemblage of quartz, plagioclase, biotite, muscovite, chlorite, and alusite, and cordierite. The mineralization occurs in and along subvertical, 20 to 40 cm thick, and structurally controlled tensional veins composed of quartz accompanied by molybdenite, wolframite, scheelite, base metal sulphides, carbonates, barite, and fluorite. Three main stages of mineralization (I, II, and III), each characterized by a specific mineral assemblage and/or texture, are recognized. Quartz dominates in all the veins and commonly displays multiple stages of vein filling and brecciation, and a variety of textures. The early tungsten-bearing stage consists of quartz-1, tourmaline, muscovite, wolframite, scheelite, and molybdenite. With advancing paragenetic sequence, the mineralogy of the veins shifted from stage I tungsten-bearing mineralization through stage II, dominated by base metal sulphides, to stage III with late barren carbonates and barite?±?fluorite mineral assemblages. Pervasive hydrothermal alteration affected, to varying degrees, the Alouana intrusion, resulting in microclinization, albitization, episyenitization, and greisenization of all the granitic units. Fluid inclusion data yield homogenization temperatures ranging from 124°C to 447°C for calculated salinity estimates in the range of 0.4 to ~60 wt% NaCl equiv. Similarly, the δ18O values for the three generations of quartz range from 11.7‰ to 13.9‰ V-SMOW. Calculated δ18O values of the parent fluid in the range between ?3‰ and +9‰ V-SMOW are consistent either with a mixture of water of different origins, including magmatic water, or an origin from seawater or meteoric water that probably exchanged oxygen with rocks at elevated temperatures. The coexistence of CO2-rich and H2O-rich fluid inclusions reflect the presence of a boiling fluid associated with the deposition of the early tungsten-bearing stage mineralization at relatively high temperature. The general temperature and salinity decrease with advancing paragenetic sequence suggest that the early high temperature, magmatic, highly saline, and boiling fluid mixed with meteoric non-boiling fluid results in the precipitation of base metal sulphide and carbonate–barite stage mineral assemblages, respectively.  相似文献   

4.
The Semna gold deposit is one of several vein-type gold occurrences in the central Eastern Desert of Egypt, where gold-bearing quartz veins are confined to shear zones close to the boundaries of small granitoid stocks. The Semna gold deposit is related to a series of sub-parallel quartz veins along steeply dipping WNW-trending shear zones, which cut through tectonized metagabbro and granodiorite rocks. The orebodies exhibit a complex structure of massive and brecciated quartz consistent with a change of the paleostress field from tensional to simple shear regimes along the pre-existing fault segments. Textural, structural and mineralogical evidence, including open space structures, quartz stockwork and alteration assemblages, constrain on vein development during an active fault system. The ore mineral assemblage includes pyrite, chalcopyrite, subordinate arsenopyrite, galena, sphalerite and gold. Hydrothermal chlorite, carbonate, pyrite, chalcopyrite and kaolinite are dominant in the altered metaggabro; whereas, quartz, sericite, pyrite, kaolinite and alunite characterize the granodiorite rocks in the alteration zones. Mixtures of alunite, vuggy silica and disseminated sulfides occupy the interstitial open spaces, common at fracture intersections. Partial recrystallization has rendered the brecciation and open space textures suggesting that the auriferous quartz veins were formed at moderately shallow depths in the transition zone between mesothermal and epithermal veins.Petrographic and microthermometric studies aided recognition of CO2-rich, H2O-rich and mixed H2O–CO2 fluid inclusions in the gold-bearing quartz veins. The H2O–CO2 inclusions are dominant over the other two types and are characterized by variable vapor: liquid ratios. These inclusions are interpreted as products of partial mixing of two immiscible carbonic and aqueous fluids. The generally light δ34S of pyrite and chalcopyrite may suggest a magmatic source of sulfur. Spread in the final homogenization temperatures and bulk inclusion densities are likely due to trapping under pressure fluctuation through repeated fracture opening and sealing. Conditions of gold deposition are estimated on basis of the fluid inclusions and sulfur isotope data as 226–267 °C and 350–1100 bar, under conditions transitional between mesothermal and epithermal systems.The Semna gold deposit can be attributed to interplay of protracted volcanic activity (Dokhan Volcanics?), fluid mixing, wallrock sulfidation and a structural setting favoring gold deposition. Gold was transported as Au-bisulfide complexes under weak acid conditions concomitant with quartz–sericite–pyrite alteration, and precipitated through a decrease in gold solubility due to fluid cooling, mixing with meteoric waters and variations in pH and fO2.  相似文献   

