首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Field results of shallow seismic reflections obtained with a propane-oxygen detonator (POD) are presented. The survey site was in a tin-mining area of the Kinta Valley in Malaysia. The shallow and irregular limestone bedrock is overlain by alluvial “tailing” and virgin sediments. Sizes of such mining areas can range from about 320 ± 320 m2 to 900 ± 900 m2. The survey was intended to delineate the topography of the bedrock, which is of vital importance in tin ore exploration and exploitation. The equipment included single- and 12-channel signal enhancement seismographs, the POD, a hammer and thumper. The inexpensive and portable POD generates directional waves of reproducible form, variable energy of high frequency, and only a few surface waves at short offsets. Reflections at around 200 Hz were obtained from the shallow bedrock at about 25 m as well as from very shallow lithological interfaces. The interpretation of seismograms is supported by drill-hole lithological sections and synthetic seismograms. The data illustrate the successful use of shallow reflections for mapping irregular bedrock. Reflection seismics can provide better horizontal and vertical details than the refraction method. Further improvements based on the data-processing flexibility of new signal enhancement seismographs and synthetic seismograms are suggested.  相似文献   

2.
Shear wave velocity–depth information is required for predicting the ground motion response to earthquakes in areas where significant soil cover exists over firm bedrock. Rather than estimating this critical parameter, it can be reliably measured using a suite of surface (non-invasive) and downhole (invasive) seismic methods. Shear wave velocities from surface measurements can be obtained using SH refraction techniques. Array lengths as large as 1000 m and depth of penetration to 250 m have been achieved in some areas. High resolution shear wave reflection techniques utilizing the common midpoint method can delineate the overburden-bedrock surface as well as reflecting boundaries within the overburden. Reflection data can also be used to obtain direct estimates of fundamental site periods from shear wave reflections without the requirement of measuring average shear wave velocity and total thickness of unconsolidated overburden above the bedrock surface. Accurate measurements of vertical shear wave velocities can be obtained using a seismic cone penetrometer in soft sediments, or with a well-locked geophone array in a borehole. Examples from thick soil sites in Canada demonstrate the type of shear wave velocity information that can be obtained with these geophysical techniques, and show how these data can be used to provide a first look at predicted ground motion response for thick soil sites.  相似文献   

3.
利用二维非均匀介质地震波传播的伪谱和有限差分混合方法,通过数值计算,讨论了松软覆盖层对隐伏断层带围陷波特征的影响.在没有覆盖层的情况下,围陷波振幅和围岩上相比明显增加,持续时间变长.覆盖层造成围岩上地面运动振幅增大,围陷波的部分能量传播到覆盖层中,使得围陷波的能量变小.随着覆盖层厚度增加,围陷波的振幅越来越小,和围岩上...  相似文献   

4.
A geophysical survey was performed at Sylvan, Manitoba, Canada (51°5′N, 97°22′W) to investigate a Lower Cretaceous kaolinite deposit. The deposit consists of zones of kaolinite, silica sand, and lignitic clay located in a series of channels formed during karsting of the underlying Palaeozoic bedrock and is covered by 3 to 5 m of glacial drift. The aim of the study was to identify cost-efficient electrical and electromagnetic (EM) geophysical methods for locating, mapping, and assessing this target. Methods applied included terrain conductivity (EM31), VLF-EM, time-domain electromagnetics (TEM), DC-resistivity, and shallow seismic refraction. The survey showed that EM methods offer a viable alternative to more expensive seismic reflection surveys in the investigation of small industrial mineral deposits. Comparison of the geophysical survey results with those of a drilling program indicated that VLF-EM and TEM were the best methods for delineating the kaolinite deposit. VLF-EM was the most cost-efficient method for delineating the kaolinite deposit over a ca. 10 ha area and for exploring for further deposits within several kilometers of the main site. Joint interpretation of the in-phase and quadrature response is required for increased reliability in identifying the major kaolinite-filled channels. The TEM method provided more detailed resolution of the deposit than VLF-EM and was the optimal method for assessing its thickness. However, TEM data acquisition is too slow and inefficient for reconnaissance mapping of 10 ha sites. EM31 surveying is useful for defining the palaeokarst surface and overburden thickness in areas surrounding the deposit but cannot be used reliably for mapping the kaolinite deposit itself. The combined geophysical survey results show the kaolinite deposit at Sylvan to be located in a channel which is 100 m wide and about 25 m deep. The deposit has a bulk electrical conductivity between 13 mS m−1 and 25 mS m−1 consistent with low cation exchange capacity values measured for the kaolinite. The palaeokarst surface surrounding the deposit contains a series of sinuous, discontinuous, depressions with a depth variations of several meters.  相似文献   

