首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近50年中国光合有效辐射的时空变化(英文)   总被引:2,自引:1,他引:1  
Based on long-term measurement data of weather/ecological stations over China,this paper calculated and produced annually-and seasonally-averaged Photosynthetically Active Radiation(PAR) spatial data from 1961 to 2007,using climatological calculations and spatialization techniques.The spatio-temporal variation characteristics of annually-and seasonally-averaged PAR spatial data over China in recent 50 years were analyzed with Mann-Kendall trend analysis method and GIS spatial analysis techniques.The results show that:(1) As a whole,the spatial distribution of PAR is complex and inhomogeneous across China,with lower PAR in the eastern and southern parts of China and higher PAR in the western part.Mean annual PAR over China ranges from 17.7 mol m-2 d-1 to 39.5 mol m-2 d-1.(2) Annually-and seasonally-averaged PAR of each pixel over China are averaged as a whole and the mean values decline visibly with fluctuant processes,and the changing rate of annually-averaged PAR is-0.138 mol m-2 d-1/10a.The changing amplitudes among four seasons are different,with maximum dropping in summer,and the descending speed of PAR is faster before the 1990s,after which the speed slows down.(3) The analysis by each pixel shows that PAR declines significantly(α=0.05) in most parts of China.Summer and winter play more important roles in the interannual variability of PAR.North China is always a decreasing zone in four seasons,while the northwest of Qinghai-Tibet Plateau turns to be an increasing zone in four seasons.(4) The spatial distributions of the interannual variability of PAR vary among different periods.The interannual variabilities of PAR in a certain region are different not only among four seasons,but also among different periods.  相似文献   

2.
This study is focused on the northwestern part of Gansu Province, namely the Hexi Corridor. The aim is to address the question of whether any trend in the annual and monthly series of temperature and precipitation during the period 1955-2011 appears at the scale of this region. The temperature and precipitation variation and abrupt change were examined by means of linear regression, five-year moving average, non-parameter Mann-Kendall test, accumulated variance analysis and Pettitt test method. Conclusions provide evidence of warming and wetting across the Hexi Corridor. The mean annual temperature in Hexi Corridor increased significantly in recent 57 years, and the increasing rate was 0.27℃/10a. The abrupt change phenomenon of the annual temperature was detected mainly in 1986. The seasonal average temperature in this region exhibited an evident upward trend and the uptrend rate for the standard value of winter temperature indicated the largerst of four seasons. The annual precipitation in the Hexi Corridor area displayed an obviously increasing trend and the uptrend rate was 3.95 mm/10a. However, the annual precipitation in each basin of the Hexi Corridor area did not passed the significance test. The rainy season precipitation fluctuating as same as the annual one presented insignificant uptrend. No consistent abrupt change was detected in precipitation in this study area, but the rainy season precipitation abrupt change was mainly observed in 1968.  相似文献   

3.
华北平原降水的长期趋势分析(英文)   总被引:4,自引:1,他引:3  
The North China Plain (NCP) is the most important food grain producing area in China and has suffered from serious water shortages. To capture variation water availability, it is necessary to have an analysis of changing trends in precipitation. This study, based on daily precipitation data from 47 representative stations in NCP records passed the homogeneity test, analyzed the trend and amplitude of variation in monthly, seasonal and annual precipitation, annual maximum continuous no-rain days, annual rain days, rainfall intensity, and rainfall extremes from 1960 to 2007, using the MannKendall (M-K) test and Sen’s slope estimator. It was found that monthly precipitation in winter had a significant increasing trend in most parts, while monthly precipitation in July to September showed a decreasing trend in some parts of NCP. No significant changing trend was found for the annual, dry and wet season precipitation and rainfall extremes in the majority of NCP.A significant decreasing trend was detected for the maximum no-rain duration and annual rain days in the major part of NCP. It was concluded that the changing trend of precipitation in NCP had an apparent seasonal and regional pattern, i.e., precipitation showed an obvious increasing trend in winter, but a decreasing trend in the rainy season (July to September), and the changing trend was more apparent in the northern part than in the southern and middle parts. This implies that with global warming, seasonal variation of precipitation in NCP tends to decline with an increasing of precipitation in winter season, and a decreasing in rainy season, particularly in the sub-humid northern part.  相似文献   