5.
Porphyry Cu-Mo-Au mineralisation with associated potassic and phyllic alteration, an advanced argillic alteration cap and epithermal quartz-sulphide-gold-anhydrite veins, are telescoped within a vertical interval of 400-800 m on the northeastern margin of the Thames district, New Zealand. The geological setting is Jurassic greywacke basement overlain by Late Miocene andesitic-dacitic rocks that are extensively altered to propylitic and argillic assemblages. The porphyry Cu-Mo-Au mineralisation is hosted in a dacite porphyry stock and surrounding intrusion breccia. Relicts of a core zone of potassic K-feldspar-magnetite-biotite alteration are overprinted by phyllic quartz-sericite-pyrite or intermediate argillic chlorite-sericite alteration assemblages. Some copper occurs in quartz-magnetite-chlorite-pyrite-chalcopyrite veinlets in the core zone, but the bulk of the copper and the molybdenum are associated with the phyllic alteration as disseminated chalcopyrite and as molybdenite-sericite-carbonate veinlets. The advanced argillic cap has a quartz-alunite-dickite core, which is enveloped by an extensive pyrophyllite-diaspore-dickite-kaolinite assemblage that overlaps with the upper part of the phyllic alteration zone. Later quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins occur within and around the margins of the porphyry intrusion, and are associated with widespread illite-carbonate (argillic) alteration. Multiphase fluid inclusions in quartz stockwork veins associated with the potassic alteration trapped a highly saline (50-84 wt% NaCl equiv.) magmatic fluid at high temperatures (450 to >600 °C). These hypersaline brines were probably trapped at a pressure of about 300 bar, corresponding to a depth of 1.2 km under lithostatic conditions. This shallow depth is consistent with textures of the host dacite porphyry and reconstruction of the volcanic stratigraphy. Liquid-rich fluid inclusions in the quartz stockwork veins and quartz phenocrysts trapped a lower salinity (3-20 wt% NaCl equiv.), moderate temperature (300-400 °C) fluid that may have caused the phyllic alteration. Fluid inclusions in the quartz-sphalerite-galena-pyrite-chalcopyrite-gold-anhydrite-carbonate veins trapped dilute (1-3 wt% NaCl equiv.) fluids at 250 to 320 °C, at a minimum depth of 1.0 km under hydrostatic conditions. Oxygen isotopic compositions of the fluids that deposited the quartz stockwork veins fall within the 6 to 10‰ range of magmatic waters, whereas the quartz-sulphide-gold-anhydrite veins have lower '18Owater values (-0.6 to 0.5‰), reflecting a local meteoric water (-6‰) influence. A '18O versus 'D plot shows a trend from magmatic water in the quartz stockwork veins to a near meteoric water composition in kaolinite from the advanced argillic alteration. Data points for pyrophyllite and the quartz-sulphide-gold-anhydrite veins lie about midway between the magmatic and meteoric water end-member compositions. The spatial association between porphyry Cu-Mo-Au mineralisation, advanced argillic alteration and quartz-sulphide-gold-anhydrite veins suggests that they are all genetically part of the same hydrothermal system. This is consistent with K-Ar dates of 11.6-10.7 Ma for the intrusive porphyry, for alunite in the advanced argillic alteration, and for sericite selvages from quartz-gold veins in the Thames district.  相似文献   

6.
The Tirek gold deposit hosted in the Archean shield is one of the richest sources of mined gold for Algeria. The deposit is controlled by the East Ouzzal shear zone (EOSZ), a transcurrent N–S lithospheric fault. The EOSZ is a late Pan-African dextral-ductile shear zone separating two contrasting Precambrian domains: the Archean In Ouzzal block to the west (Orthogenesis with subordinate metasediments reworked and granulitized during the ca. 2 Ga Eburnean event) and a middle Proterozoic block to the east involved in the ca. 600 Ma Pan-African event. The auriferous quartz veins are mainly oriented in two directions, N–S veins hosted in mylonitic rocks and NE–SW veins hosted in gabbroic or gneissic bands. The NE–SW veins contain the richest ore. Gold ore is found in a system of veins and lenticular quartz veinlets arranged in anastomosing networks. The hydrothermal alteration associated with these veins is characteristically a carbonate-sericite-albite-pyrite assemblage. Gold is the main metal of economic importance; it is disseminated in the quartz as grains or fibers along microcracks and as microscopic grains in the host rocks. Microthermometric results and Raman laser data from fluid inclusions demonstrate that the ore-forming fluids contained H2O-CO2±CH4 and were low salinity. Homogenization temperatures are commonly 250–310 °C. In the Tirek deposit, the role of the shear zone that hosts the mineralization was to drain the hydrothermal fluid. Interactions between the fluid and the mafic host rocks and CO2 also contributed to the formation of the hydrothermal gold deposit at Tirek.  相似文献   

