首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Existing and commonly used in industry nowadays, closed‐form approximations for a P‐wave reflection coefficient in transversely isotropic media are restricted to cases of a vertical and a horizontal transverse isotropy. However, field observations confirm the widespread presence of rock beds and fracture sets tilted with respect to a reflection boundary. These situations can be described by means of the transverse isotropy with an arbitrary orientation of the symmetry axis, known as tilted transversely isotropic media. In order to study the influence of the anisotropy parameters and the orientation of the symmetry axis on P‐wave reflection amplitudes, a linearised 3D P‐wave reflection coefficient at a planar weak‐contrast interface separating two weakly anisotropic tilted tranversely isotropic half‐spaces is derived. The approximation is a function of the incidence phase angle, the anisotropy parameters, and symmetry axes tilt and azimuth angles in both media above and below the interface. The expression takes the form of the well‐known amplitude‐versus‐offset “Shuey‐type” equation and confirms that the influence of the tilt and the azimuth of the symmetry axis on the P‐wave reflection coefficient even for a weakly anisotropic medium is strong and cannot be neglected. There are no assumptions made on the symmetry‐axis orientation angles in both half‐spaces above and below the interface. The proposed approximation can be used for inversion for the model parameters, including the orientation of the symmetry axes. Obtained amplitude‐versus‐offset attributes converge to well‐known approximations for vertical and horizontal transverse isotropic media derived by Rüger in corresponding limits. Comparison with numerical solution demonstrates good accuracy.  相似文献   

2.
Subsurface rocks (e.g. shale) may induce seismic anisotropy, such as transverse isotropy. Traveltime computation is an essential component of depth imaging and tomography in transversely isotropic media. It is natural to compute the traveltime using the wavefront marching method. However, tracking the 3D wavefront is expensive, especially in anisotropic media. Besides, the wavefront marching method usually computes the traveltime using the eikonal equation. However, the anisotropic eikonal equation is highly non‐linear and it is challenging to solve. To address these issues, we present a layer‐by‐layer wavefront marching method to compute the P‐wave traveltime in 3D transversely isotropic media. To simplify the wavefront tracking, it uses the traveltime of the previous depth as the boundary condition to compute that of the next depth based on the wavefront marching. A strategy of traveltime computation is designed to guarantee the causality of wave propagation. To avoid solving the non‐linear eikonal equation, it updates traveltime along the expanding wavefront by Fermat's principle. To compute the traveltime using Fermat's principle, an approximate group velocity with high accuracy in transversely isotropic media is adopted to describe the ray propagation. Numerical examples on 3D vertical transverse isotropy and tilted transverse isotropy models show that the proposed method computes the traveltime with high accuracy. It can find applications in modelling and depth migration.  相似文献   

3.
Seismic wave propagation shows anisotropic characteristics in many sedimentary rocks. Modern seismic exploration in mountainous areas makes it important to calculate P wave travel times in anisotropic media with irregular surfaces. The challenges in this context are mainly from two aspects. First is how to tackle the irregular surface in a Cartesian coordinate system, and the other lies in solving the anisotropic eikonal equation. Since for anisotropic media the ray (group) velocity direction is not the same as the direction of the travel-time gradient, the travel-time gradient no longer serves as an indicator of the group velocity direction in extrapolating the travel-time field. Recently, a topography-dependent eikonal equation formulated in a curvilinear coordinate system has been established, which is effective for calculating first-arrival travel times in an isotropic model with an irregular surface. Here, we extend the above equation from isotropy to transverse isotropy (TI) by formulating a topography-dependent eikonal equation in TI media in the curvilinear coordinate system, and then use a fast sweeping scheme to solve the topography-dependent anisotropic eikonal equation in the curvilinear coordinate system. Numerical experiments demonstrate the feasibility and accuracy of the scheme in calculating P wave travel times in TI models with an irregular surface.  相似文献   