4.
In this study, a monthly dataset of temperature time series (1961-2010) from 12 meteorological stations across the Three-River Headwater Region of Qinghai Province (THRHR) was used to analyze the climate change. The temperature variation and abrupt change analysis were examined by using moving average, linear regression, Spline interpo-lation, Mann-Kendall test and so on. Some important conclusions were obtained from this research, which mainly contained four aspects as follows. (1) There were several cold and warm fluctuations for the annual and seasonal average temperature in the THRHR and its three sub-headwater regions, but the temperature in these regions all had an obviously rising trend at the statistical significance level, especially after 2001. The spring, summer, autumn and annual average temperature increased evidently after the 1990s, and the winter average temperature exhibited an obvious upward trend after entering the 21st century. Except the standard value of spring temperature, the annual and seasonal temperature standard value in the THRHR and its three sub-headwater regions increased gradually, and the upward trend for the standard value of winter average temperature indicated significantly. (2) The tendency rate of annual average temperature in the THRHR was 0.36℃10a?1, while the tendency rates in the Yellow River Headwater Region (YERHR), Lancangjiang River Headwater Region (LARHR) and Yangtze River Headwater Region (YARHR) were 0.37℃10a?1, 0.37℃10a?1 and 0.34℃10a?1 respectively. The temperature increased significantly in the south of Yushu County and the north of Nangqian County. The rising trends of temperature in winter and autumn were higher than the upward trends in spring and summer. (3) The abrupt changes of annual, summer, autumn and winter average temperature were found in the THRHR, LARHR and YARHR, and were detected for the summer and autumn average temperature in the YERHR. The abrupt changes of annual and summer average temperatures were mainly in the late 1990s, while the abrupt changes of autumn and winter average temperatures ap-peared primarily in the early 1990s and the early 21st century respectively. (4) With the global warming, the diversities of altitude and underlying surface in different parts of the Tibetan Plateau were possibly the main reasons for the high increasing rate of temperature in the THRHR.  相似文献   

5.
Based on the GIMMS AVHRR NDVI data(8 km spatial resolution) for 1982–2000, the SPOT VEGETATION NDVI data(1 km spatial resolution) for 1998–2009, and observational plant biomass data, the CASA model was used to model changes in alpine grassland net primary production(NPP) on the Tibetan Plateau(TP). This study will help to evaluate the health conditions of the alpine grassland ecosystem, and is of great importance to the promotion of sustainable development of plateau pasture and to the understanding of the function of the national ecological security shelter on the TP. The spatio-temporal characteristics of NPP change were investigated using spatial statistical analysis, separately on the basis of physico-geographical factors(natural zone, altitude, latitude and longitude), river basin, and county-level administrative area. Data processing was carried out using an ENVI 4.8 platform, while an ArcGIS 9.3 and ANUSPLIN platform was used to conduct the spatial analysis and mapping. The primary results are as follows:(1) The NPP of alpine grassland on the TP gradually decreases from the southeast to the northwest, which corresponds to gradients in precipitation and temperature. From 1982 to 2009, the average annual total NPP in the TP alpine grassland was 177.2×1012gC yr-1(yr represents year), while the average annual NPP was 120.8 gC m-2yr-1.(2) The annual NPP in alpine grassland on the TP fluctuates from year to year but shows an overall positive trend ranging from 114.7 gC m-2yr-1in 1982 to 129.9 gC m-2yr-1in 2009, with an overall increase of 13.3%; 32.56% of the total alpine grassland on the TP showed a significant increase in NPP, while only 5.55% showed a significant decrease over this 28-year period.(3) Spatio-temporal characteristics are an important control on annual NPP in alpine grassland: a) NPP increased in most of the natural zones on the TP, only showing a slight decrease in the Ngari montane desert-steppe and desert zone. The positive trend in NPP in the high-cold shrub-meadow zone, high-cold meadow steppe zone and high-cold steppe zone is more significant than that of the high-cold desert zone; b) with increasing altitude, the percentage area with a positive trend in annual NPP follows a trend of"increasing-stable-decreasing", while the percentage area with a negative trend in annual NPP follows a trend of "decreasing-stable-increasing", with increasing altitude; c) the variation in annual NPP with latitude and longitude co-varies with the vegetation distribution; d) the variation in annual NPP within the major river basins has a generally positive trend, of which the growth in NPP in the Yellow River Basin is most significant. Results show that, based on changes in NPP trends, vegetation coverage and phonological phenomenon with time, NPP has been declining in certain places successively, while the overall health of the alpine grassland on the TP is improving.  相似文献   

