首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the Norwegian North Sea, the Sleipner field produces gas with a high CO2 content. For environmental reasons, since 1996, more than 11 Mt of this carbon dioxide (CO2) have been injected in the Utsira Sand saline aquifer located above the hydrocarbon reservoir. A series of seven 3D seismic surveys were recorded to monitor the CO2 plume evolution. With this case study, time‐lapse seismics have been shown to be successful in mapping the spread of CO2 over the past decade and to ensure the integrity of the overburden. Stratigraphic inversion of seismic data is currently used in the petroleum industry for quantitative reservoir characterization and enhanced oil recovery. Now it may also be used to evaluate the expansion of a CO2 plume in an underground reservoir. The aim of this study is to estimate the P‐wave impedances via a Bayesian model‐based stratigraphic inversion. We have focused our study on the 1994 vintage before CO2 injection and the 2006 vintage carried out after a CO2 injection of 8.4 Mt. In spite of some difficulties due to the lack of time‐lapse well log data on the interest area, the full application of our inversion workflow allowed us to obtain, for the first time to our knowledge, 3D impedance cubes including the Utsira Sand. These results can be used to better characterize the spreading of CO2 in a reservoir. With the post‐stack inversion workflow applied to CO2 storage, we point out the importance of the a priori model and the issue to obtain coherent results between sequential inversions of different seismic vintages. The stacking velocity workflow that yields the migration model and the a priori model, specific to each vintage, can induce a slight inconsistency in the results.  相似文献   

2.
CO2 has been injected into the saline aquifer Utsira Fm at the Sleipner field since 1996. In order to monitor the movement of the CO2 in the sub‐surface, the seventh seismic monitor survey was acquired in 2010, with dual sensor streamers which enabled optimal towing depths compared to previous surveys. We here report both on the time‐lapse observations and on the improved resolution compared to the conventional streamer surveys. This study shows that the CO2 is still contained in the subsurface, with no indications of leakage. The time‐lapse repeatability of the dual sensor streamer data versus conventional data is sufficient for interpreting the time‐lapse effects of the CO2 at Sleipner, and the higher resolution of the 2010 survey has enabled a refinement of the interpretation of nine CO2 saturated layers with improved thickness estimates of the layers. In particular we have estimated the thickness of the uppermost CO2 layer based on an analysis of amplitude strength together with time‐separation of top and base of this layer and found the maximum thickness to be 11 m. This refined interpretation gives a good base line for future time‐lapse surveys at the Sleipner CO2 injection site.  相似文献   

3.
The injection of CO2 at the Ketzin pilot CO2 storage site started in June 2008 and ended in August 2013. During the 62 months of injection, a total amount of about 67 kt of CO2 was injected into a saline aquifer. A third repeat three‐dimensional seismic survey, serving as the first post‐injection survey, was acquired in 2015, aiming to investigate the recent movement of the injected CO2. Consistent with the previous two time‐lapse surveys, a predominantly west–northwest migration of the gaseous CO2 plume in the up‐dip direction within the reservoir is inferred in this first post‐injection survey. No systematic anomalies are detected through the reservoir overburden. The extent of the CO2 plume west of the injection site is almost identical to that found in the 2012 second repeat survey (after injection of 61 kt); however, there is a significant decrease in its size east of the injection site. Assessment of the CO2 plume distribution suggests that the decrease in the size of the anomaly may be due to multiple factors, such as limited vertical resolution, CO2 dissolution, and CO2 migration into thin layers, in addition to the effects of ambient noise. Four‐dimensional seismic modelling based on dynamic flow simulations indicates that a dynamic balance between the newly injected CO2 after the second repeat survey and the CO2 migrating into thin layers and being dissolved was reached by the time of the first post‐injection survey. In view of the significant uncertainties in CO2 mass estimation, both patchy and non‐patchy saturation models for the Ketzin site were taken into consideration.  相似文献   