5.
Identifying the sources of crustal reflections is essential for deriving more geological information from deep crustal reflection profiles. Theoretical and model studies help place constraints on the role of compositional variation in producing deep crustal reflections. Analysis of laboratory-derived velocities and densities of rock types typical for the continental crust indicates that reflection coefficients are generally small, but significantly, 17% of the possible reflection coefficients have magnitudes between 0.1 and 0.2. Comparison between reflection coefficients derived from well logs and reflections observed in associated seismic profiles indicates that constructive interference associated with geological layering is at least as important as the magnitude of the reflection coefficients for producing detectable reflections. Constructive interference can increase reflection amplitude by two to three times but is limited to a relatively narrow range of layer thickness. For a typical 10–40 Hz seismic wavelet and typical crustal velocities of about 6 km/s, constructive interference occurs for layer thickness ranging between about 35 and 80 m. Layers thinner than 35 m interfere destructively. If reflections result from compositional variation, seismic models of hypothetical and observed geologic relations provide analogs for interpreting complex reflection patterns observed in deep crustal reflection profiles. Such models show reflection patterns similar to those observed in the reflection profiles. The models indicate that the reflections could originate in the complexly deformed and intruded terranes that are common in the crystalline crust and it may not be necessary to appeal to unobserved phenomena such as special lamellae or fluid-filled fractures to explain the reflections.  相似文献   

6.
Two high-resolution reflection seismic profiles were acquired in the Heby area of eastern Sweden over glacial deposits for the purpose of mapping groundwater resources. The majority of shot points were located in clay resulting in good quality data along most of the profiles. On stacked and migrated sections, the uppermost clay is about 20 m thick and is characterized by its subhorizontal reflectivity. Sand/gravel deposits below it contain more dipping interfaces and have a chaotic reflectivity pattern. Depth to bedrock is interpreted to be 90 and 65 m on the respective profiles and occurs in about a 100-m-wide trough on both profiles. Reflections from the tops of sandy gravel zones generally have higher amplitudes. Clear reflections from a thin silt layer (20 cm thick) at about 10-m depth are observed on one of the profiles. Elastic finite difference modeling and the observation of this reflection in shot gathers show that the reflection is not an artifact of the acquisition nor the processing. The modeling also shows that there is no marked low-velocity waveguide in the near surface, but that an effective low Q zone may be present. Comparison with refraction profiling on the other profile shows that there is better agreement between the reflection seismic results and penetration tests than the refraction results with these tests. Both profiles allow the thickness of the overlying clay layers to be determined, as well as the thickness of the underlying sand/gravel deposits. This is important for estimating the amount of groundwater resources in an area.  相似文献   

7.
Blast damage to the tops of coal seams due to incorrect blast standoff distances is a serious issue, costing the industry in Australia about one open‐cut mine for every ten operating mines. The current approach for mapping coal‐seam tops is through drilling and pierce‐point logging. To provide appropriate depth control with accuracy of ±0.2 m for blast hole drilling, it is typically necessary to drill deep reconnaissance boreholes on a 50 m x 50 m grid well in advance of overburden removal. Pierce‐point mapping is expensive and can be inaccurate, particularly when the seam is disturbed by rolls, faults, and other obstacles.Numerical modelling and prototype‐field testing are used in this paper to demonstrate the feasibility of two seismic‐while‐drilling‐based approaches for predicting the approach to the top of coal during blast hole drilling: (i) reverse “walk‐away” vertical seismic profiling recording, in which the drill bit vibration provides the source signal and the geophones are planted on the surface near the drill rig, and (ii) in‐seam seismic recording, in which channel waves, driven by the coupling to the coal of the seismic signal emitted by the approaching drill bit, are guided by the seam to geophones located within the seam in nearby or remote boreholes.  相似文献   

