首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More and more deep-seated long submarine tunnels are under construction, which greatly promotes the development of tunneling technology. The complex geological conditions and frequent geological disasters have become great challenges during submarine tunnel excavation. Among them, casualties and economic losses caused by water inrush are on the top levels in all kinds of tunnel geological disasters. Escape routes after water inrush from the working face during submarine tunnel excavation are investigated and optimized in the present study. Numerical simulations are performed using the FLUENT software to probe water flow characteristics after inrush. Two common cases of water inrush during double-line submarine tunnel excavation are researched. The variation rules of velocity and pressure in the tunnels after inrush are analyzed and discussed. The optimized escape routes are achieved. Finally, the water movement laws after inrush from the working face under different excavation situations are further discussed by comparing the two case studies. Water inrush of high velocity occurs on one working face of the double-line submarine tunnel, and the research results are as follows: (1) The velocity close to the tunnel side wall is the minimum, while it is the maximum in the middle position. (2) The pressure changes greatly at the intersection area of the cross passage and the tunnels. (3) The velocity and pressure nearby the working face without water inrush are both small. (4) The velocity at the high location of the cross passage is relatively small.  相似文献   

2.
Lateral flow of soft ground occurs when embankment filling is performed on reclaimed land of foreshore. If a utility pipe is buried in soft ground undergoing the lateral flow, severe damage to the pipe can be caused. A pile-supported embankment has been used to support embankment to minimize lateral flow of the soft soil by transferring the embankment loads through the piles to the firm layer. To prevent damage to the buried pipe subjected to lateral force of the soft ground, full-scale field experiments on the piled embankment were conducted for 70 days. The test results show that the piled embankment effectively reduces both the settlements of the ground and the lateral displacements of the buried pipe. Although additional load was not imposed on the embankment after finishing embankment filling, the settlement and lateral displacement of soft ground simultaneously increased. This coupling behavior was observed at the toe of the embankment and the back of the buried pipe. To quantitatively evaluate the coupling effect of the movement, the coupling area (CA) was coined and analyzed with the efficiency of load transfer. The efficiency evaluated by the CA was in good agreement with the efficiency by the soil arching mechanism.  相似文献   

3.
Abstract

The suction anchor becomes more popular for offshore oil and gas industry in deeper water. For suction anchor–soil interaction, the prediction of hydraulic conductivity of porous materials is a long-standing problem in offshore engineering. To investigate the hydraulic characteristics, an upward seepage flow through saturated sands is considered in this study. A numerical approach, which is able to describe the fluid–particle interaction at particle scale, has been employed to analyse fluid flow in sands. This approach is constructed by adopting a coupled discrete element method and computational fluid dynamic approach (CFD-DEM numerical model). The coupled CFD-DEM approach is first benchmarked by a classic geomechanics problem where analytical solutions are available, and then employed to investigate the characteristics of upward seepage flow in coarse sand columns. Through numerical modelling, the predicted relation between hydraulic gradient and flow velocity is obtained and it is compared with the classical analytical correlation. The effect of several bulk and micromechanical parameters including packing porosity, particle size combination and inter-particle rolling resistance on the flow characteristics is numerically examined. The results show that the particle polydispersity and packing porosity have significant effect on the hydraulic conductivity in the seepage flow. The introduction of inter-particle rolling resistance can change initial packing structure of particle assembly in some extent rather than the hydraulic conductivity from the particle shape effect perspective. A further development of numerical model, in which the effect of non-spherical particles on the seepage flow, will be carried out later.  相似文献   

4.
This paper presents the results of an investigation into the effect of lining leakage on the structural performance of lining in subsea tunnels. A parametric study on a number of hypothetical subsea tunnels was conducted within the framework of two-dimensional stress–pore pressure coupled finite element analysis with due consideration of tunnel cover depth, depth of water to seabed, and ground type. The results indicate that the lining leakage increases axial thrust as well as bending moment, with more pronounced increases in bending moment. Also shown is that there exists an increasing trend of leakage induced lining forces with an increase in the water depth above the seabed but with no significant influence from the cover depth. It is also shown that the progressive development of leakage induced lining forces can be best fitted with an exponential function which can be used to predict the lining force increase for a given tunnel condition. Practical implications of the findings are discussed.  相似文献   