4.
Common‐midpoint moveout of converted waves is generally asymmetric with respect to zero offset and cannot be described by the traveltime series t2(x2) conventionally used for pure modes. Here, we present concise parametric expressions for both common‐midpoint (CMP) and common‐conversion‐point (CCP) gathers of PS‐waves for arbitrary anisotropic, horizontally layered media above a plane dipping reflector. This analytic representation can be used to model 3D (multi‐azimuth) CMP gathers without time‐consuming two‐point ray tracing and to compute attributes of PS moveout such as the slope of the traveltime surface at zero offset and the coordinates of the moveout minimum. In addition to providing an efficient tool for forward modelling, our formalism helps to carry out joint inversion of P and PS data for transverse isotropy with a vertical symmetry axis (VTI media). If the medium above the reflector is laterally homogeneous, P‐wave reflection moveout cannot constrain the depth scale of the model needed for depth migration. Extending our previous results for a single VTI layer, we show that the interval vertical velocities of the P‐ and S‐waves (VP0 and VS0) and the Thomsen parameters ε and δ can be found from surface data alone by combining P‐wave moveout with the traveltimes of the converted PS(PSV)‐wave. If the data are acquired only on the dip line (i.e. in 2D), stable parameter estimation requires including the moveout of P‐ and PS‐waves from both a horizontal and a dipping interface. At the first stage of the velocity‐analysis procedure, we build an initial anisotropic model by applying a layer‐stripping algorithm to CMP moveout of P‐ and PS‐waves. To overcome the distorting influence of conversion‐point dispersal on CMP gathers, the interval VTI parameters are refined by collecting the PS data into CCP gathers and repeating the inversion. For 3D surveys with a sufficiently wide range of source–receiver azimuths, it is possible to estimate all four relevant parameters (VP0, VS0, ε and δ) using reflections from a single mildly dipping interface. In this case, the P‐wave NMO ellipse determined by 3D (azimuthal) velocity analysis is combined with azimuthally dependent traveltimes of the PS‐wave. On the whole, the joint inversion of P and PS data yields a VTI model suitable for depth migration of P‐waves, as well as processing (e.g. transformation to zero offset) of converted waves.  相似文献   

5.
Anisotropy is often observed due to the thin layering or aligned micro‐structures, like small fractures. At the scale of cross‐well tomography, the anisotropic effects cannot be neglected. In this paper, we propose a method of full‐wave inversion for transversely isotropic media and we test its robustness against structured noisy data. Optimization inversion techniques based on a least‐square formalism are used. In this framework, analytical expressions of the misfit function gradient, based on the adjoint technique in the time domain, allow one to solve the inverse problem with a high number of parameters and for a completely heterogeneous medium. The wave propagation equation for transversely isotropic media with vertical symmetry axis is solved using the finite difference method on the cylindrical system of coordinates. This system allows one to model the 3D propagation in a 2D medium with a revolution symmetry. In case of approximately horizontal layering, this approximation is sufficient. The full‐wave inversion method is applied to a crosswell synthetic 2‐component (radial and vertical) dataset generated using a 2D model with three different anisotropic regions. Complex noise has been added to these synthetic observed data. This noise is Gaussian and has the same amplitude f?k spectrum as the data. Part of the noise is localized as a coda of arrivals, the other part is not localized. Five parameter fields are estimated, (vertical) P‐wave velocity, (vertical) S‐wave velocity, volumetric mass and the Thomsen anisotropic parameters epsilon and delta. Horizontal exponential correlations have been used. The results show that the full‐wave inversion of cross‐well data is relatively robust for high‐level noise even for second‐order parameters such as Thomsen epsilon and delta anisotropic parameters.  相似文献   

6.
A new wave equation is derived for modelling viscoacoustic wave propagation in transversely isotropic media under acoustic transverse isotropy approximation. The formulas expressed by fractional Laplacian operators can well model the constant-Q (i.e. frequency-independent quality factor) attenuation, anisotropic attenuation, decoupled amplitude loss and velocity dispersion behaviours. The proposed viscoacoustic anisotropic equation can keep consistent velocity and attenuation anisotropy effects with that of qP-wave in the constant-Q viscoelastic anisotropic theory. For numerical simulations, the staggered-grid pseudo-spectral method is implemented to solve the velocity–stress formulation of wave equation in the time domain. The constant fractional-order Laplacian approximation method is used to cope with spatial variable-order fractional Laplacians for efficient modelling in heterogeneous velocity and Q media. Simulation results for a homogeneous model show the decoupling of velocity dispersion and amplitude loss effects of the constant-Q equation, and illustrate the influence of anisotropic attenuation on seismic wavefields. The modelling example of a layered model illustrates the accuracy of the constant fractional-order Laplacian approximation method. Finally, the Hess vertical transversely isotropic model is used to validate the applicability of the formulation and algorithm for heterogeneous media.  相似文献   