7.
The Huai Kham On gold deposit is located in the central part of the Sukhothai Fold Belt, northern Thailand. The Sukhothai Fold Belt represents an accretionary complex formed by subduction and collision between the Indochina and Sibumasu Terranes. There are many small gold deposits in the Sukhothai Fold Belt; however, the styles and formation environments of those gold deposits are not clear. The geology of the Huai Kham On deposit consists of volcanic and volcanosedimentary rocks, limestone, and low‐grade metamorphic rocks of Carboniferous to Triassic age. Gold‐bearing quartz veins are hosted by volcanic and volcanosedimentary rocks. The quartz veins can be divided into four stages. The mineral assemblage of the gold‐bearing quartz veins of Stages I and II comprises quartz, calcite, illite, pyrite, native gold, galena, chalcopyrite, and sphalerite. Quartz veins of Stage III consist of microcrystalline quartz, dolomite, calcite, pyrite, native gold, and chalcopyrite. Veins of Stage IV consist of calcite, dolomite, chlorite, and quartz. Fluid inclusions in quartz veins are classified into liquid‐rich two‐phase (Types IA and IB), carbonic‐aqueous (Type II), and carbonic (Type III) fluid inclusions. The homogenization temperatures of Types IA and II fluid inclusions that are related to the gold‐bearing quartz veins from Stages I to III ranged from 240° to 280°C. The δ18O values of quartz veins of Stages I to III range from +12.9 to +13.4‰, suggesting the presence of a homogeneous hydrothermal solution without temperature variation such as a decrease of temperature during the formation of gold‐bearing quartz veins from Stages I to III in the Huai Kham On gold deposit. Based on the calculated formation temperature of 280°C, the δ18O values of the hydrothermal solution that formed the gold‐bearing quartz veins range from +3.2 to +3.7‰, which falls into the range of metamorphic waters. The gold‐bearing quartz veins of the Huai Kham On deposit are interpreted to be the products of metamorphic water.  相似文献   

8.
Post-metamorphic quartz veins which occur over hundreds of square kilometres in the biotite zone of the Dalradian metamorphic belt consist of three principal types: anhedral quartz with pyrite, anhedral quartz with hematite, and prismatic quartz with hematite or rutile. The oxide minerals in anhedral veins have formed by oxidation of pre-existing sulphides, and gold was mobilized during this oxidation. Anhedral quartz veins formed from an aqueous fluid with up to 5 wt% dissolved salts and 16 wt% CO2 at about 300 °C. Texturally later prismatic quartz crystals formed from a compositionally similar fluid which was undergoing phase separation at the H2O-CO2 solvus at 160–200 °C and 500 to 1200 bars fluid pressure. Oxygen isotope ratios for quartz from the veins range from 12.0 to 15.3‰, with hematite-bearing veins generally isotopically heavier than pyrite-bearing veins. Calculated fluid oxygen isotope ratios range from + 8‰ for pyrite-bearing veins to -2‰ for late prismatic crystals. The mineralizing fluid contained a substantial component of meteoric water whose isotopic and chemical composition evolved with progressive water-rock interaction. Evolution of meteoric fluid composition involved migration of oxidation and oxygen isotope fronts in the down-flow direction as head-driven water passed through structurally controlled fractures in the schist pile. A gold solubility trough occurs for the observed fluid in the oxidation frontal zone. Gold remobilization and reprecipitation occurred progressively as the oxidation front migrated through the schist pile.  相似文献   