5.
ABSTRACT

An evaluation of the stability of subsea tunnels during operation is very important considering the risks involved with subsea tunnels. Although a large volume of monitoring information can be obtained, back analysis has been performed based on the internal displacement. In this study, the efficiency of an estimation of the safety of an operating subsea tunnel has been improved by implementing the back analysis algorithm based on various monitoring information. The differential evolution algorithm was adopted for back analysis of an operating subsea tunnel. The differential evolution algorithm was improved to accommodate the multiple target variables for back analysis, such as the elastic modulus, cohesion, friction angle of the ground, and the time-dependent elastic modulus of concrete lining. In addition, the elastic modulus of the concrete lining and the properties of reinforced ground can be evaluated with the proposed algorithm using a range of monitoring data, such as the internal displacement and stress acting on the lining. In summary, back analysis with a differential evolution algorithm can be used to evaluate the stability of an operating subsea tunnel.  相似文献   

6.
A new type of quay wall structure has been proposed to improve the seismic resistance capability of existing sheet pile quay wall structures. The new structure adopts a combination of stabilized soil and geogrid, and this structure is referred to simply as “SG-WALL”. This paper presents a numerical comparative study on the seismic performances of quay wall structures between the newly developed SG-WALL and the traditional anchor pile-reinforced structure. The calculated results, including displacement of sheet pile, ground settlement, bending moment and stress of sheet pile, and excess pore water pressure, were analyzed and discussed. It was shown that both types of improvement methods can effectively reduce the residual displacements of sheet piles after earthquakes. The residual displacements at the top of the sheet piles in SG-WALL structure and the anchor pile-reinforced structure decreased by 35.6 and 38.2%, respectively. In addition, the SG-WALL structure can more significantly reduce the ground settlement due to earthquakes. The maximum ground settlement in SG-WALL structure and the anchor pile-reinforced structure decreased by 67.3 and 58.9%, respectively.  相似文献   

7.
为了验证新型伞式吸力锚基础的防冲刷效果,本文利用Flow-3D软件建立三维海床-吸力锚-波浪相互作用模型,基于JONSWAP随机波浪谱,结合某海域风区资料模拟随机波,对随机波浪作用下伞式吸力锚基础(USAF)局部冲刷演变进行分析,试验土体为非黏性土.首先探讨了随机波浪作用下基础周围流场变化规律和冲刷演变模式,其次分析了...  相似文献   

8.
以上海复兴东路大型越江盾构隧道为工程背景。通过建立适合工程结构及工程地质特点的弹性地基模型,在充分考虑隧道结构荷载作用特点、地下水的影响及隧道下部土体反力特性的基础上,推导出了隧道纵向位移的解析表达式,并采用基于土体反力系数的迭代解析方法,计算了部分南线隧道各管片纵向位移值,所得结果与实测结果基本吻合。  相似文献   

9.
Abstract

The Zhanjiang Bay Sea-crossing Tunnel is the first phase of an ambitious plan of the Golden Triangle Economic Zone in southwestern China and passes underneath the deepest artificial shipping channel with the highest level in Asia. The tunnel is a world-record extralong and small-diameter corridor constructed using an uninterrupted single-end shield tunneling method in subsea soft ground under ultrahigh hydraulic pressure for water conveyance. This case study first highlights the engineering challenges of constructing the sea-crossing shield tunnel in subsea soft ground under ultrahigh hydraulic pressure. A series of key techniques are then investigated and some innovations are proposed to address the engineering challenges in the following four key aspects of the sea-crossing shield tunneling process: (a) optimal design of segmental linings; (b) adaptive reformation of the shield machine; (c) structural construction of deep vertical shafts; and (d) supporting techniques of long-distance advancing. On the basis of the field monitoring and numerical analyses, it is concluded that the implemented key techniques ensure the successful management and control of the engineering challenges in terms of optimizing the segmental lining, selecting the shield machine and constructing the vertical working shaft during the sea-crossing shield tunneling process with limited geological investigation data available under submarine conditions.  相似文献   

10.
Wang  Yan-ning  Zhou  Huan-zhu  Wang  Le-chen 《中国海洋工程》2022,36(3):427-438

Immersed tube tunnels are usually placed on soft soil layers in cross-sea tunnelling engineering. Owing to the influence of stratum conditions and slope design, the longitudinal distribution of substratum layers is generally uneven. Thus, the inhomogeneous deformation of the element-joint becomes the key factor in the failure of the immersed tube tunnel. Therefore, a corresponding calculation method for joint deformation is needed to explore the deformation law of immersed tube tunnels. By constructing a three-section immersed tube tunnel analysis model (TTM), the relationship between the two types of deformation of the immersed tube tunnel structure in a longitudinal nonuniform soft soil foundation is described, and the deformation characteristics of the immersed structure under different boundaries are discussed. Based on the mechanical behaviour of the joint and foundation, according to the Timoshenko beam on the Vlasov two-parameter foundation (VTM), considering the tidal cyclic load during the operation and maintenance period, an example analysis is given. Moreover, the deformation characteristics and development trend of the immersed tube tunnel under the influence of different soil layers are discussed. The obtained results have a certain guiding significance for the deformation calculation of immersed tube tunnels.