8.
We present the results of a shear-wave reflection experiment and in situ measurements in opencast lignite exploration. Near-surface coal seams have lower shear-wave velocities (~ 200 m/s) and lower densities than sand and clay layers. Due to strong reflection coefficients, a shear-wave reflection survey provides a powerful tool in lignite prospecting. Due to shorter seismic wavelengths shear waves will yield a higher resolution of shallow subsurface structure than compressional waves. Low shear-wave velocities and strong lateral velocity variations, however, require a dense data acquisition in the field. The variation of stacking velocities can exceed ± 15% within a profile length of 300 m. The different steps in processing and interpretation of results are described with actual records. The final CMP-stack shows steep-angle fault zones with maximum dislocations of 20 m within a coal seam.  相似文献   

9.
被动源面波和体波成像在内蒙古浅覆盖区勘探应用   总被引:1,自引:0,他引:1  
地震勘探具有勘探深度和分辨率的优势,在矿产勘探中多被采用.但主动源反射地震具有成本高、在矿区采集困难等难题,限制了其广泛应用.无需主动源激发、利用天然噪声的被动源地震应用于勘探,可成为其低成本替代选项.本文在内蒙古浅覆盖区矿区进行了被动源勘探试验,采用相关计算获得拟炮集记录,并基于频率域信噪比计算,在生成拟炮集前实现了...  相似文献   

10.
Reflection seismic data were acquired within two field campaigns in the Blötberget, Ludvika mining area of central Sweden, for deep imaging of iron-oxide mineralization that were known to extend down to 800–850 m depth. The two surveys conducted in years 2015 and 2016, one employing a seismic landstreamer and geophones connected to wireless recorders, and another one using cabled geophones and wireless recorders, aimed to delineate the geometry and depth extent of the iron-oxide mineralization for when mining commences in the area. Even with minimal and conventional processing approaches, the merged datasets provide encouraging information about the depth continuation of the mineralized horizons and the geological setting of the study area. Multiple sets of strong reflections represent a possible continuation of the known deposits that extend approximately 300 m further down-dip than the known 850 m depth obtained from historical drilling. They show excellent correlation in shape and strength with those of the Blötberget deposits. Furthermore, several reflections in the footwall of the known mineralization can potentially be additional resources underlying the known ones. The results from these seismic surveys are encouraging for mineral exploration purposes given the good quality of the final section and fast seismic surveys employing a simple cost-effective and easily available impact-type seismic source.  相似文献   

11.
Interlayer slipping breccia‐type gold deposit – a new type of gold deposit, defined recently in the northern margin of the Jiaolai Basin, Shandong Province, China – occurs in interlayer slip faults distributed along the basin margin. It has the features of large orebody thickness (ranging from 14 m to 46 m, with an average thickness of 30 m), shallow embedding (0–50 m thickness of cover), low tenor of gold ore (ranging from 3 g/t to 5 g/t), easy mining and ore dressing. This type of gold deposit has promising metallogenic forecasting and potential for economic exploitation. A ground gamma‐ray survey in the Pengjiakuang gold‐ore district indicates that the potassium/thorium ratio is closely related to the mineralization intensity, i.e. the larger the potassium/thorium ratio, the higher the mineralization. The gold mineralized alteration zone was defined by a potassium/thorium ratio of 0.35. A seismic survey confirms the location of the top and bottom boundaries and images various features within the Pengjiakuang gold mineralization belt. The gold‐bearing shovel slipped belt dips to the south at an angle of 50–55° at the surface and 15–20° at depth. The seismic profile is interpreted in terms of a structural band on the seismic section characterized by a three‐layered model. The upper layer is represented by weakly discontinuous reflections that represent the overlying conglomerates. A zone of stronger reflections representing the interlayer slip fault (gold‐bearing mineralized zone) is imaged within the middle of the section, while the strongest reflections are in the lower part of the section and represent metamorphic rocks at depth. At the same time, the seismic reflection survey confirms the existence of a granite body at depth, indicating that ore‐forming fluids may be related to the granite. A CSAMT survey showed that the gold‐bearing mineralized zone is a conductive layer and contains a low‐resistivity anomaly ranging from 2 Ωm to 200 Ωm.  相似文献   