4.
Carbon capture and storage is a viable greenhouse gas mitigation technology and the Sleipner CO2 sequestration site in the North Sea is an excellent example. Storage of CO2 at the Sleipner site requires monitoring over large areas, which can successfully be accomplished with time lapse seismic imaging. One of the main goals of CO2 storage monitoring is to be able to estimate the volume of the stored CO2 in the reservoir. This requires a parametrization of the subsurface as exact as possible. Here we use elastic 2D time‐domain full waveform inversion in a time lapse manner to obtain a P‐wave velocity constrain directly in the depth domain for a base line survey in 1994 and two post‐injection surveys in 1999 and 2006. By relating velocity change to free CO2 saturation, using a rock physics model, we find that at the considered location the aquifer may have been fully saturated in some places in 1999 and 2006.  相似文献   

5.
4D seismic is widely used to remotely monitor fluid movement in subsurface reservoirs. This technique is especially effective offshore where high survey repeatability can be achieved. It comes as no surprise that the first 4D seismic that successfully monitored the CO2 sequestration process was recorded offshore in the Sleipner field, North Sea. In the case of land projects, poor repeatability of the land seismic data due to low S/N ratio often obscures the time‐lapse seismic signal. Hence for a successful on shore monitoring program improving seismic repeatability is essential. Stage 2 of the CO2CRC Otway project involves an injection of a small amount (around 15,000 tonnes) of CO2/CH4 gas mixture into a saline aquifer at a depth of approximately 1.5 km. Previous studies at this site showed that seismic repeatability is relatively low due to variations in weather conditions, near surface geology and farming activities. In order to improve time‐lapse seismic monitoring capabilities, a permanent receiver array can be utilised to improve signal to noise ratio and hence repeatability. A small‐scale trial of such an array was conducted at the Otway site in June 2012. A set of 25 geophones was installed in 3 m deep boreholes in parallel to the same number of surface geophones. In addition, four geophones were placed into boreholes of 1–12 m depth. In order to assess the gain in the signal‐to‐noise ratio and repeatability, both active and passive seismic surveys were carried out. The surveys were conducted in relatively poor weather conditions, with rain, strong wind and thunderstorms. With such an amplified background noise level, we found that the noise level for buried geophones is on average 20 dB lower compared to the surface geophones. The levels of repeatability for borehole geophones estimated around direct wave, reflected wave and ground roll are twice as high as for the surface geophones. Both borehole and surface geophones produce the best repeatability in the 30–90 Hz frequency range. The influence of burying depth on S/N ratio and repeatability shows that significant improvement in repeatability can be reached at a depth of 3 m. The level of repeatability remains relatively constant between 3 and 12 m depths.  相似文献   

6.
Time‐lapse seismic analysis is utilized in CO2 geosequestration to verify the CO2 containment within a reservoir. A major risk associated with geosequestration is a possible leakage of CO2 from the storage formation into overlaying formations. To mitigate this risk, the deployment of carbon capture and storage projects requires fast and reliable detection of relatively small volumes of CO2 outside the storage formation. To do this, it is necessary to predict typical seepage scenarios and improve subsurface seepage detection methods. In this work we present a technique for CO2 monitoring based on the detection of diffracted waves in time‐lapse seismic data. In the case of CO2 seepage, the migrating plume might form small secondary accumulations that would produce diffracted, rather than reflected waves. From time‐lapse data analysis, we are able to separate the diffracted waves from the predominant reflections in order to image the small CO2 plumes. To explore possibilities to detect relatively small amounts of CO2, we performed synthetic time‐lapse seismic modelling based on the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway project data. The detection method is based on defining the CO2 location by measuring the coherency of the signal along diffraction offset‐traveltime curves. The technique is applied to a time‐lapse stacked section using a stacking velocity to construct offset‐traveltime curves. Given the amount of noise found in the surface seismic data, the predicted minimum detectable amount of CO2 is 1000–2000 tonnes. This method was also applied to real data obtained from a time‐lapse seismic physical model. The use of diffractions rather than reflections for monitoring small amounts of CO2 can enhance the capability of subsurface monitoring in CO2 geosequestration projects.  相似文献   