  相似文献   

11.
Difficulties in the prediction of time-distribution of consolidation settlement will be introduced by using the Murayama test embankment case of Japan. In particular, it will be discussed why the prediction of consolidation rate is difficult in multi-layered soil with complex and variable mechanical properties like organic soil or peat. It can be inferred that uncertainties, which are embedded intricately in the consolidation problem as well as given ground condition, would be major causes for consolidation settlement. After that, the author focused on the movement of pore water under the various conditions of hydraulic conductivity in the soils, and how it can affect the time-distribution of the consolidation settlement. For the applied key methodology on the consolidation settlement problem, we propose the hybrid consolidation simulation controlling the movement of pore water with high accuracy and, finally, the aim of this article is to discuss the methodological approaches obtained by the study, including the basic concept and accurate movement of pore water under various conditions of soil layers and hydraulic conductivity.  相似文献   

12.
隧道技术是IPv6协议的1个组成部分,按照底层的承载协议不同,分为IPv4隧道和IPv6隧道。文中描述了未来将广泛应用的IPv6隧道的原理,目前各种主流网络操作系统对IPv6隧道的支持情况,提出如何在CERNET2高速网络上利用IPv6隧道来传输IPv4流量。  相似文献   

13.
Various monitoring systems have been applied to warn regarding debris flow; however, the information regarding the selection sensors and determination of the installation area is deficient. The objective of this paper is to propose an appropriate monitoring system to prevent debris flow and a method for determining the installation location. A web-based database is used to find the applied frequency of sensors, and the sensors are grouped into eight parts with consideration of the performance, including rainfall, debris flow velocity, displacement, fluid pore pressure, ground vibration, image processing, impact force, and peak flow depth. Through the statistical technique, the rain gage and geophone sensors are revealed as hugely selected sensors among various systems to provide an alarm. The analytic hierarchical process (AHP) is also used to analyze experts’ opinion through pairwise comparison with consideration of eight geotechnical parameters, including the fine content, void ratio, shear strength, elastic modulus, hydraulic conductivity, saturation, soil thickness, and water content. The weighting factors of every parameter are deduced through AHP and the installation area is chosen with calculated values using the weighting factor. The suggested analyses are helpful to select appropriate sensors and determine the installation location of a monitoring system.  相似文献   

14.
This article presents a new approach to estimate hydraulic conductivity of soil from cone penetration test with pore water pressure measurement (referred to as CPTU hereafter). The proposed approach is based on the test result of the spherical cavity expansion of the soil at the tip of a pile. During the piezocone penetration, the flow shape of pore water around the tip of the cone is assumed to be a spherical crown and induced excess pore water is assumed to dissipate from the crown surface. Based on this assumption, a bi-linear relation between the piezocone sounding metric (which is the product of the pore water pressure ratio Bq and the tip resistance Qt) and the hydraulic conductivity index KD is derived to estimate the hydraulic conductivity of the soil layer. The derived approach expands the applicable range of existing approaches in the literature. It is demonstrated that the proposed approach can cover the entire tip angles of the cone and the modified equation can fit the CPTU test data well.  相似文献   

15.
锚泊基础的承载性能直接影响着海洋浮式结构物的稳定性,因而研究新型有效的锚泊基础已成为海洋工程结构设计中的关键问题之一。文中提出了一种基于海洋软土液化特性的伞状锚,充分利用桩端土体增强抗拔承载能力。应用二维颗粒流分析程序,对该新型伞状锚的安装、抗拔承载能力进行了数值模拟,并与普通锚桩进行比较分析,验证其有效性。针对伞状锚与普通锚桩在拉拔过程中的土体破坏机制,从细观角度分析了其抗拔承载能力的提高机制。研究结果表明,对于相同抗拔锚泊设计竖向承载要求,伞状锚所需材料可大为减少,安装难度明显减低,是值得推广应用的新型锚泊基础形式。  相似文献   