6.
A major proportion of discharge in the Aksu River is contributed from snow-and glacier-melt water.It is therefore essential to understand the cryospheric dynamics in this area for water resource management.The MODIS MOD10A2 remotesensing database from March 2000 to December 2012 was selected to analyze snow cover changes.Snow cover varied significantly on a temporal and spatial scale for the basin.The difference of the maximum and minimum Snow Cover Fraction(SCF)in winter exceeded 70%.On average for annual cycle,the characteristic of SCF is that it reached the highest value of 53.2%in January and lowest value of 14.7%in July and the distributions of SCF along with elevation is an obvious difference between the range of 3,000 m below and 3,000 m above.The fluctuation of annual average snow cover is strong which shows that the spring snow cover was on the trend of increasing because of decreasing temperatures for the period of 2000-2012.However,temperature in April increased significantly which lead to more snowmelt and a decrease of snow cover.Thus,more attention is needed for flooding in this region due to strong melting of snow.  相似文献   

7.
The ratio of transpiration to evapotranspiration(T/ET) is a key parameter for quantifying water use efficiency of ecosystems and understanding the interaction between ecosystem carbon uptake and water cycling in the context of global change. The estimation of T/ET has been paid increasing attention from the scientific community in recent years globally. In this paper, we used the Priestly-Taylor Jet Propulsion Laboratory Model(PT-JPL) driven by regional remote sensing data and gridded meteorological data, to simulate the T/ET in forest ecosystems along the North-South Transect of East China(NSTEC) during 2001–2010, and to analyze the spatial distribution and temporal variation of T/ET, as well as the factors influencing the variation in T/ET. The results showed that:(1) The PT-JPL model is suitable for the simulation of evapotranspiration and its components of forest ecosystems in Eastern China, and has relatively good stability and reliability.(2) Spatial distribution of T/ET in forest ecosystems along NSTEC was heterogeneous, i.e., T/ET was higher in the north and lower in the south, with an averaged value of 0.69; and the inter-annual variation of T/ET showed a significantly increasing trend, with an increment of 0.007/yr(p0.01).(3) Seasonal and inter-annual variations of T/ET had different dominant factors. Temperature and EVI can explain around 90%(p0.01) of the seasonal variation in T/ET, while the inter-annual variation in T/ET was mainly controlled by EVI(53%, p0.05).  相似文献   

8.
Based on the daily runoff data from 20 hydrological stations above the Bengbu Sluice in the Huaihe River Basin during 1956-2010, run test, trend test and Mann-Kendall test are used to analyze the variation trend of annual maximum runoff series. The annual maximum series (AM) and peaks over threshold series (POT) are selected to describe the extreme distributions of generalized extreme value distribution (GEV) and generalized Pareto distribution (GPD). Temporal and spatial variations of extreme runoff in the Huaihe River Basin are analyzed. The results show that during the period 1956-2010 in the Huaihe River Basin, annual maximum runoff at 10 stations have a decreasing trend, while the other 10 stations have an unobvious increasing trend. The maximum runoff events almost occurred in the flood period during the 1960s and 1970s. The extreme runoff events in the Huaihe River Basin mainly occurred in the mainstream of the Huaihe River, Huainan mountainous areas, and Funiu mountainous areas. Through Kolmogorov-Smirnov test, GEV and GPD distributions can be well fitted with AM and POT series respectively. Percentile value method, mean excess plot method and certain numbers of peaks over threshold method are used to select threshold, and it is found that percentile value method is the best of all for extreme runoff in the Huaihe River Basin.  相似文献   