7.
For pre‐stack phase‐shift migration in homogeneous isotropic media, the offset‐midpoint travel time is represented by the double‐square‐root equation. The travel time as a function of offset and midpoint resembles the shape of Cheops’ pyramid. This is also valid for transversely isotropic media with a vertical symmetry axis. In this study, we extend the offset‐midpoint travel‐time pyramid to the case of 2D transversely isotropic media with a tilted symmetry axis. The P‐wave analytical travel‐time pyramid is derived under the assumption of weak anelliptical property of the tilted transverse isotropy media. The travel‐time equation for the dip‐constrained transversely isotropic model is obtained from the depth‐domain travel‐time pyramid. The potential applications of the derived offset‐midpoint travel‐time equation include pre‐stack Kirchhoff migration, anisotropic parameter estimation, and travel‐time calculation in transversely isotropic media with a tilted symmetry axis.  相似文献   

8.
Anisotropy in subsurface geological models is primarily caused by two factors: sedimentation in shale/sand layers and fractures. The sedimentation factor is mainly modelled by vertical transverse isotropy (VTI), whereas the fractures are modelled by a horizontal transversely isotropic medium (HTI). In this paper we study hyperbolic and non‐hyperbolic normal reflection moveout for a package of HTI/VTI layers, considering arbitrary azimuthal orientation of the symmetry axis at each HTI layer. We consider a local 1D medium, whose properties change vertically, with flat interfaces between the layers. In this case, the horizontal slowness is preserved; thus, the azimuth of the phase velocity is the same for all layers of the package. In general, however, the azimuth of the ray velocity differs from the azimuth of the phase velocity. The ray azimuth depends on the layer properties and may be different for each layer. In this case, the use of the Dix equation requires projection of the moveout velocity of each layer on the phase plane. We derive an accurate equation for hyperbolic and high‐order terms of the normal moveout, relating the traveltime to the surface offset, or alternatively, to the subsurface reflection angle. We relate the azimuth of the surface offset to its magnitude (or to the reflection angle), considering short and long offsets. We compare the derived approximations with analytical ray tracing.  相似文献   

9.
We analysed the complications in laboratory velocity anisotropy measurement on shales. There exist significant uncertainties in the laboratory determination of c13 and Thomsen parameter δ. These uncertainties are primarily related to the velocity measurement in the oblique direction. For reliable estimation of c13 and δ, it is important that genuine phase velocity or group velocity be measured with minimum uncertainty. The uncertainties can be greatly reduced if redundant oblique velocities are measured. For industrial applications, it is impractical to make multiple oblique velocity measurements on multiple core plugs. We demonstrated that it is applicable to make multiple genuine oblique group velocity measurements on a single horizontal core plug. The measurement results show that shales can be classified as a typical transversely isotropic medium. There is a coupling relation between c44 and c13 in determining the directional dependence of the seismic velocities. The quasi‐P‐wave or quasi‐S‐wave velocities can be approximated by three elastic parameters.  相似文献   

10.
Converted-wave imaging in anisotropic media: theory and case studies   总被引:1,自引:0,他引:1  
Common‐conversion‐point binning associated with converted‐wave (C‐wave) processing complicates the task of parameter estimation, especially in anisotropic media. To overcome this problem, we derive new expressions for converted‐wave prestack time migration (PSTM) in anisotropic media and illustrate their applications using both 2D and 3D data examples. The converted‐wave kinematic response in inhomogeneous media with vertical transverse isotropy is separated into two parts: the response in horizontally layered vertical transverse isotrophy media and the response from a point‐scatterer. The former controls the stacking process and the latter controls the process of PSTM. The C‐wave traveltime in horizontally layered vertical transverse isotrophy media is determined by four parameters: the C‐wave stacking velocity VC2, the vertical and effective velocity ratios γ0 and γeff, and the C‐wave anisotropic parameter χeff. These four parameters are referred to as the C‐wave stacking velocity model. In contrast, the C‐wave diffraction time from a point‐scatterer is determined by five parameters: γ0, VP2, VS2, ηeff and ζeff, where ηeff and ζeff are, respectively, the P‐ and S‐wave anisotropic parameters, and VP2 and VS2 are the corresponding stacking velocities. VP2, VS2, ηeff and ζeff are referred to as the C‐wave PSTM velocity model. There is a one‐to‐one analytical link between the stacking velocity model and the PSTM velocity model. There is also a simple analytical link between the C‐wave stacking velocities VC2 and the migration velocity VCmig, which is in turn linked to VP2 and VS2. Based on the above, we have developed an interactive processing scheme to build the stacking and PSTM velocity models and to perform 2D and 3D C‐wave anisotropic PSTM. Real data applications show that the PSTM scheme substantially improves the quality of C‐wave imaging compared with the dip‐moveout scheme, and these improvements have been confirmed by drilling.  相似文献   

