首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is part of a basin-wide re-evaluation of Irish Sea glacigenic deposits which aims to test whether diamicts, collectively known as Irish Sea Tills, represent in situ glacimarine sediments or sediments that have been reworked or deformed by the Last Glacial Maximum Irish Sea Glacier. New results are presented for two key localities at Abermawr and Traeth y Mwnt in Wales. Unlike previous studies in the Irish Sea region that have focused on macro-scale sedimentology and structural analyses, this study combines macro-scale and micro-scale sedimentary analyses. This approach reveals that the dominant diamict facies at Abermawr are subglacially deformed primary (glaci)marine deposits, emplaced by the Irish Sea Glacier. An inland glacial source is unlikely. The Traeth y Mwnt diamicts are likely to be subaqueous in origin, possibly formed in an ice-dammed lake in the Mwnt embayment. There are no indications of subglacial deformation or shearing at Mwnt; deformation structures are related to gravity-driven or density-driven mechanisms.  相似文献   

2.
By analysing a series of four successive thin‐sections from a ceramic clay that was subjected to uniaxial compression, we were able to monitor the development of microstructures in a fine‐grained sediment. The artificially induced microstructures, such as unidirectional clay reorientations and linear and circular grain arrangements, are identical to features that have been observed in thin‐sections of subglacially deformed tills, and therefore may be used as representative analogues. We argue that the structures, reflecting slip, planar shear displacements as well as rotational movements, can be explained by assuming a Coulomb‐plastic response to imposed shear. We conclude that sediments subjected to subglacial deformation behave as Coulomb materials, at least during the final stages of the deformation. The present study bridges the gap between field studies, experimental studies and theoretical modelling. The microscopic observations assist in visualising inferred subglacial processes and facilitate up‐ and downscaling between diverse methodological approaches. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
《Quaternary Science Reviews》2007,26(11-12):1499-1528
Macroscopic field and micromorphological studies have been carried out on subglacially and proglacially deformed glacigenic sequences at a number of sites throughout Scotland, UK. Examination of microstructures (folds, faults, hydrofractures, plasmic fabrics) aided understanding of the deformation histories preserved in the sediments, but a similar range of structures were developed in both Subglacial and Proglacial settings. Discrimination between Subglacial and Proglacial deformation was only possible when micromorphological data was used in conjunction with larger-scale field observations. Variations in lithology and water content were controlling factors influencing the style and apparent intensity of deformation recorded. Changes in pore-water content and pressure during deformation can lead to liquefaction and hydrofracturing, with early-formed structures locally controlling the pattern of water escape. Liquefaction can also lead to homogenisation of the sediments and the destruction of earlier deformation structures, even at relatively low strains. Beds or zones of liquefied sand and silt may form highly ‘lubricated’ detachments within the sediment pile, resulting in a marked reduction in the amount of shear transmitted to underlying units. A multidisciplinary approach, involving sedimentological, geomorphological, stratigraphical and structural field observations, combined with micromorphological analysis, is recommended to confidently unravel the glacitectonic history and depositional environment of most deformed glacigenic sedimentary sequences.  相似文献   

4.
Burdur city is located on lacustrine sedimentary deposits at the northeastern end of the Fethiye–Burdur Fault Zone (FBFZ) in SW Turkey. Fault steps were formed in response to vertical displacement along normal fault zones in these deposits. Soft sediment deformation structures were identified at five sites in lacustrine sediments located on both sides of the FBFZ. The deformed sediments are composed of unconsolidated alternations of sands, silts and clay layers and show different morphological types. The soft sediment deformation structures include load structures, flame structures, slumps, dykes, neptunian dykes, drops and pseudonodules, intercalated layers, ball and pillow structures, minor faults and water escape structures of varying geometry and dimension. These structures are a direct response to fluid escape during liquefaction and fluidization mechanism. The driving forces inferred include gravitational instabilities and hydraulic processes. Geological, tectonic, mineralogical investigations and age analysis were carried out to identify the cause for these soft sediment deformations. OSL dating indicated an age ranging from 15161±744 to 17434±896 years for the soft sediment deformation structures. Geological investigations of the soft sediment deformation structures and tectonic history of the basin indicate that the main factor for deformation is past seismic activity.  相似文献   