9.
Using daily temperature data from 599 Chinese weather stations during 1961–2007, the length change trends of four seasons during the past 47 years were analyzed. Results show that throughout the region, four seasons’ lengths are: spring becomes shorter (-0.8 d/10yrs), summer becomes longer (3.2 d/10yrs), autumn (-0.5 d/10yrs) and winter (-1.6 d/10yrs) becomes shorter. This trend is different in spatial distribution, namely it is very obvious in northern than southern China, and also remarkable in eastern than western China. Summer change is most obvious, but autumn has little change comparatively. This trend is highly obvious in North, East, Central and South China. In the Southwest starting in the 21st century, summer becomes longer and winter shortens. The trend in the Plateau region since the 1980s is that spring becomes longer and winter shortens. The average annual temperature increased during the past 47 years, and the change of the average annual temperature precedes seasons’ length. Thus, the average annual temperature has a certain influence on the length change of seasons.  相似文献   

10.
Estuarine wetlands serve as a natural barrier to remove the land-generated pollut-ants and attenuate the pollutant load from the land to the sea. As one of the most important estuarine wetlands, the Yangtze estuarine wetlands have attracted particular interests in the biogeochemical studies of nutrients. The objectives of this study were to characterize the seasonal and spatial distribution of dissolved inorganic nitrogen (DIN) fluxes across the sediment-water interface; to calculate the total DIN fluxes in a year and different seasons; and to evaluate the DIN removing capability of the sediment in the tidal wetlands of the Yangtze Estuary. The spatial distribution of DIN fluxes shows complicated seasonal variations and spatial differences. The annual DIN fluxes range from -22.22 mmol N m-2 h-1 to 19.54 mmolN m-2 h-1, with an average of -1.48±1.34 mmol N m-2 h-1. The tidal wetlands in the Yangtze Estuary behave as a source of water DIN in spring when DIN is released from sediment into overlying water, and the released amount of DIN is 1.33×104 tons of nitrogen (T N). In sum-mer, autumn and winter, the sediment absorbs the DIN from the overlying water, and the absorbed amounts of DIN are 4.36×104 T N, 6.81×104 T N and 2.24×104 T N, respectively. The average amount of DIN in overlying water of the Yangtze Estuary is 52.6×104 T N yr-1, and the perennial average amount of DIN absorbed from the overlying water by the sediment is 12.1×104 T N yr-1. The annual DIN elimination rate of the tidal wetlands was 23.0%.  相似文献   

11.
Solar energy is clean and renewable energy that plays an important role in mitigating impacts of environmental problems and climate change.Solar radiation received on the earth's surface determines the efficiency of power generation and the location and layout of photovoltaic arrays.In this paper,the average daily solar radiation of 77 stations in China from 1957 to 2016 was analyzed in terms of spatial and temporal characteristics.The results indicate that Xinjiang,the Qinghai-Tibet Plateau,North,Central and East China show a decreasing trend with an average of 2.54×10?3MJ/(m2?10a),while Northwest and Northeast China are basically stabilized,and Southwest China shows a clear increasing trend with an average increase of 1.79×10?3MJ/(m2?10a).The average daily solar radiation in summer and winter in China from 1957 to 2016 was 18.74 MJ/m2and 9.09 MJ/m2,respectively.Except for spring in Northwest,East and South China,and summer in northeast China,the average daily solar radiation in all other regions show a downward trend.A critical point for the change is 1983 in the average daily solar radiation.Meanwhile,large-scale(25?30 years)oscillation changes are more obvious,while small-scale(5?10 years)changes are stable and have a global scope.The average daily solar radiation shows an increasing-decreasing gradient from west to east,which can be divided into three areas west of 80°E,80°E?100°E and east of 100°E.The average daily solar radiation was 2.07 MJ/m2in the 1980s,and that in 1990s lower than that in the 1960s and the 1970s.The average daily solar radiation has rebounded in the 21st century,but overall it is still lower than the average daily solar radiation from 1957 to 2016(13.87 MJ/m2).  相似文献   