11.
对Christoffel公式进行Bond变换得到EDA介质的Christoffel方程,并由其非零解推导出EDA介质中视横波(qSV)、横波(SH)、视纵波(qP)的相速度、群速度、偏振向量(质点的振动方向)的三维计算公式.通过模型计算分析了具有水平对称轴的各向异性(HTI)介质和EDA介质中介质对称轴的极角和方位角对相速度、群速度及偏振向量的影响,对其随极角、方位角的变化特征进行了分析,并采用Matlab进行了数值计算,对其特征采用三维显示.通过取极角或方位角为零简化得到HTI介质和具有垂直对称轴的各向异性(VTI)介质中地震波的相速度、群速度,对EDA介质中的三维计算结果进行退化验证. 通过数值计算进一步验证了地震波相速度与EDA介质对称轴的相互关系. 结果表明,通过广角地震勘探可探明地下介质的裂隙走向及密度,从而确定灾害体产状.   相似文献   

12.
13.
The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel‐time‐based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ? of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor's series expansion of the travel‐time solution (of the eikonal equation) as a function of parameter η and azimuth angle ?. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non‐linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ?, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ? reveals that travel times are more sensitive to η than to the symmetry axis azimuth ?. Thus, η is better constrained from travel times than the azimuth. Moreover, the two‐parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ? differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ?, on the other hand, depend on the background model errors. We also propose a layer‐stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.  相似文献   

14.
Based on the theory of anisotropic elasticity and observation of static mechanic measurement of transversely isotropic hydrocarbon source rocks or rock‐like materials, we reasoned that one of the three principal Poisson's ratios of transversely isotropic hydrocarbon source rocks should always be greater than the other two and they should be generally positive. From these relations, we derived tight physical constraints on c13, Thomsen parameter δ, and anellipticity parameter η. Some of the published data from laboratory velocity anisotropy measurement are lying outside of the constraints. We analysed that they are primarily caused by substantial uncertainty associated with the oblique velocity measurement. These physical constraints will be useful for our understanding of Thomsen parameter δ, data quality checking, and predicting δ from measurements perpendicular and parallel to the symmetrical axis of transversely isotropic medium. The physical constraints should also have potential application in anisotropic seismic data processing.  相似文献   

15.
Eikonal solvers often have stability problems if the velocity model is mildly heterogeneous. We derive a stable and compact form of the eikonal equation for P‐wave propagation in vertical transverse isotropic media. The obtained formulation is more compact than other formulations and therefore computationally attractive. We implemented ray shooting for this new equation through a Hamiltonian formalism. Ray tracing based on this new equation is tested on both simple as well as more realistic mildly heterogeneous velocity models. We show through examples that the new equation gives travel times that coincide with the travel time picks from wave equation modelling for anisotropic wave propagation.  相似文献   

16.
由所建立的三维qP波相速度表示式出发,导出并解析求解各向异性介质中的频散方程,得到三维各向异性介质中的相移算子,进而将以相移算子为基础的对称非平稳相移方法推广到各向异性介质,发展了一个三维各向异性介质的深度偏移方法. 文中使用的各向异性介质的速度模型与现行的各向异性构造的速度估计方法一致,将各向同性、弱各向异性及强各向异性统一在一个模型中. 所建立的各向异性介质对称非平稳相移波场延拓算子可以同时适应速度及各向异性参数横向变化;文中给出的算例虽然是针对二维VTI介质的,但所提出的算法同样适用于三维TI介质.  相似文献   

17.
The transversely isotropic (TI) model with a tilted axis of symmetry may be typical, for instance, for sediments near the flanks of salt domes. This work is devoted to an analysis of reflection moveout from horizontal and dipping reflectors in the symmetry plane of TI media that contains the symmetry axis. While for vertical and horizontal transverse isotropy zero-offset reflections exist for the full range of dips up to 90°, this is no longer the case for intermediate axis orientations. For typical homogeneous models with a symmetry axis tilted towards the reflector, wavefront distortions make it impossible to generate specular zero-offset reflected rays from steep interfaces. The ‘missing’ dipping planes can be imaged only in vertically inhomogeneous media by using turning waves. These unusual phenomena may have serious implications in salt imaging. In non-elliptical TI media, the tilt of the symmetry axis may have a drastic influence on normal-moveout (NMO) velocity from horizontal reflectors, as well as on the dependence of NMO velocity on the ray parameter p (the ‘dip-moveout (DMO) signature’). The DMO signature retains the same character as for vertical transverse isotropy only for near-vertical and near-horizontal orientation of the symmetry axis. The behaviour of NMO velocity rapidly changes if the symmetry axis is tilted away from the vertical, with a tilt of ±20° being almost sufficient to eliminate the influence of the anisotropy on the DMO signature. For larger tilt angles and typical positive values of the difference between the anisotropic parameters ε and δ, the NMO velocity increases with p more slowly than in homogeneous isotropic media; a dependence usually caused by a vertical velocity gradient. Dip-moveout processing for a wide range of tilt angles requires application of anisotropic DMO algorithms. The strong influence of the tilt angle on P-wave moveout can be used to constrain the tilt using P-wave NMO velocity in the plane that includes the symmetry axis. However, if the azimuth of the axis is unknown, the inversion for the axis orientation cannot be performed without a 3D analysis of reflection traveltimes on lines with different azimuthal directions.  相似文献   