7.
Common shot ray tracing and finite difference seismic modelling experiments were undertaken to evaluate variations in the seismic response of the Devonian Redwater reef in the Alberta Basin, Canada after replacement of native pore waters in the upper rim of the reef with CO2. This part of the reef is being evaluated for a CO2 storage project. The input geological model was based on well data and the interpretation of depth‐converted, reprocessed 2D seismic data in the area. Pre‐stack depth migration of the ray traced and finite difference synthetic data demonstrate similar seismic attributes for the Mannville, Nisku, Ireton, Cooking Lake, and Beaverhill Lake formations and clear terminations of the Upper Leduc and Middle Leduc events at the reef margin. Higher amplitudes at the base of Upper‐Leduc member are evident near the reef margin due to the higher porosity of the foreslope facies in the reef rim compared to the tidal flat lagoonal facies within the central region of the reef. Time‐lapse seismic analysis exhibits an amplitude difference of about 14% for Leduc reflections before and after CO2 saturation and a travel‐time delay through the reservoir of 1.6 ms. Both the ray tracing and finite difference approaches yielded similar results but, for this particular model, the latter provided more precise imaging of the reef margin. From the numerical study we conclude that time‐lapse surface seismic surveys should be effective in monitoring the location of the CO2 plume in the Upper Leduc Formation of the Redwater reef, although the differences in the results between the two modelling approaches are of similar order to the effects of the CO2 fluid replacement itself.  相似文献   

8.
One of the main concerns of geological carbon storage (GCS) systems is the risk of leakage through “weak” permeable areas of the sealing formation or caprock. Since the fluid pressure pulse travels faster than the carbon dioxide (CO2) plume across the storage reservoir, the fluid overpressure transmitted into overlying permeable formations through caprock discontinuities is potentially detectable sooner than actual CO2 leakage occurs. In this work, an inverse modeling method based on fluid pressure measurements collected in strata above the target CO2 storage formation is proposed, which aims at identifying the presence, the location, and the extent of possible leakage pathways through the caprock. We combine a three-dimensional subsurface multiphase flow model with ensemble-based data assimilation algorithms to recognize potential caprock discontinuities that could undermine the long-term safety of GCS. The goal of this work is to examine and compare the capabilities of data assimilation algorithms such as the ensemble smoother (ES) and the restart ensemble Kalman filter (REnKF) to detect the presence of brine and/or CO2 leakage pathways, potentially in real-time during GCS operations. For the purpose of this study, changes in fluid pressure in the brine aquifer overlying to CO2 storage formation aquifer are hypothetically observed in monitoring boreholes, or provided by time-lapse seismic surveys. Caprock discontinuities are typically characterized locally by higher values of permeability, so that the permeability distribution tends to fit to a non-Gaussian bimodal process, which hardly complies with the requirements of the ES and REnKF algorithms. Here, issues related to the non-Gaussianity of the caprock permeability field are investigated by developing and applying a normal score transform procedure. Results suggest that the REnKF is more effective than the ES in characterizing caprock discontinuities.  相似文献   

9.
The injection of CO2 at the Ketzin pilot site commenced in June 2008 and was terminated in August 2013 after 67 kT had been injected into a saline formation at a depth of 630–650 m. As part of the site monitoring program, four 3D surface seismic surveys have been acquired to date, one baseline and three repeats, of which two were conducted during the injection period, and one during the post‐injection phase. The surveys have provided the most comprehensive images of the spreading CO2 plume within the reservoir layer. Both petrophysical experiments on core samples from the Ketzin reservoir and spectral decomposition of the 3D time‐lapse seismic data show that the reservoir pore pressure change due to CO2 injection has a rather minor impact on the seismic amplitudes. Therefore, the observed amplitude anomaly is interpreted to be mainly due to CO2 saturation. In this study, amplitude versus offset analysis has been applied to investigate the amplitude versus offset response from the top of the sandstone reservoir during the injection and post‐injection phases, and utilize it to obtain a more quantitative assessment of the CO2 gaseous saturation changes. Based on the amplitude versus offset modelling, a prominent decrease in the intercept values imaged at the top of the reservoir around the injection well is indeed associated solely with the CO2 saturation increase. Any change in the gradient values, which would, in case it was positive, be the only signature induced by the reservoir pressure variations, has not been observed. The amplitude versus offset intercept change is, therefore, entirely ascribed to CO2 saturation and used for its quantitative assessment. The estimated CO2 saturation values around the injection area in the range of 40%–60% are similar to those obtained earlier from pulsed neutron‐gamma logging. The highest values of 80% are found in the second seismic repeat in close vicinity to the injection and observation wells.  相似文献   