9.
Abstract: The Dongping deposit, located near the center of the northern margin of the north China craton, is one of the largest gold deposits in China. It is spatially, temporally, and genetically associated with the shallowly-emplaced Hercynian Shuiquan-gou alkaline intrusive complex. The complex intrudes high-grade metamorphic rocks of the Archean Sanggan Group along a deep-seated fault zone within the north China craton. Four major ore bodies (Nos. 1, 2, 22, and 70), consisting mainly of a set of en echelon lenses and veins, have been delineated at the Dongping deposit. Hypogene hydrothermal activities can be divided into four periods from early to late including: (1) gold-bearing K–feldspar–quartz stockworks and veins; (2) disseminated sulfide and gold zones; (3) gold-bearing quartz veins, and (4) barren calcite-quartz veins. Individual veins and stockwork systems can be traced along strike for 125 to 600 m and downdip for 100 to 600 m; they range from 0. 5 to 3 m in thickness. The mineralogical composition of the ore in the first three hypogene periods is relatively simple. It is composed of pyrite, galena, sphalerite, magnetite, specularite, chalcopyrite, native gold, electrum, calaverite, and altaite. Gangue minerals include K–feldspar, quartz, sericite, chlorite, epidote, albite, and calcite. Ore grade averages 6 g/t Au, but varies between 4. 14 and 22. 66 g/t Au. Gold is generally fine-grained and not visible in hand specimen. Fluid inclusions in ore-bearing quartz of periods 1, 2, and 3 are CO2–rich, variable salinity (2. 5–21 wt% equiv. NaCl), and have variable homogenization temperatures of 195° to 340°C. Quartz in the gold-bearing K–feldspar–quartz stockworks (period 1), disseminated sulfide and gold zones (period 2), and the gold-bearing quartz veins (period 3) has calculated δ18OH2O values between –1. 7 and 6. 9%, and δ values of fluid inclusion waters between –101 and –66%. All these isotope data of the ore-forming fluids plot between the magmatic fluid field and the meteoric water line. Sulfide minerals disseminated in host rocks show positive δ34S values of 1. 9 to 3. 5%. Pyrite separates from he gold-bearing K–feldspar–quartz stockworks and veins (period 1) have a δ34S range of –4. 3 to 0. 5%, whereas δ34S values of pyrite, chalcopyrite, galena, and sphalerite from the disseminated sul-fide and gold zones (period 2) and the gold-bearing quartz veins (period 3) vary from –5. 3 to –13. 4%. Gold ores are also characterized by relatively radiogenic lead isotope compositions compared to those of the alkaline syenite host rock. The data are interpreted as indicative of a mixing of lead from the alkaline intrusive complex with lead from Archean metamorphic rocks. The combined fluid inclusion measurements, sulfur, oxygen, hydrogen, and lead isotope data, and petrological observations indicate that the Dongping deposit was formed from the mixing of these magmatic fluids with meteoric waters. The deposit is, therefore, believed to be a product of Hercynian alkaline igneous processes within the north China craton.  相似文献   

10.
Based on previous studies and detailed field investigations of the Dexing porphyry copper deposit, the Yinshan Ag-Pb-Zn deposit and the Jinshan shear zone – hosted gold deposit in the Dele Jurassic volcanic basin, in the northeastern Jiangxi province, East China, we propose that the three deposits share spatial, temporal and genetic relationships and belong to the same metallogenic system. Dexing is a typical porphyry Cu–Au–Mo deposit in which both ore-forming fluid and metals are derived from the granite porphyry. The Yinshan deposit consists of a porphyry copper ore located in the cupola of a quartz porphyry stock, in the lower part, and Ag–Pb–Zn ore veins in the upper part. The hydrothermal fluids were mainly derived from the magma in the early stages of the mineralizing event and became mixed with meteoric waters in the late stages. Its ore metals are magma-derived. Both the Jinshan base metal veins and the Hamashi, Dongjie and Naikeng quartz vein-type gold deposit are hosted by brittle–ductile structures, which are distal in relation to the porphyry intrusions and were formed by mixed magmatic fluids and meteoric water, whereas the gold was mainly leached from the country rocks (Mesoproterozoic Shuangqiaoshan Group phyllite and schist). The deposits show a distinct spatial arrangement from porphyry Cu, to epithermal Ag–Pb–Zn and distal Au. We suggest a porphyry–epithermal–distal vein ore system model for this group of genetically related mineral deposits. They were formed in a back-arc setting in a Middle Jurassic active continental margin, with magmas derived from the subducted slab.  相似文献   

11.
The study focuses on analysis of primary and secondary fluid inclusions present in quartz veins hosted in the phyllites to explore the stress and temperature conditions at the time of formation of metasediment sequences of the of Parsoi Formation, central India. The results reveal the two-phase liquid-rich fluid inclusions that indicate that the intrusions of quartz veins in phyllite may have taken place between the temperature from 168.8°C to 256.3°C with an average of 205.55°C from a magmatic moderately saline fluid (3.7 to 18.29 wt. % NaCl equiv.). The final ice-melting temperatures ranges from -14.6°C to -2.2°C which indicate that the aqueous fluids are mainly H2O-NaCl. The density distribution of fluid inclusions rich in liquid H2O only are unimodel and low in natures and appears to be entrapped between pressure 1.666 to 2.125 kbar at depth of 200m. The study supports epithermal nature of fluid inclusions. The characteristic of fluid inclusions along with lithological and structural peculiarities, nature of structural features may be helpful in exploring the future potential zone of gold mineralization in similar types of area.  相似文献   