18.
A major complication caused by anisotropy in velocity analysis and imaging is the uncertainty in estimating the vertical velocity and depth scale of the model from surface data. For laterally homogeneous VTI (transversely isotropic with a vertical symmetry axis) media above the target reflector, P‐wave moveout has to be combined with other information (e.g. borehole data or converted waves) to build velocity models for depth imaging. The presence of lateral heterogeneity in the overburden creates the dependence of P‐wave reflection data on all three relevant parameters (the vertical velocity VP0 and the Thomsen coefficients ε and δ) and, therefore, may help to determine the depth scale of the velocity field. Here, we propose a tomographic algorithm designed to invert NMO ellipses (obtained from azimuthally varying stacking velocities) and zero‐offset traveltimes of P‐waves for the parameters of homogeneous VTI layers separated by either plane dipping or curved interfaces. For plane non‐intersecting layer boundaries, the interval parameters cannot be recovered from P‐wave moveout in a unique way. Nonetheless, if the reflectors have sufficiently different azimuths, a priori knowledge of any single interval parameter makes it possible to reconstruct the whole model in depth. For example, the parameter estimation becomes unique if the subsurface layer is known to be isotropic. In the case of 2D inversion on the dip line of co‐orientated reflectors, it is necessary to specify one parameter (e.g. the vertical velocity) per layer. Despite the higher complexity of models with curved interfaces, the increased angle coverage of reflected rays helps to resolve the trade‐offs between the medium parameters. Singular value decomposition (SVD) shows that in the presence of sufficient interface curvature all parameters needed for anisotropic depth processing can be obtained solely from conventional‐spread P‐wave moveout. By performing tests on noise‐contaminated data we demonstrate that the tomographic inversion procedure reconstructs both the interfaces and the VTI parameters with high accuracy. Both SVD analysis and moveout inversion are implemented using an efficient modelling technique based on the theory of NMO‐velocity surfaces generalized for wave propagation through curved interfaces.  相似文献   

19.
20.
Tilted transversely isotropic formations cause serious imaging distortions in active tectonic areas (e.g., fold‐and‐thrust belts) and in subsalt exploration. Here, we introduce a methodology for P‐wave prestack depth imaging in tilted transversely isotropic media that properly accounts for the tilt of the symmetry axis as well as for spatial velocity variations. For purposes of migration velocity analysis, the model is divided into blocks with constant values of the anisotropy parameters ε and δ and linearly varying symmetry‐direction velocity VP0 controlled by the vertical (kz) and lateral (kx) gradients. Since determination of tilt from P‐wave data is generally unstable, the symmetry axis is kept orthogonal to the reflectors in all trial velocity models. It is also assumed that the velocity VP0 is either known at the top of each block or remains continuous in the vertical direction. The velocity analysis algorithm estimates the velocity gradients kz and kx and the anisotropy parameters ε and δ in the layer‐stripping mode using a generalized version of the method introduced by Sarkar and Tsvankin for factorized transverse isotropy with a vertical symmetry axis. Synthetic tests for several models typical in exploration (a syncline, uptilted shale layers near a salt dome and a bending shale layer) confirm that if the symmetry‐axis direction is fixed and VP0 is known, the parameters kz, kx, ε and δ can be resolved from reflection data. It should be emphasized that estimation of ε in tilted transversely isotropic media requires using nonhyperbolic moveout for long offsets reaching at least twice the reflector depth. We also demonstrate that application of processing algorithms designed for a vertical symmetry axis to data from tilted transversely isotropic media may lead to significant misfocusing of reflectors and errors in parameter estimation, even when the tilt is moderate (30°). The ability of our velocity analysis algorithm to separate the anisotropy parameters from the velocity gradients can be also used in lithology discrimination and geologic interpretation of seismic data in complex areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号