16.
The smear zone, which develops during the placement of the prefabricated vertical drain (PVD) in the ground using a steel mandrel, is a significant factor that influences the performance of PVDs. The determination of the width and hydraulic conductivity of smear zone is an important consideration in designing ground improvement by preloading with PVDs. Thus, the extent and hydraulic conductivity of the PVD smear zone have received significant attention; however, there is still uncertainty and the topic remains discrepant among investigators. There is limited or no smear zone hydraulic conductivity data that is directly produced by laboratory or field tests. In this study, a laboratory smear zone model experiment that was developed as a performance test for determining the extent of the smear zone and measuring directly its hydraulic conductivity was used. Based on the findings obtained from two different materials (Craney Island dredgings and Hydrite R kaolinite soil), it is indicated that the disturbed zone is made up of two areas, namely smear zone and transition zone, and that the hydraulic conductivity in these areas is lower than the undisturbed soil. The ratio of the hydraulic conductivity of the smear and transition zones to that of the undisturbed soil was found to vary between 0.32 and 0.50 and between 0.57 and 0.82, respectively in different soils. The diameter of the smear zone was found to be 2.3–3.3 times higher than the equivalent diameter of the mandrel depending on the soil. The diameter of the transition zone extended 5.2–7.3 times the equivalent diameter of mandrel again depending on the soil. These directly measured values, in general, are supportive of the published values based on indirect means and the test device can be used to study the impact of mandrels of different size and shape and other factors by minor modification.  相似文献   

17.
Abstract

Pipes buried in soft ground can be damaged due to the vertical and lateral movement of the ground during the construction of the embankment. To investigate such a movement of the soft ground, full-scale tests using embankment piles and stabilizing piles were conducted for 70?days. A pile-supported embankment has been used to reduce the deformation of soft ground by transferring the embankment load through piles to the firm layer below the soft ground, whereas stabilizing piles have been employed to resist the lateral earth pressure that is induced in soft ground by embankment loads. The Coupling Area (CA), which was defined as the quantitative index to determine the resistance effect of both settlement and lateral flow of the soft ground when the embankment was reinforced, is adapted. The analysis results of the CA indicate that the piled embankment was more effective for preventing the damage to buried pipe installed near the embankment, while the stabilizing piles had almost the same effect as the piled embankment when the pipe was buried far away from the embankment.  相似文献   

18.
Drag anchor is one of the most commonly used anchorage foundation types. The prediction of embedded trajectory in the process of drag anchor installation is of great importance to the safety design of mooring system. In this paper, the ultimate anchor holding capacity in the seabed soil is calculated through the established finite element model, and then the embedded motion trajectory is predicted applying the incremental calculation method. Firstly, the drag anchor initial embedded depth and inclination angle are assumed, which are regarded as the start embedded point. Secondly, in each incremental step, the incremental displacement of drag anchor is added along the parallel direction of anchor plate, so the displacement increment of drag anchor in the horizontal and vertical directions can be calculated. Thirdly, the finite element model of anchor is established considering the seabed soil and anchor interaction, and the ultimate drag anchor holding capacity at new position can be obtained. Fourthly, the angle between inverse catenary mooring line and horizontal plane at the attachment point at this increment step can be calculated through the inverse catenary equation. Finally, the incremental step is ended until the angle of drag anchor and seabed soil is zero as the ultimate embedded state condition, thus, the whole embedded trajectory of drag anchor is obtained. Meanwhile, the influences of initial parameter changes on the embedded trajectory are considered. Based on the proposed method, the prediction of drag anchor trajectory and the holding capacity of mooring position system can be provided.  相似文献   

19.
无砂混凝土具有良好的透水保砂性和耐久性,作为倒滤层使用,具有广泛的使用空间和应用价值。在工程实践中,已成功应用了水下浇筑无砂混凝土作为大型沉箱接缝倒滤层,结果表明,尽量减小混凝土周围水流后,利用掺加少量絮凝剂的小粒径碎石无砂混凝土通过导管进行水下浇筑,可以有效保证无砂混凝土的水下成型效果和施工质量。  相似文献   

20.
A pressure relief technique has been proposed to reduce hydrostatic pressures by opening drainage holes around a water tank. This solution is evaluated by laboratory experiments and numerical parametric investigation. After seepage flow is allowed, the hydraulic head acting on the water tank is reduced due to seepage losses. The drainage holes should be opened on the base slab near the sidewalls, and at a certain height on the sidewalls. Given a fixed total opening area, the number of drainage holes with smaller diameter should be allowed near the edge of the water tank to increase the efficacy of the approach. The properties of the surrounding soil influence the results significantly, where a cushion layer with a higher hydraulic conductivity and a greater thickness is beneficial to the stability of the water tank, and a backfill layer with adequate thickness and hydraulic conductivity should be selected. An illustrative example is given in the end to demonstrate the advantage of the proposed antiflotation design strategy compared to the conventional enhanced self-weight method, and more economic design using less reinforcement and concrete can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号