12.
基于地震波及干扰信号在覆盖层与基岩分界面的衰减差异实验,分析了基岩类台基对地震波及干扰信号的选择性抑制的机理,提出台基抗干扰品质的概念。在此基础上,以昭通地震台的抗干扰改造为例,给出利用多套地震仪测定台基抗干扰品质的方法。  相似文献   

13.
Seismic detection of faults, dykes, potholes and iron-rich ultramafic pegmatitic bodies is of great importance to the platinum mining industry, as these structures affect safety and efficiency. The application of conventional seismic attributes (such as instantaneous amplitude, phase and frequency) in the hard-rock environment is more challenging than in soft-rock settings because the geology is often complex, reflections disrupted and the seismic energy strongly scattered. We have developed new seismic attributes that sharpen seismic reflections, enabling additional structural information to be extracted from hard-rock seismic data. The symmetry attribute is based on the invariance of an object with respect to transformations such as rotation and reflection; it is independent of the trace reflection amplitude, and hence a better indicator of the lateral continuity of thin and weak reflections. The reflection-continuity detector attribute is based on the Hilbert transform; it enhances the visibility of the peaks and troughs of the seismic traces, and hence the continuity of weak reflections. We demonstrate the effectiveness of these new seismic attributes by applying them to a legacy 3D seismic data set from the Bushveld Complex in South Africa. These seismic attributes show good detection of deep-seated thin (∼1.5 m thick) platinum ore bodies and their associated complex geological structures (faults, dykes, potholes and iron-rich ultramafic pegmatites). They provide a fast, cost-effective and efficient interpretation tool that, when coupled with horizon-based seismic attributes, can reveal structures not seen in conventional interpretations.  相似文献   

14.
The common depth point method of shooting in oil exploration provides a series of seismic traces which yield information about the substrata layers at one location. After normal moveout and static corrections have been applied, the traces are combined by horizontal stacking, or linear multichannel filtering, into a single record in which the primary reflections have been enhanced relative to the multiple reflections and random noise. The criterion used in optimum horizontal stacking is to maximize the signal to noise power ratio, where signal refers to the primary reflection sequence and noise includes the multiple reflections. It is shown when this criterion is equivalent to minimizing the mean square difference between the desired signal (primary reflection sequence) and the weighted horizontally stacked traces. If the seismic traces are combined by multichannel linear filtering, the primary reflection sequence will have undergone some phase and frequency distortion on the resulting record. The signal to noise power ratio then becomes less meaningful a criterion for designing the optimum linear multichannel filter, and the mean square criterion is adopted. In general, however, since more a priori information about the seismic traces is required to design the optimum linear multichannel filter than required for the optimum set of weights of the horizontal stacking process, the former will be an improvement over the latter. It becomes evident that optimum horizontal stacking is a restricted form of linear multichannel filtering.  相似文献   

15.
In this study, measurements of gravity were made to map and model the thickness of Quaternary deposits (sand and clay) overlying Ordovician limestones in a suburb of Ottawa (Orléans, Ontario). Because ground motion amplification is partly related to the thickness of unconsolidated deposits, this work helps refine the assessment of the earthquake damage potential of the area. It also helps the mapping of clay basins, which can locally exceed 100 m in thickness, where ground motion amplification can occur. Previous work, including well log data and seismic methods, have yielded a wealth of information on near-surface geology in Orléans, thereby providing the necessary constraints to test the applicability of gravity modeling in other locations where other methods cannot always be used. Some 104 gravity stations were occupied in an 8 × 12 km test area in the Orléans. Stations were accurately located with differential GPS that provided centimetric accuracy in elevation. Densities of the unconsolidated Quaternary deposits (Champlain Sea clay) determined on core samples and densities determined on limestone samples from outcrops were used to constrain models of the clay layer overlying the higher density bedrock formations (limestone). The gravity anomaly map delineates areas where clay basins attain > 100 m depth. Assuming a realistic density for the Champlain Sea clays (1.9-2.1 g/cm3), the thickness over the higher density bedrock formations (Ordovician carbonate rocks) was modeled and compared with well logs and two seismic reflection profiles. The models match quite well with the information determined from well logs and seismic methods. It was found that gravity and the thickness of unconsolidated deposits are correlated but the uncertainties in both data sets preclude the definition of a direct correlation between the two. We propose that gravity measurements at a local scale be used as an inexpensive means of mapping the thickness of unconsolidated deposits in low-density urban areas. To obtain meaningful results, three conditions must exist. Firstly, elevations of gravity stations must be measured accurately using differential GPS; secondly, that the regional gravity field must be well defined, and thirdly, that the local geology be simple enough to be realistically represented with a two-layer model.  相似文献   