12.
The Yarlung Zangbo River (YR) is the highest great river in the world, and its basin is one of the centers of human economic activity in Tibet. Using 10 meteorological stations over the YR basin in 1961–2005, the spatial and temporal characteristics of temperature and precipitation as well as potential evapotranspiration are analyzed. The results are as follows. (1) The annual and four seasonal mean air temperature shows statistically significant increasing trend, the tendency is more significant in winter and fall. The warming in Lhasa river basin is most significant. (2) The precipitation is decreasing from the 1960s to the 1980s and increasing since the 1980s. From 1961 to 2005, the annual and four seasonal mean precipitation is increasing but not statistically significant, especially in fall and spring. The increasing precipitation rates are more pronounced in Niyangqu and Palong Zangbo river basins, the closer to the upper YR is, the less precipitation increasing rate would be. (3) The annual and four seasonal mean potential evapotranspiration has decreased, especially after the 1980s, and most of it happens in winter and spring. The decreasing trend is most significant in the middle YR and Nianchu river basin. (4) Compared with the Mt. Qomolangma region, Tibetan Plateau, China and global average, the magnitudes of warming trend over the YR basin since the 1970s exceed those areas in the same period, and compared with the Tibetan Plateau, the magnitudes of precipitation increasing and potential evapotranspiration decreasing are larger, suggesting that the YR basin is one of the most sensitive areas to global warming.  相似文献   

13.
Health inequality is an increasing concern worldwide.Using the coefficient of variation,Theil index,exploratory spatial data analysis,and spatial panel econometric model,we examined the regional inequality,spatio-temporal dynamic patterns,and key factors in the health status of Chinese residents from 2003 to 2013.We found that China's residential health index(RHI) decreased from 0.404 to 0.295 in 2003–2013 at an annual rate of 2.698%.Spatially,resident health status,based on the RHI,has improved faster in the western region than in the eastern and central regions.Inequality in resident health status continued to increase between 2003 and 2013;inequality between regions decreased,but health status inequality expanded within regions.Furthermore,disparities in health status grew faster in western regions than in the eastern and central regions.The spatial distribution of resident health status formed a "T-shaped" pattern across China,decreasing from east to center then to the west with a symmetric decrease north and south.Using the change in Moran's I from 2003 to 2008 and 2013,we found that the distribution of resident health status across China has narrowed.All the hot spots and cold spots have decreased,but they are also stable.Resident health status formed a stable cold spot in the western regions,while the east coastal area formed a stable hot spot.Selected explanatory variables have significant direct impacts on resident health status in China:increasing per capita GDP,per capita spending on health,and urbanization,and improving environmental quality all lead to better resident health status.Finally,we highlight the need for additional research on regional inequality of resident health status across multiple time,spatial,and factor domains.  相似文献   