5.
Late Devensian/Midlandian glacial deposits on the southeast Irish coast contain a record of sedimentation at the margins of the Irish Sea ice stream (ISIS). Exposures through the Screen Hills reveal a stratigraphy that documents the initial onshore flow of the ISIS ('Irish Sea Till') followed by ice stream recession and readvances that constructed glacitectonic ridges. Ice-contact fans (Screen Member) were deposited in association with subglacial deformation tills and supraglacial/subaqueous mass flow diamicts. In SE Ireland, the ISIS moved onshore over proglacial lake sediments which were intensely folded, thrust and cannibalized producing a glacitectonite over which laminated and massive diamictons were deposited as glacitectonic slices. Ice marginal recession and oscillations are documented by: (a) ice-proximal, subaqueous diamict-rich facies; (b) isolated ice-contact glacilacustrine deltas; (c) syn-depositional glacitectonic disturbance of glacilacustrine sediments and overthrusting of ice-contact outwash; (d) offshore moraine ridges; and (e) changing ice flow directions and facies transitions. Diagnostic criteria for the identification of dynamic, possibly surging, ice-stream margins onshore include thrust-block moraines, tectonized pitted outwash and stacked sequences of glacitectonites, deformation tills and intervening stratified deposits. In addition, the widespread occurrence of hydrofracture fills in sediments overridden and locally reworked by the ISIS indicate that groundwater pressures were considerably elevated during glacier advance. The glacigenic sediments and landforms located around the terrestrial margins of the ISIS are explained as the products of onshore glacier flow that cannibalized and tectonically stacked pre-existing marine and glacilacustrine sediments. Localized tectonic thickening of subglacially deformed materials at the former margins of glaciers results in zones of net erosion immediately up-ice of submarginal zones of net accretion of subglacial till. The more stable the ice-stream margin the thicker and more complex the submarginal sedimentary stack.  相似文献   

6.
Recent studies on Neoproterozoic climate change have prompted renewed interest in Neoproterozoic glacial deposits and renewed debate over the criteria used to identify the nature of glacial influence on sedimentation. Analyses of soft sediment deformation structures have provided important clues to distinguish between competing palaeoenvironmental interpretations of Quaternary glacial deposits; a similar approach is presented here in the analysis of Neoproterozoic glacial deposits of the Smalfjord Formation, northern Norway. A detailed sedimentological and structural analysis at several sites in the Varangerfjorden area reveals complex soft sediment deformation at various scales in conglomerate, sandstone and diamictite. Deformation is predominantly ductile and includes anticlinal and synclinal folding, flow noses, flame structures, recumbent folding and shear structures. The deformed sediments are associated predominantly with conglomerate and sandstone, which record glaciofluvial and deltaic depositional conditions. Some deformations can be attributed to rapid deposition and slumping, whereas others appear to record shear stress associated with overriding ice. The scale, style and range of deformation, together with the coarse-grained nature of the deformed sediments and facies associations, suggest that these were unfrozen outwash sediments that were overridden by ice and resedimented in a dynamic ice-proximal setting. Whereas recent studies of diamictite-bearing strata of the Smalfjord Formation had revealed no clear evidence of glacial influence on deposition, deformation structures documented here suggest that glacial conditions prevailed on the basin margin during deposition of Smalfjord Formation sediments, with sedimentary facies and deformation structures typical of temperate ice-proximal settings.  相似文献   

7.
湖相沉积岩中的同生变形构造及其地质意义   总被引:1,自引:0,他引:1  
本文以渤海湾周缘地区的东濮凹陷下第三系沙三沙四段湖相沉积岩中出现的同生变形构造为例,讨论其命名、分类、主要类型、形成机理及其在分析古沉积环境、古地理和古构造等方面的意义。这项讨论为研究陆相含油气盆地的同生变形构造提供了对比依据。  相似文献   

8.
At the Dänischer Wohld Peninsula coastal sections (North West Germany), subglacial deformation was found at three scales. At the smallest scale, features typical of deforming bed tills were found, i.e. small boudins, tectonic laminations and low fabric strength till. At an intermediate scale, large lenses of glaciolacustrine sediments were found within subglacially deformed till. At the largest scale, there were large (over 5 m high) subglacial folds. We suggest that these styles of sedimentation/deformation were associated with a series of readvances during overall glacial retreat: subglacial deformation occurred during each advance and glaciolacus trine sedimentation occurred during each retreat. This led to glaciolacustrine sediments and deforming bed tills being folded together during subsequent readvances. Where the rheology was relatively weak, the lacustrine sediments were totally incorporated into the diamicton and lost their previous identity. However, where the glaciolacustrine sediments were relatively strong, they survived. We suggest that this style of deformation is typical of the conditions just upglacier from the ice margin and is associated with a relatively thick deforming layer and a high input of subglacial sediment. We conclude that the evidence found at this site provides further indications that the southern margins of the Fenno-Scandinavian ice sheet were coupled with the glacier bed and underwent deforming bed conditions.  相似文献   