12.
The Bianbianshan deposit, the unique gold-polymetal (Au-Ag-Cu-Pb-Zn) veined deposit of the polymetal metallogenic belt of the southern segment of Da Hinggan Mountains mineral province, is located at the southern part of the Hercynian fold belt of the south segment of Da Hinggan Mountains mineral province, NE China. Ores at the Bianbianshan deposit occur within Cretaceous andesite and rhyolite in the form of gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite, chalcopyrite, galena and sphalerite. The deposit is hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite - sericite - quartz zone and an outer seicite - chlorite - calcite - epidote zone between orebodies and wall rocks. δ34 S values of 17 sulfides from ores changing from –1.67 to +0.49‰ with average of –0.49‰, are similar to δ34 S values of magmatic or igneous sulfide sulfur. 206Pb/204Pb, 207Pb/204Pb and 208Pb/ 204Pb data of sulfide from ores range within 17.66–17.75, 15.50–15.60, and 37.64–38.00, respectively. These sulfur and lead isotope compositions imply that ore-forming materials might mainly originate from deep sources. H and O isotope study of quartz from ore-bearing veins indicate a mixed source of deep-seated magmatic water and shallower meteoric water. The ore formations resulted from a combination of hydrothermal fluid mixing and a structural setting favoring gold-polymetal deposition. Fluid mixing was possibly the key factor resulting in Au-Ag-Cu-Pb-Zn deposition in the deposit. The metallogenesis of the Bianbianshan deposit may have a relationship with the Cretaceous volcanic-subvolcanic magmatic activity, and formed during the late stage of the crust thinning of North China.  相似文献   

13.
胶东蓬家夼金矿床地质与地球化学特征   总被引:9,自引:0,他引:9  
蓬家夼金矿床是胶东地区新近发现的金矿床之一,矿体赋存在胶莱盆地东北缘层间滑动断层带中、莱阳组砾岩与荆山群地层的构造接触部位,为区内燕山期火山活动前期,在大气水和岩浆水的参与下形成的层间滑动角砾岩型金矿床。同位素研究表明,蓬家夼金矿的硫、碳来源于矿区围岩;部分铅则可能具有地幔成因。包裹体气相成分以H2O、CO2为主;液相成分中富Na+、Cl-,贫K+、F-。成矿流体δ18OH2O为0.59‰~4.03‰,δDH2O为-97.95‰~-89.5‰,反映了成矿流体由大气水和岩浆水混合组成的特点。成矿时代在100Ma。  相似文献   

14.
冀北东坪金矿床深部-外围的构造-蚀变-流体成矿研究   总被引:2,自引:0,他引:2  
冀北东坪金矿田是我国首次在碱性杂岩体内发现的金矿床,曾被认为是与碱性岩有关的金矿床。近年来年代学数据表明,东坪-后沟一带金矿的赋矿碱性杂岩体形成于海西期,而成矿却主要发生在燕山期。金矿床严格受构造裂隙控制,构造-蚀变-流体成矿作用显著,钾长石化是最重要的蚀变。由未蚀变岩石向矿体和断裂带中心方向,典型的构造-蚀变-矿化分带依次为:0-原岩(二长岩、正长岩)带,I-微斜长石化带,II硅化绢云母化微斜长石岩带,III碎裂微斜长石岩带,及IV断层泥。从0带到III带,Au含量增加,Ag、Cu、Pb、Zn、Mo也略有增加。东坪金矿构造-蚀变-矿化阶段可分为4个:Ⅰ钾长石-石英脉阶段;Ⅱ黄铁矿-白色石英阶段;Ⅲ多金属硫化物-烟灰色石英脉阶段;Ⅳ晚期碳酸盐阶段。深部中段各阶段脉石英的流体包裹体研究表明, 在I、II、III阶段均发育富CO2包裹体。第Ⅰ阶段钾长石石英脉L-V型包裹体均一温度(Th)为220.3~359℃,盐度1.1%~3.1% NaCleqv;H2O-CO2型包裹体Th在346.5~383.5℃。第Ⅱ阶段黄铁矿白色石英脉中L-V型包裹体Th范围是217.2~372.5℃,盐度在1.1%~5.7% NaCleqv;H2O-CO2型包裹体Th在241.2~396.7℃,盐度为2.2%~6.2% NaCleqv。第Ⅲ阶段的烟灰色石英脉中L-V型包裹体Th范围为158.2~350.5℃,盐度在0.7%~5.5% NaCleqv;H2O-CO2型包裹体Th范围在215.2~378℃之间,盐度范围在3.0%~6.0% NaCleqv。第Ⅳ阶段晚期石英脉L-V型包裹体Th范围为151.2~249.8℃,盐度在0.9%~8.3% NaCleqv。矿区外围转枝莲矿段的II阶段白色石英脉中包裹体的Th范围为220~416.2℃,III阶段烟灰色石英脉的Th范围为195.3~425℃。富金石英脉形成于中高温(>300℃,可达400℃以上)、中深压力(70~160MPa以上)条件下。其成矿背景、热液蚀变、矿物共生组合及流体性质与典型的造山型金矿有一定的差别,归属于"与侵入岩有关的金矿床"更合理。  相似文献   