14.
On the Tibetan Plateau, the alpine meadow is the most widespread vegetation type. The alpine meadow has a low biological productivity and low vegetation coverage in the growing season. The daytime NEE between the atmosphere and the alpine meadow ecosystem was influenced by solar radiation. To analyze the characteristics of change in NEE and to calculate the parameters related to photosynthesis and respiration in different solar radiation environments, the NEE measurements were taken in Damxung from July to August in 2003, 2004, 2005 and 2006 using the eddy covariance technique. Solar radiation was grouped into three levels according to the net radiation, which was more than 155 W m-2 d-1 on clear days, 144±5 W m-2 d-1 on partly cloudy days and less than 134 W m-2 d-1 on cloudy days. The diurnal relationships between NEE and PAR varied with differences in solar radiation, which was a rectangular hyperbola form on clear days, two different concave curves on partly cloudy days and an irregular triangle form on cloudy days. The mean CO2 absorption rate showed a decreasing trend with increasing solar radiation. The daytime absorption maximum occurred around 10:00 on clear days with an average of slightly less –0.2 mg m-2 d-1, around 11:00 on partly cloudy days with an average of about –0.2 mg m-2 d-1, and around 12:00 on cloudy days with an average of about –0.25 mg m-2 d-1. As solar radiation increased, the Amax and the Q10 decreased. However, the R10 increased and the maximum of the α occurred on partly cloudy days. The optimum net solar radiation was about 134–155 W m-2 d-1, which induced a PAR of about 1800-2000 μmol m-2 s-1 and soil temperature at a depth of 5 cm of about 14℃. Therefore, on the Tibetan Plateau, the alpine meadow ecosystem will have a higher carbon absorption potential while solar radiation decreases in the future.  相似文献   

15.
《极地研究》1991,2(1):10-21
From the surface mass accumulation data in year of 1987/88, the distribution and variation of annual mass balance on Mizuho Plateau are discussed. The authors also analyze the effects of shortterm climatic and topographical variations on the mass balance. It is found that there are some differences in spatial distribution and annual average state in the year of 1987/88 and other years. Ia the area at elevation lower than 550 m near the coast, the mass balance appears to be negative. The annual mass balance over 80 km distance from S_(16) to inland is 0.84m snow depth. A low mass balance zone from 80 km site to Mizuho Station, is considered to be only 0.14 m snow depth. It is found from the comparison of mass balances that the mass-balance level on the glaciers in West China is 9 times higher than that on Mizuho Plateau, where the massbalance level appears to be low accumulative and low expensive, but inverse in middle and low latitude regions, such as on glaciers in West China. The effects of short-term  相似文献   

16.
中国近代北方极端干湿事件的演变规律   总被引:2,自引:0,他引:2  
Using monthly precipitation and monthly mean temperature, a surface humid index was proposed. According to the index, the distributed characteristics of extreme dryness has been fully analyzed. The results indicated that there is an obvious increasing trend of extreme dryness in the central part of northern China and northeastern China in the last 10 years, which shows a high frequency period of extreme dryness; while a low frequency period in the regions during the last 100 years. Compared with variation trend of the temperature in these regions, the region of high frequent extreme dryness is consistent with the warming trend in the same region.  相似文献   