16.
The common depth point method of shooting in oil exploration provides a series of seismic traces which yield information about the substrata layers at one location. After normal moveout and static corrections have been applied, the traces are combined by horizontal stacking, or linear multichannel filtering, into a single record in which the primary reflections have been enhanced relative to the multiple reflections and random noise. The criterion used in optimum horizontal stacking is to maximize the signal to noise power ratio, where signal refers to the primary reflection sequence and noise includes the multiple reflections. It is shown when this criterion is equivalent to minimizing the mean square difference between the desired signal (primary reflection sequence) and the weighted horizontally stacked traces. If the seismic traces are combined by multichannel linear filtering, the primary reflection sequence will have undergone some phase and frequency distortion on the resulting record. The signal to noise power ratio then becomes less meaningful a criterion for designing the optimum linear multichannel filter, and the mean square criterion is adopted. In general, however, since more a priori information about the seismic traces is required to design the optimum linear multichannel filter than required for the optimum set of weights of the horizontal stacking process, the former will be an improvement over the latter. It becomes evident that optimum horizontal stacking is a restricted form of linear multichannel filtering.  相似文献   

17.
The architecture of the critical zone includes the distribution, thickness, and contacts of various types of slope deposits and weathering products such as saprolite and weathered bedrock resting on solid bedrock. A quantitative analysis of architecture is necessary for many model‐driven approaches used by pedologic, geomorphic, hydrologic or biologic studies. We have used electrical resistivity tomography, a well‐established geophysical technique causing minimum surficial disturbance, to portray the subsurface electrical resistivity differences at three study sites (Green Lakes Valley; Gordon Gulch; Betasso) at the Boulder Creek Critical Zone Observatory (BcCZO). Possible limitations of the technique are discussed. Interpretation of the specific resistivity values using natural outcrops, pits, roadcuts and drilling data as ground truth information allows us to image the critical zone architecture of each site. Green Lakes Valley (3700 MASL), a glacially eroded alpine basin, shows a rather simple, split configuration with coarse blockfields and sediments, partly containing permafrost above bedrock. The critical zone in Gordon Gulch (2650 MASL), a montane basin with rolling hills, and Betasso (1925 MASL), a lower montane basin with v‐shaped valleys, is more variable due to a complex Quaternary geomorphic history. Boundaries between overlying stratified slope deposits and saprolite were identified at mean depths of 3.0 ± 2.2 m and 4.1 ± 3.6 m in the respective sites. The boundary between saprolite and weathered bedrock is deeper in Betasso at 5.8 ± 3.7 m, compared with 4.3 ± 3.0 m in Gordon Gulch. In general, the data are consistent with results from seismic studies, but electrical resistivity tomography documents a 0.5–1.5 m shallower critical zone above the weathered bedrock on average. Additionally, we document high lateral variability, which results from the weathering and sedimentation history and seems to be a consistent aspect of critical zone architecture within the BcCZO. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The Ljubljana Moor basin is characterized by moderate bedrock topography and thicknesses of Quaternary lacustrine and fluvial sediments ranging from 0 to 200 m. More than 65 boreholes which reached the bedrock were drilled in the area, but their distribution in the basin is very uneven and some data from the boreholes uncertain. There are also no data on S-velocity distribution within the basin, but seismic refraction measurements pointed out a rather uniform increase of P-velocity with depth, great impedance contrast with the bedrock and relatively small lateral velocity variations. The microtremor horizontal-to-vertical spectral ratio (HVSR) method was therefore applied as a complementary tool to seismic refraction survey to map the thickness of sediments. First, microtremors were measured at the locations of boreholes which reached the bedrock and the resonance frequencies determined. The inverse power relationship between the resonance frequency and the thickness of sediments was then determined from 53 data pairs. The quality of the correlation is moderate due to possible heterogeneities in sediments and possible 3D effects in some minor areas, but the obtained parameters correspond well to the values obtained in six other European basins. Secondly, a 16 km-long discontinuous seismic refraction profile was measured across the whole basin, leaving uncovered some larger segments where active seismic measurements were not possible. Microtremors were then measured at 64 locations along the same profile, using 250 m point spacing, without leaving any gaps. The frequency–thickness relationship was used to invert resonance frequencies to depths. These were first validated using the results of the seismic refraction survey, which showed good agreement, and finally used for interpolation in the segments of missing refraction data to obtain a continuous depth profile of the bedrock. The study has shown that the microtremor method can be used as a complementary tool for mapping the thickness of unconsolidated sediments also in areas characterized by moderate bedrock topography. As the input data are always to some extent uncertain, it is important to have a sufficiently large number of borehole data to establish a frequency–thickness relationship, as well as some additional independent geophysical information for its validation.  相似文献   