15.
The Junction gold deposit, in Western Australia, is an orogenic gold deposit hosted by a differentiated, iron‐rich, tholeiitic dolerite sill. Petrographic, microthermometric and laser Raman microprobe analyses of fluid inclusions from the Junction deposit indicate that three different vein systems formed at three distinct periods of geological time, and host four fluid‐inclusion populations with a wide range of compositions in the H2O–CO2–CH4–NaCl ± CaCl2 system. Pre‐shearing, pre‐gold, molybdenite‐bearing quartz veins host fluid inclusions that are characterised by relatively consistent phase ratios comprising H2O–CO2–CH4 ± halite. Microthermometry suggests that these veins precipitated when a highly saline, >340°C fluid mixed with a less saline ≥150°C fluid. The syn‐gold mineralisation event is hosted within the Junction shear zone and is associated with extensive quartz‐calcite ± albite ± chlorite ± pyrrhotite veining. Fluid‐inclusion analyses indicate that gold deposition occurred during the unmixing of a 400°C, moderately saline, H2O–CO2 ± CH4 fluid at pressures between 70 MPa and 440 MPa. Post‐gold quartz‐calcite‐biotite‐pyrrhotite veins occupy normal fault sets that slightly offset the Junction shear zone. Fluid inclusions in these veins are predominantly vapour rich, with CO2?CH4. Homogenisation temperatures indicate that the post‐gold quartz veins precipitated from a 310 ± 30°C fluid. Finally, late secondary fluid inclusions show that a <200°C, highly saline, H2O–CaCl2–NaCl–bearing fluid percolated along microfractures late in the deposit's history, but did not form any notable vein type. Raman spectroscopy supports the microthermometric data and reveals that CH4–bearing fluid inclusions occur in syn‐gold quartz grains found almost exclusively at the vein margin, whereas CO2–bearing fluid inclusions occur in quartz grains that are found toward the centre of the veins. The zonation of CO2:CH4 ratios, with respect to the location of fluid inclusions within the syn‐gold quartz veins, suggest that the CH4 did not travel as part of the auriferous fluid. Fluid unmixing and post‐entrapment alteration of the syn‐gold fluid inclusions are known to have occurred, but cannot adequately account for the relatively ordered zonation of CO2:CH4 ratios. Instead, the late introduction of a CH4–rich fluid into the Junction shear zone appears more likely. Alternatively, the process of CO2 reduction to CH4 is a viable and plausible explanation that fits the available data. The CH4–bearing fluid inclusions occur almost exclusively at the margin of the syn‐gold quartz veins within the zone of high‐grade gold mineralisation because this is where all the criteria needed to reduce CO2 to CH4 were satisfied in the Junction deposit.  相似文献   