17.
Based on the GIMMS AVHRR NDVI data (8 km spatial resolution) for 1982-2000, the SPOT VEGETATION NDVI data (1 km spatial resolution) for 1998-2009, and observa- tional plant biomass data, the CASA model was used to model changes in alpine grassland net primary production (NPP) on the Tibetan Plateau (TP). This study will help to evaluate the health conditions of the alpine grassland ecosystem, and is of great importance to the pro- motion of sustainable development of plateau pasture and to the understanding of the func- tion of the national ecological security shelter on the TP. The spatio-temporal characteristics of NPP change were investigated using spatial statistical analysis, separately on the basis of physico-geographical factors (natural zone, altitude, latitude and longitude), river basin, and county-level administrative area. Data processing was carried out using an ENVI 4.8 platform, while an ArcGIS 9.3 and ANUSPLIN platform was used to conduct the spatial analysis and mapping. The primary results are as follows: (1) The NPP of alpine grassland on the TP gradually decreases from the southeast to the northwest, which corresponds to gradients in precipitation and temperature. From 1982 to 2009, the average annual total NPP in the TP alpine grassland was 177.2x1012 gC yrl(yr represents year), while the average annual NPP was 120.8 gC m^-2 yr^-1. (2) The annual NPP in alpine grassland on the TP fluctuates from year to year but shows an overall positive trend ranging from 114.7 gC m^-2 yr^-1 in 1982 to 129.9 gC m^-2 yr^-1 in 2009, with an overall increase of 13.3%; 32.56% of the total alpine grassland on the TP showed a significant increase in NPP, while only 5.55% showed a significant decrease over this 28-year period. (3) Spatio-temporal characteristics are an important control on an- nual NPP in alpine grassland: a) NPP increased in most of the natural zones on the TP, only showing a slight decrease in the Ngari montane desert-steppe and desert zone. The positive trend in NPP in the high-cold shrub-meadow zone, high-cold meadow steppe zone and high-cold steppe zone is more significant than that of the high-cold desert zone; b) with in- creasing altitude, the percentage area with a positive trend in annual NPP follows a trend of "increasing-stable-decreasing", while the percentage area with a negative trend in annual NPP follows a trend of "decreasing-stable-increasing", with increasing altitude; c) the varia- tion in annual NPP with latitude and longitude co-varies with the vegetation distribution; d) the variation in annual NPP within the major river basins has a generally positive trend, of which the growth in NPP in the Yellow River Basin is most significant. Results show that, based on changes in NPP trends, vegetation coverage and phonological phenomenon with time, NPP has been declining in certain places successively, while the overall health of the alpine grassland on the TP is improving.  相似文献   

18.
过去300年大兴安岭北部气候变化特征(英文)   总被引:1,自引:0,他引:1  
The Greater Khingan Mountains(Daxinganling) are China's important ecological protective screen and also the region most sensitive to climate changes. To gain an in-depth understanding and reveal the climate change characteristic in this high-latitude, cold and data-insufficient region is of great importance to maintaining ecological safety and corresponding to global climate changes. In this article, the annual average temperature, precipitation and sunshine duration series were firstly constructed using tree-ring data and the meteorological observation data. Then, using the climate tendency rate method, moving-t-testing method, Yamamoto method and wavelet analysis method, we have investigated the climate changes in the region during the past 307 years. Results indicate that, since 1707, the annual average temperature increased significantly, the precipitation increased slightly and the sunshine duration decreased, with the tendency rates of 0.06℃/10 a, 0.79 mm/10 a and –5.15 h/10 a, respectively(P≤0.01). Since the 21 st century, the period with the greatest increase of the annual average temperature(also with the greatest increase of precipitation) corresponds to the period with greatest decrease of sunshine duration. Three sudden changes of the annual average temperature and sunshine duration occurred in this period while two sudden changes of precipitation occurred. The strong sudden-change years of precipitation and sunshine duration are basically consistent with the sudden-change years of annual average temperature, suggesting that in the mid-1860 s, the climatic sudden change or transition really existed in this region. In the time domain, the climatic series of this region exhibit obvious local variation characteristics. The annual average temperature and sunshine duration exhibit the periodic variations of 25 years while the precipitation exhibits a periodic variation of 20 years. Based on these periodic characteristics, one can infer that in the period from 2013 to 2030, the temperature will be at a high-temperature stage, the precipitation will be at an abundant-precipitation stage and the sunshine duration will be at an less-sunshine stage. In terms of spatial distribution, the leading distribution type of the annual average temperature in this region shows integrity, i.e., it is easily higher or lower in the whole region; and the second distribution type is more(or less) in the southwest parts and less(or more) in the northeast parts. Precipitation and sunshine duration exhibit complex spatial distribution and include fourspatial distribution types. The present study can provide scientific basis for the security investigation of homeland, ecological and water resources as well as economic development programming in China's northern borders.  相似文献   