19.
A traveltime inversion technique is applied to model the upper ∼40 m of the subsurface of a glaciated shield rock area in order to calculate static corrections for a multi-azimuth multi-depth walk-away vertical seismic profile and a surface seismic reflection profile. First break information from a seismic refraction survey is used in conjunction with a ray-tracing program and an iterative damped least-squares inversion algorithm to create a two-dimensional model of the subsurface. The layout of the seismic survey required crooked seismic lines and substantial gaps in the source and receiver coverage to be accounted for. Additionally, there is substantial topographical variation and a complex geology consisting of glaciofluvial sediment and glacial till overlying a crystalline bedrock. The resolution and reliability of the models is measured through a parameter perturbation technique, normalized χ2 values, root means square traveltime residuals and comparison to known geology.  相似文献   

20.
Within the framework of a large research project launched to assess the feasibility of microseismic monitoring of growing underground caverns, this specific work focuses on the analysis of the induced seismicity recorded in a salt mine environment. A local seismic network has been installed over an underground salt cavern located in the Lorraine basin (Northeast of France). The microseismic network includes four 3-components and three single component geophones deployed at depths between 30 and 125 m in cemented boreholes drilled in the vicinity of the study area. The underground cavern under monitoring is located within a salt layer at 180 m depth and it presents a rather irregular shape that can be approximated by a cylindrical volume of 50 m height and 180 m diameter. Presently, the cavern is full of saturated brine inducing a significant pressure on its walls (~2.0 MPa) to keep the overburden mechanically stable. Nevertheless some small microseismic events were recorded by the network and analyzed (approximately 2,000 events in 2 years of recording). In October 2005 and April 2007, two controlled pressure transient experiments were carried out in the cavern, in order to analyze the mechanical response of the overburden by tracking the induced microseismicity. The recorded events were mainly grouped in clusters of 3–30 s of signal duration with emergent first arrivals and rather low frequency content (between 20 and 120 Hz). Some of these events have been spatially located by travel-time picking close to the actual cavern and its immediate roof. Preliminary spectral analysis of isolated microearthquakes suggests sources with non-negligible tensile components possibly related to fluid-filled cracks. Rock-debris falling into the cavern from delamination of clay marls in the immediate roof is probably another source of seismic excitation. This was later confirmed when the most important seismic swarms occurred at the site during May 2007, accompanied by the detachment of more than 8 × 104 m3 of marly material on top of the cavern roof. In any case, no clear evidence of classical brittle ruptures in the most competent layers of the overburden has been observed during the analyzed period. Current work is focused on the discrimination of all these possible mechanisms to better understand the damage processes in the cavern overburden and to assess its final collapse hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号