9.
Analysis of till micromorphology represents a relatively new technique that has been used most frequently to infer the importance of subglacial shear in till genesis. This study aims to calibrate the technique by comparing Pleistocene tills from United Kingdom with a modern till (the UpB till) from beneath Ice Stream B, West Antarctica. Despite the fact that all of the tills examined have been interpreted as deforming‐bed deposits, the modern till has significantly less abundant and diverse microstructures than those found in the Pleistocene tills. Seventeen examined thin‐sections of the UpB till contain recognisable microstructures over only 0–30% of individual thin‐section area. The most common microstructures are: (i) birefringent clay patterns that are interpreted as shear zones and (ii) adherent matrix structures, which we interpret as uncomminuted remnants of the parent glacial/glaciomarine diamictons. Fourteen thin‐sections of the Pleistocene tills were covered by microstructures in 10–95% of their area. The Pleistocene microstructures include birefringent clays and adherent matrix structures, as in the UpB till, but also laminations and deformed pods made of chalk and sorted sediments. We conclude that the same till‐forming process, i.e. subglacial deformation, may result in distinctly different till micromorphology. This is a consequence of the fact that microstructural characteristics are strongly influenced by factors other than shear deformation. We identify three controls that may be important for forming contrasting microstructural assemblages: (i) strain magnitude, (ii) the degree of heterogeneity of parent material, and (iii) relative importance of sediment sorting by flowing water in the subglacial environment. Thus till micromorphology is sensitive to multiple factors, which with proper calibration may enhance the existing capability to interpret past subglacial conditions from microstructures. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

11.
Pebbly clays and diamictons containing marine shell fragments and peat lenses exposed beneath subglacially deposited Late Devensian till at the Burn of Benholm provide new insights into the glacial history of Quaternary sequences in eastern Scotland. The peat yielded pollen of interstadial affinity (including Bruckenthalia spiculifolia) and non‐finite radiocarbon dates. Comparisons with other pre‐Late Devensian pollen records in northern Scotland suggest that the peat lenses are remnants of an Early Devensian interstadial deposit, of Oxygen Isotope Substage 5c or 5a age. Reworked faunal assemblages in the shelly sediments include Quaternary marine molluscs of low boreal aspect, as well as Mesozoic and Palaeozoic microfossils. Amino acid ratios from fragments of Arctica islandica suggest that the shells are of Oxygen Isotope Stage 9 age or older. The fabric and composition of the shelly sediments are consistent with their emplacement as deformation till during the onshore movement of glacially transported rafts of marine sediment. Folded and sheared contacts between the shelly deposits, peat lenses and the overlying Late Devensian till indicate that the fossiliferous sediments were glacitectonised during the main Late Devensian glaciation, when ice moved from Strathmore and overrode the site from the southwest. British Geological Survey. © NERC 2000.  相似文献   

12.
The Feos Formation of the Nijar Basin comprises sediments deposited during the final stage of the Messinian salinity crisis when the Mediterranean was almost totally isolated. Levels of soft‐sediment deformation structures occur in both conglomeratic alluvial sediments deposited close to faults and the hyposaline Lago Mare facies, a laminated and thin‐bedded succession of whitish chalky marls and intercalated sands alternating with non‐marine coastal plain deposits. Deformation structures in the coarse clastics include funnel‐shaped depressions filled with conglomerate, liquefaction dykes terminating downwards in gravel pockets, soft‐sediment mixing bodies, chaotic intervals and flame structures. Evidence for soft‐sediment deformation in the fine‐grained Lago Mare facies comprises syndepositional faulting and fault‐grading, sandstone dykes, mixed layers, slumping and sliding of sandstone beds, convolute bedding, and pillar and flame structures. The soft‐sediment deformed intervals resemble those ascribed elsewhere to seismic shaking. Moreover, the study area provides the appropriate conditions for the preservation of deformation structures induced by seismicity; such as location in a tectonically active area, variable sediment input to produce heterolithic deposits and an absence of bioturbation. The vertical distribution of soft‐sediment deformation implies frequent seismic shocks, underlining the importance of seismicity in the Betic region during the Late Messinian when the Nijar Basin became separated from the Sorbas Basin to the north. The presence of liquefied gravel injections in the marginal facies indicates strong earthquakes (M ≥ 7). The identification of at least four separate fissured levels within a single Lago Mare interval suggests a recurrence interval for large magnitude earthquakes of the order of millennia, assuming that the cyclicity of the alternating Lago Mare and continental intervals was precession‐controlled. This suggestion is consistent with the present‐day seismic activity in SE Spain.  相似文献   