19.
In this study, the spatial distribution and changing trends of agricultural heat and precipitation resources in Northeast China were analyzed to explore the impacts of future climate changes on agroclimatic resources in the region. This research is based on the output meteorological data from the regional climate model system for Northeast China from 2005 to 2099, under low and high radiative forcing scenarios RCP4.5(low emission scenario) and RCP8.5(high emission scenario) as proposed in IPCC AR5. Model outputs under the baseline scenario, and RCP4.5 and RCP8.5 scenarios were assimilated with observed data from 91 meteorological stations in Northeast China from 1961 to 2010 to perform the analyses. The results indicate that:(1) The spatial distribution of temperature decreases from south to north, and the temperature is projected to increase in all regions, especially under a high emission scenario. The average annual temperature under the baseline scenario is 7.70°C, and the average annual temperatures under RCP4.5 and RCP8.5 are 9.67°C and 10.66°C, respectively. Other agricultural heat resources change in accordance with temperature changes. Specifically, the first day with temperatures ≥10°C arrives 3 to 4 d earlier, the first frost date is delayed by 2 to 6 d, and the duration of the growing season is lengthened by 4 to 10 d, and the accumulated temperature increases by 400 to 700°C·d. Water resources exhibit slight but not significant increases.(2) While the historical temperature increase rate is 0.35°C/10 a, the rate of future temperature increase is the highest under the RCP8.5 scenario at 0.48°C/10 a, compared to 0.19°C/10 a under the RCP4.5 scenario. In the later part of this century, the trend of temperature increase is significantly faster under the RCP8.5 scenario than under the RCP4.5 scenario, with faster increases in the northern region. Other agricultural heat resources exhibit similar trends as temperature, but with different specific spatial distributions. Precipitation in the growing season generally shows an increasing but insignificant trend in the future, with relatively large yearly fluctuations. Precipitation in the eastern region is projected to increase, while a decrease is expected in the western region. The future climate in Northeast China will change towards higher temperature and humidity. The heat resource will increase globally, however its disparity with the change in precipitation may negatively affect agricultural activities.  相似文献   

20.
江河源区NDVI时空变化及其与气候因子的关系(英文)   总被引:5,自引:3,他引:2  
The source regions of the Yangtze and Yellow rivers are important water conservation areas of China. In recent years, ecological deterioration trend of the source regions caused by global climate change and unreasonable resource development increased gradually. In this paper, the spatial distribution and dynamic change of vegetation cover in the source regions of the Yangtze and Yellow rivers are analyzed in recent 10 years based on 1-km resolution multitemporal SPOTVGT-DN data from 1998 to 2007. Meanwhile, the correlation relationships between air temperature, precipitation, shallow ground temperature and NDVI, which is 3×3 pixel at the center of Wudaoliang, Tuotuohe, Qumalai, Maduo, and Dari meteorological stations were analyzed. The results show that the NDVI values in these two source regions are increasing in recent 10 years. Spatial distribution of NDVI which was consistent with hydrothermal condition decreased from southeast to northwest of the source regions. NDVI with a value over 0.54 was mainly distributed in the southeastern source region of the Yellow River, and most NDVI values in the northwestern source region of the Yangtze River were less than 0.22. Spatial changing trend of NDVI has great difference and most parts in the source regions of the Yangtze and Yellow rivers witnessed indistinct change. The regions with marked increasing trend were mainly distributed on the south side of the Tongtian River, some part of Keqianqu, Tongtian, Chumaer, and Tuotuo rivers in the source region of the Yangtze River and Xingsuhai, and southern Dari county in the source region of the Yellow River. The regions with very marked increasing tendency were mainly distributed on the south side of Tongtian Rriver and sporadically distributed in hinterland of the source region of the Yangtze River. The north side of Tangula Range in the source region of the Yangtze River and Dari and Maduo counties in the source region of the Yellow River were areas in which NDVI changed with marked decreasing tendency. The NDVI change was980 Journal of Geographical Sciences positively correlated with average temperature, precipitation and shallow ground temperature. Shallow ground temperature had the greatest effect on NDVI change, and the second greatest factor influencing NDVI was average temperature. The correlation between NDVI and shallow ground temperature in the source regions of the Yangtze and Yellow rivers increased significantly with the depth of soil layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号