16.
The Kay Tanda epithermal Au deposit in Lobo, Batangas is one of the Au deposits situated in the Batangas Mineral District in southern Luzon, Philippines. This study aims to document the geological, alteration, and mineralization characteristics and to determine the age of the mineralization, the mechanism of ore deposition, and the hydrothermal fluid characteristics of the Kay Tanda deposit. The geology of Kay Tanda consists of (i) the Talahib Volcanic Sequence, a Middle Miocene dacitic to andesitic volcaniclastic sequence that served as the host rock of the mineralization; (ii) the Balibago Diorite Complex, a cogenetic intrusive complex intruding the Talahib Volcanic Sequence; (iii) the Calatagan Formation, a Late Miocene to Early Pliocene volcanosedimentary formation unconformably overlying the Talahib Volcanic Sequence; (iv) the Dacite Porphyry Intrusives, which intruded the older lithological units; and (v) the Balibago Andesite, a Pliocene postmineralization volcaniclastic unit. K‐Ar dating on illite collected from the alteration haloes around quartz veins demonstrated that the age of mineralization is around 5.9 ± 0.2 to 5.5 ± 0.2 Ma (Late Miocene). Two main styles of mineralization are identified in Kay Tanda. The first style is an early‐stage extensive epithermal mineralization characterized by stratabound Au‐Ag‐bearing quartz stockworks hosted at the shallower levels of the Talahib Volcanic Sequence. The second style is a late‐stage base metal (Zn, Pb, and Cu) epithermal mineralization with local bonanza‐grade Au mineralization hosted in veins and hydrothermal breccias that are intersected at deeper levels of the Talahib Volcanic Sequence and at the shallower levels of the Balibago Intrusive Complex. Paragenetic studies on the mineralization in Kay Tanda defined six stages of mineralization; the first two belong to the first mineralization style, while the last four belong to the second mineralization style. Stage 1 is composed of quartz ± pyrophyllite ± dickite/kaolinite ± diaspore alteration, which is cut by quartz veins. Stage 2 is composed of Au‐Ag‐bearing quartz stockworks associated with pervasive illite ± quartz ± smectite ± kaolinite alteration. Stage 3 is composed of carbonate veins with minor base metal sulfides. Stage 4 is composed of quartz ± adularia ± calcite veins and hydrothermal breccias, hosting the main base metal and bonanza‐grade Au mineralization, and is associated with chlorite‐illite‐quartz alteration. Stage 5 is composed of epidote‐carbonate veins associated with epidote‐calcite‐chlorite alteration. Stage 6 is composed of anhydrite‐gypsum veins with minor base metal mineralization. The alteration assemblage of the deposit evolved from an acidic mineral assemblage caused by the condensation of magmatic volatiles from the Balibago Intrusive Complex into the groundwater to a slightly acidic mineral assemblage caused by the interaction of the host rocks and the circulating hydrothermal waters being heated up by the Dacite Porphyry Intrusives to a near‐neutral pH toward the later parts of the mineralization. Fluid inclusion microthermometry indicates that the temperature of the system started to increase during Stage 1 (T = 220–250°C) and remained at high temperatures (T = 250–290°C) toward Stage 6 due to the continuous intrusion of Dacite Porphyry Intrusives at depth. Salinity slightly decreased toward the later stages due to the contribution of more meteoric waters into the hydrothermal system. Boiling is considered the main mechanism of ore deposition based on the occurrence of rhombic adularia, the heterogeneous trapping of fluid inclusions of variable liquid–vapor ratios, the distribution of homogenization temperatures, and the gas ratios obtained from the quantitative fluid inclusion gas analysis of quartz. Ore mineral assemblage and sulfur fugacity determined from the FeS content of sphalerite at temperatures estimated by fluid inclusion microthermometry indicate that the base metal mineralization at Kay Tanda evolved from a high sulfidation to an intermediate sulfidation condition.  相似文献   

17.
Geotectonically the Fengyang and Zhangbaling regions belong to the North China craton and the Dabie-Sulu oragene, respectively. Neo-Archean gneiss and amphibolite and metamor-phosed sea-facies sodic volcanic rocks axe the main outcrops in the two regions, respectively. The Zhangbaling terrane strike-skipped along the Tancheng-Lujiang fault zone in Mesozoic and Cenozo-ic eras and got close to the Fengyang terrane. Mesozoic Yanshanian intrusions occur broadly in thetwo regions. Gold-beating quartz veins occur in the metamorphic rocks in the Fengyang region and in the granodiorite and metamorphosed sea-facies sodic volcanic rocks in the Zhanghaling region.Generally, the formation of the auriferous quartz veins involved three stages. At the first stage,gold-poor sulfide quartz veins were formed; at the second stage gold-rich quartz sulfide veins wereformed; and at the third stage gold-poor barite and/or carbonate veins were formed. The 40^Ar/29^Ar step-heating plateau ages of the first-stage and the second-stage quartz aggregates from the Zhuding, Maoshan and Shangeheng gold deposits range between 116.1 0.6 Ma and 118.3 0.5 Ma and are pretty close to their least apparent ages and isoehronal ages, respectively. All plat-eau, least apparent and isoehronal ages range between 113.4 0.4 Ma and 118.3 0.5 Ma,which are considered as the formation age range of the quartz. It is reasonable and reliable to takethe 40^Ar/39^Ar age range of the quartz as the formation age range of gold-bearing quartz veins onthe basis of spatial relationship between gold-bearing quartz veins and their country rocks. Thegold deposits in the two regions were formed in Aptian, Cretaceous, when the Tancheng-Lujiangfault zone moved as a normal fault with slightly right-lateral strike-skip, was extensional and expe-rienced very strong magnmtic process. It is shown that the magnmtic hydrothermal fluid is a veryimportant part of the gold ore-forming hydrothermal fluid in the Fengyang and Zhanghaling re-gions. The formation of the gold ore deposits in the Fengyang and Zhanghaling regions had genetic relations with the extensional movement of the Tancheng-Lujiang fault zone and magmatic activities and took place under the extensional dynamic condition in Late Cretaceous. Therefore, the exten-sional movement of the Tancheng-Lujiang fault zone presented the energy and space for magmatic and gold ore-forming processes.  相似文献   