13.
The glacial sediment succession exposed close to the southern margin of the Late Weichselian Scandinavian Ice Sheet in Poland reveals a mosaic consisting of isolated patches of heavily deformed deposits separated by areas lacking any visible evidence of deformation. In the studied outcrop, the subglacial deforming spots composed of outwash deposits intercalated with till stringers are about 2–10 m wide and 20–60 cm thick. They rest on outwash sediments and are covered by a basal till. Based on structural and textural characteristics, the deforming spots are interpreted as previous R‐channels filled with meltwater deposits. Lack of deformation in outwash sediment immediately beneath the deforming spots and in the intervening areas between the channels suggests that the ice‐bed was frozen and the deformation of the channel infill was facilitated by high pore‐water pressure arising because water drainage into the bed was impeded by permafrost. Channel infill deposits and the till immediately above were coevally deformed to a strain of less than 9. This study documents the possible co‐existence of deforming and stable areas under an ice sheet, generated by spatially varying thermal and hydrological conditions affecting sediment rheology.  相似文献   

14.
Quaternary sedimentary successions are described from the Linda Valley, a small valley in western Tasmania that was dammed by ice during Early and Middle Pleistocene glaciations. Mapping and logging of exposures suggest that an orderly sequence of deposits formed during ice incursion, occupation and withdrawal from tributary valleys. Four principal sediment assemblages record different stages of ice occupation in the valley. As the glacier advanced, a proglacial, lacustrine sediment assemblage dominated by laminated silts and muds deposited from suspension accumulated in front of the glacier. A subglacial sediment assemblage consisting of deformed lacustrine deposits and lodgement till records the overriding of lake-bottom sediments as the glacier advanced up the valley into the proglacial lake. As the glacier withdrew from the valley, a supraglacial sediment assemblage of diamict, gravel, sand and silt facies formed on melting ice in the upper part of the valley. A lacustrine regression in the supraglacial assemblage is inferred on the basis of a change from deposits mainly resulting from suspension in a subaqueous setting to relatively thin and laterally discontinuous laminated sediments, occurrence of clastic dykes, and increasing complexity of the geometry of deposits that indicate deposition in a subaerial setting. A deltaic sediment assemblage deposited during the final stage of ice withdrawal from the valley consists of steeply dipping diamict and normally graded gravel facies formed on delta foresets by subaqueous sediment gravity flows. The sediment source for the delta, which prograded toward the retreating ice margin, was the supraglacial sediment assemblage previously deposited in the upper part of the valley. A depositional model developed from the study of the Linda Valley may be applicable to other alpine glaciated areas where glaciers flowed through or terminated in medium- to high-relief topography.  相似文献   

15.
ABSTRACT Pebble fabric data are available from several facies of glacigenic sediments deposited by modern glaciers, where sedimentary processes can be observed or inferred with relatively little ambiguity. Over 100 samples from contemporary environments illustrate fabrics characterizing melt-out till, deformed and undeformed lodgement till, sediment flow deposits and ice slope colluvium. Lodgement till fabric variability is related to the two-layer structure of these sediments; a structureless, friable upper layer with low shear strength and high consolidation coefficient, overlying a very compact material of horizontal platy structure. Fabric strength (assessed by eigenvalue analysis) is weaker and pebble dip is more dispersed in the upper structureless horizon. Stronger fabrics in the lower platy horizon may be primary depositional fabrics which are destroyed by subglacial shearing to give weaker fabrics in the upper horizon. Alternatively, upper horizon fabrics may be characteristic of all recently-deposited lodgement tills, with stronger fabrics developing at depth by dewatering and consolidation. There is a general reduction in fabric strength and an increase in particle dip associated with the transition from melt-out tills, through undeformed and deformed lodgement tills, to sediment flow deposits and ice slope colluvium. There is, however, considerable overlap in the fabric strengths characteristic of sediment flow deposits and deformed lodgement tills. Fabric data from modern glacial sedimentary facies are used to assist in interpreting the mode of deposition of some Quaternary glacial sediments. Relatively strong fabrics characteristic of melt-out tills and undeformed lodgement tills are more likely to be diagnostic of genesis than weaker fabrics associated with deformed sediments.  相似文献   

16.
陆相重力流沉积是现今油气勘探领域的研究热点.发育在歧口凹陷滨海斜坡古近系沙河街组一段的大型重力流沉积体(沉积范围达到1 700 km2)具有多物源供给、长距离搬运、多级断坡传输、沿路沉积的发育过程与沉积机理特征.以渤海湾盆地富烃凹陷-歧口凹陷的大型重力流为研究对象,在构造-高精度层序地层格架下,以"源-渠-汇"的整体过程为思路,(1)研究多物源的形成、持续供给及匹配关系;(2)分析古地貌(断控陡坡带+多级断阶坡折带)的演化,及其对沉积物搬运、堆积、发育过程的控制作用;(3)针对该重力流具有大规模、多期次的沉积特征,解剖其平面展布及空间分布、沉积模式、时空演化规律;(4)综合探讨陆相重力流沉积体的成因机制、控制因素.综上可知:(1)歧口凹陷大型陆相重力流沉积体发育受多个物源体系的影响与控制,湖盆中心的重力流沉积体与供给物源之间有明确的匹配关系.在古近系沙一段沉积时期,滨海斜坡沉积区主要受北部燕山物源区的大神堂物源、茶淀物源以及西部沧县隆起物源区的葛沽物源和小站物源4个物源共同供给,持续的物源供给使得在歧口凹陷的陆相湖盆中,发育了大规模的重力流沉积体.(2)沙一段同沉积期,歧口凹陷滨海斜坡周缘整个古地貌格局主要表现为断控陡坡带与多级断阶坡折带复合体,断控陡坡带主要发育于滨海斜坡北部,多级断阶带主要呈近东西向发育于斜坡西部.这些断坡带既是物源水下搬运通道又是沉积物堆积的可容纳空间分布区,再加上这些断坡带差异性的持续沉降,对砂分散体系和相带展布具有关键的控制作用.(3)歧口凹陷沙一段重力流沉积过程机制主要表现为重力滑塌沉积、砂质碎屑流、泥质碎屑流、浊流等多种成因,具有横向连片,纵向叠置的沉积样式.   相似文献   

17.
Detailed mapping of a coastal platform in Shikoku, SW Japan, provides evidence for progressive deformation in partially lithified sediments. The Eocene sediments involved are interpreted as lower slope basin deposits. An assemblage of listric normal faults, sheath folds, broken formations and late-stage faulting has developed during the sediments' burial and uplift history. These structures are typical of many other areas in the Shimanto Belt of Shikoku. Despite the ‘soft’ sediment style of deformation, the consistency of the fold orientations relative to the regional foliation suggests that they are valid kinematic indicators. A sequence of extensional faulting overprinted by synchronous folding and shearing is recognized. This is interpreted as the response of the sediments to shape changes in the accretionary basement induced by shortening. A general model has been constructed for the evolution of the structures: it is proposed that early listric normal faults are subsequently deformed either by shearing along planar surfaces or by motion over frontal and lateral ramps. Back-rotation of sediments during progressive shortening near the front of the prism tightens the fold hinges and rotates the fold axes towards the local shear direction. Alternative sequences which could account for the observed geometries are also discussed.  相似文献   