18.
The Hutti gold mine is located in a high-angle, NNW–SSE-trending shear zone system, which hosts nine discrete auriferous shear zones (reefs). On a clockwise, retrograde PT path two separate stages of deformation/metamorphism (D2/M2 and D3/M3) occurred synchronous with two distinct stages of gold mineralization, both of which were associated with different fluid types. Stage 1 mineralization developed during D2/M2, where the amphibolite host rocks were altered by a metamorphic fluid with a $ {{\delta }^{{18}}}{{O}_{{{{H}_2}O}}} $ of 7.5–10.1?‰, rich in K, S, As, and Au at pressure and temperature conditions of around 3 kbar and 530?+?20/?30°C, respectively. The stage 1 auriferous shear zones are enveloped by a zoned alteration consisting of a distal biotite–chlorite and proximal biotite–plagioclase assemblage. Subsequently, D2/M2 was overprinted by D3/M3 deformation and metamorphism at 300–400°C and <2 kbar that formed the stage 2 mineralization. The stage 2 mineralizing fluid which originated from outside the greenstone belt (δ18Ofluid of 3.2–6.8?‰) was rich in Si, Au, and W. This mineralization stage is distinct by the emplacement of laminated quartz veins central to the shear zone, containing locally visible gold at concentrations of up to 1 kg Au/t. The laminated quartz veins are surrounded by a millimeter-scale chlorite2–K-feldspar alteration halo, which replaced the stage 1 biotite–plagioclase assemblage. The oxygen isotopic composition of the stage 2 fluid suggests a mixture of a magmatic fluid with an oxygen isotopic composition in the range of 6 to 10?‰ and an isotopically light formation fluid that resulted from fluid–rock interaction in the greenstone pile. The two fluid fluxes at stages 1 and 2 both contributed to the overall gold mineralization; however, it was the second fluid pulse, which gave the Hutti mine its status as the largest gold mine in India. The metamorphic evolution was thereby important for the first stage, whereas the second stage was controlled by tectonism and intrusion of the high-heat production Yellagatti granite that re-established the fluid plumbing and mineralizing system.  相似文献   

19.
The Dongping gold deposit, situated on the northern margin of the North China Platform, is a composite deposit composed of auriferous quartz vein-type and altered rock-type ore bodies. It is hosted in the inner contact zone of an alkaline intrusion which was intruded into Archean metamorphic rocks and was formed not later than the Hercynian period. Auriferous quartz veins of the deposit are dated with the fluid inclusion Rb-Sr isochron method at 103 ± 4 Ma, indicating that the gold deposit was formed in the Yenshanian period.87Sr/86Sr sourcetracing shows the ore forming materials came dominantly from alkaline intrusions. These results, combined with other isotope and REE data, suggest that the Dongping gold deposit is not a traditional magmatic hydrothermal deposit, but a reworked hydrothermal deposit related to heated and evolved meteoric water. This project (49372105) is financially supported by the National Natural Science Foundation of China.  相似文献   

20.
Abstract. Denggezhuang gold deposit is an epithermal gold‐quartz vein deposit in northern Muru gold belt, eastern Shandong, China. The deposit occurs in the NNE‐striking faults within the Mesozoic granite. The deposit consists of four major veins with a general NNE‐strike. Based on crosscutting relationships and mineral parageneses, the veins appear to have been formed during the same mineralization epochs, and are further divided into three stages: (1) massive barren quartz veins; (2) quartz‐sulfides veins; (3) late, pure quartz or calcite veinlets. Most gold mineralization is associated with the second stage. The early stage is characterized by quartz, and small amounts of ore minerals (pyrite), the second stage is characterized by large amounts of ore minerals. Fluid inclusions in vein quartz contain C‐H‐O fluids of variable compositions. Three main types of fluid inclusions are recognized at room temperature: type I, two‐phase, aqueous vapor and an aqueous liquid phase (L+V); type II, aqueous‐carbonic inclusions, a CC2‐liquid with/without vapor and aqueous liquid (LCO2+VCC2+Laq.); type III, mono‐phase aqueous liquid (Laq.). Data from fluid inclusion distribution, microthermometry, and gas analysis indicate that fluids associated with Au mineralized quartz veins (stage 2) have moderate salinity ranging from 1.91 to 16.43 wt% NaCl equivalent (modeled salinity around 8–10 wt% NaCl equiv.). These veins formatted at temperatures from 80d? to 280d?C. Fluids associated with barren quartz veins (stage 3) have a low salinity of about 1.91 to 2.57 wt% NaCl equivalent and lower temperature. There is evidence of fluid immiscibility and boiling in ore‐forming stages. Stable isotope analyses of quartz indicate that the veins were deposited by waters with δO and δD values ranging from those of magmatic water to typical meteoric water. The gold metallogenesis of Muru gold belt has no relationship with the granite, and formed during the late stage of the crust thinning of North China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号