18.
The stratigraphy and sedimentology of the glacial deposits exposed along the coast of east Yorkshire are reviewed. Critical sections at Filey Brigg, Barmston and Skipsea are examined to reassess the stratigraphy of Devensian Dimlington Stadial glacial deposits in the light of recent developments in glacial sedimentology. Sedimentary and glaciotectonic structures studied in the field and by using scanning electron microscopy are emphasised. Two hypotheses are considered for the genesis of the interbedded diamictons and stratified sediments. The first involves the deposition of lodgement till and/or deformation till followed by meltout till, which was overridden to produce more deformation till, reflecting periods of ice stagnation punctuated by glacier thickening. The second hypothesis, which is favoured on the basis of field evidence and micromorphology, involves the vertical accretion of a deforming till layer associated with cavity/channel or tunnel valley fills, beneath active ice. At Barmston the upper part of the diamicton contains elongate pendant structures containing gravels, indicating that the diamicton was saturated and able to flow. The diamictons, therefore, represent a complex sequence of tills deposited and deformed by active ice during the Dimlington Stadial. Previously published stratigraphical schemes involving classifications of multiple tills in east Yorkshire should be simplified and it is more appropriate to assign these to a single formation, the Skipsea Till Formation. Rhythmic glaciolacustrine and proglacial glaciofluvial sediments overlie the tills at Barmston and Skipsea. These were deposited in sag basins during deglaciation as the tills settled and deformed under thickening sediment and as buried ice melted out. Extensive sands and gravels cap the succession and were deposited on a sandur during the later stages of deglaciation.  相似文献   

19.
The development of soft‐sediment deformation structures in clastic sediments is now reasonably well‐understood but their development in various deltaic subenvironments is not. A sedimentological analysis of a Pleistocene (ca 13·1 to 15 10Be ka) Gilbert‐type glaciolacustine delta with gravity‐induced slides and slumps in the Mosty‐Danowo tunnel valley (north‐western Poland) provides more insight, because the various soft‐sediment deformation structures in these deposits were considered in the context of their specific deltaic subenvironment. The sediments show three main groups of soft‐sediment deformation structures in layers between undeformed sediments. The first group consists of deformed cross‐bedding (inclined, overturned, recumbent, complex and sheath folds), large‐scale folds (recumbent and sheath folds) and pillows forming plastic deformations. The second group comprises pillar structures (isolated and stress), clastic dykes with sand volcanoes and clastic megadykes as examples of water‐escape structures. The third group consists of faults (normal and reverse) and extensional fissures (small fissures and neptunian dykes). Some of the deformations developed shortly after deposition of the deformed sediment, other structures developed later. This development must be ascribed to hydroplastic movement in a quasi‐solid state, and due to fluidization and liquefaction of the rapidly deposited, water‐saturated deltaic sediments. The various types of deformations were triggered by: (i) a high sedimentation rate; (ii) erosion (by wave action or meltwater currents); and (iii) ice‐sheet loading and seasonal changes in the ablation rate. Analysis of these triggers, in combination with the deformational mechanisms, have resulted – on the basis of the spatial distribution of the various types of soft‐sediment deformation structures in the delta under study – in a model for the development of soft‐sediment deformation structures in the topsets, foresets and bottomsets of deltas. This analysis not only increases the understanding of the deformation processes in both modern and ancient deltaic settings but also helps to distinguish between the various subenvironments in ancient deltaic deposits.  相似文献   

20.
The general subject of this paper is subglacial deformation beneath Breiðamerkurjökull, a surging Icelandic glacier. More specifically it discusses the evolution and the role of fluid pressure on the behaviour of subglacial sediments during deformation. During Little Ice Age maximum, the two outcrops studied, North Jökulsarlon (N-Jk) and Brennhola-Alda (BA), were located at 2550 m and 550 m respectively from the front of the Breiðamerkurjökull. Sedimentological analysis at the forefield of the glacier shows thick, coarse glaciofluvial deposits interbedded with thin, fine-grained shallow lacustrine/swamp deposits, overlain by a deformed till unit at N-Jk. BA outcrop shows fine-grained shallow lacustrine/swamp deposits overlain by a deformed till unit. The sequence of deformation events from one outcrop to the other is similar. First, major thrust planes, which were rooted in shallow lacustrine/swamp deposits developed by glacially induced simple shear. Next, the thrusts were folded, indicating the deformation of hydroplastic sediment assisted by moderate fluid pressure. Then clastic dyke swarms crosscut the sedimentary succession, proving that fluid overpressure caused hydrofracturing associated with fluidisation. Finally, as water escaped from the glacier bed, fluid pressure dropped, and normal faulting occurred in brittle-state subglacial sediments. Fluid-pressure variations are related to glacier dynamics. They control the deformation sequence by modifying subglacial rheological behaviour and the nature of the subglacial tectonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号