10.
Time‐lapse seismics is the methodology of choice for remotely monitoring changes in oil/gas reservoir depletion, reservoir stimulation or CO2 sequestration, due to good sensitivity and resolving power at depths up to several kilometres. This method is now routinely applied offshore, however, the use of time‐lapse methodology onshore is relatively rare. The main reason for this is the relatively high cost of commercial seismic acquisition on land. A widespread belief of a relatively poor repeatability of land seismic data prevents rapid growth in the number of land time‐lapse surveys. Considering that CO2 sequestration on land is becoming a necessity, there is a great need to evaluate the feasibility of time‐lapse seismics for monitoring. Therefore, an understanding of the factors influencing repeatability of land seismics and evaluating limitations of the method is crucially important for its application in many CO2 sequestration projects. We analyse several repeated 2D and 3D surveys acquired within the Otway CO2 sequestration pilot project (operated by the Cooperative Research Centre for Greenhouse Technologies, CO2CRC) in Australia, in order to determine the principal limitations of land time‐lapse seismic repeatability and investigate the influence of the main factors affecting it. Our findings are that the intrinsic signal‐to‐noise ratio (S/N, signal to coherent and background noise levels) and the normalized‐root‐mean‐square (NRMS) difference are controlled by the source strength and source type. However, the post‐stack S/N ratio and corresponding NRMS residuals are controlled mainly by the data fold. For very high‐fold data, the source strength and source type are less critical.  相似文献   

11.
Seismic monitoring of reservoir and overburden performance during subsurface CO2 storage plays a key role in ensuring efficiency and safety. Proper interpretation of monitoring data requires knowledge about the rock physical phenomena occurring in the subsurface formations. This work focuses on rock stiffness and elastic velocity changes of a shale overburden formation caused by both reservoir inflation induced stress changes and leakage of CO2 into the overburden. In laboratory experiments, Pierre shale I core plugs were loaded along the stress path representative for the in situ stress changes experienced by caprock during reservoir inflation. Tests were carried out in a triaxial compaction cell combining three measurement techniques and permitting for determination of (i) ultrasonic velocities, (ii) quasistatic rock deformations, and (iii) dynamic elastic stiffness at seismic frequencies within a single test, which allowed to quantify effects of seismic dispersion. In addition, fluid substitution effects connected with possible CO2 leakage into the caprock formation were modelled by the modified anisotropic Gassmann model. Results of this work indicate that (i) stress sensitivity of Pierre shale I is frequency dependent; (ii) reservoir inflation leads to the increase of the overburden Young's modulus and Poisson's ratio; (iii) in situ stress changes mostly affect the P‐wave velocities; (iv) small leakage of the CO2 into the overburden may lead to the velocity changes, which are comparable with one associated with geomechanical influence; (v) non‐elastic effects increase stress sensitivity of an acoustic waves; (iv) and both geomechanical and fluid substitution effects would create significant time shifts, which should be detectable by time‐lapse seismic.  相似文献   

12.
We present a numerical study for 3D time‐lapse electromagnetic monitoring of a fictitious CO2 sequestration using the geometry of a real geological site and a suite of suitable electromagnetic methods with different source/receiver configurations and different sensitivity patterns. All available geological information is processed and directly implemented into the computational domain, which is discretized by unstructured tetrahedral grids. We thus demonstrate the performance capability of our numerical simulation techniques. The scenario considers a CO2 injection in approximately 1100 m depth. The expected changes in conductivity were inferred from preceding laboratory measurements. A resistive anomaly is caused within the conductive brines of the undisturbed reservoir horizon. The resistive nature of the anomaly is enhanced by the CO2 dissolution regime, which prevails in the high‐salinity environment. Due to the physicochemical properties of CO2, the affected portion of the subsurface is laterally widespread but very thin. We combine controlled‐source electromagnetics, borehole transient electromagnetics, and the direct‐current resistivity method to perform a virtual experiment with the aim of scrutinizing a set of source/receiver configurations with respect to coverage, resolution, and detectability of the anomalous CO2 plume prior to the field survey. Our simulation studies are carried out using the 3D codes developed in our working group. They are all based on linear and higher order Lagrange and Nédélec finite‐element formulations on unstructured grids, providing the necessary flexibility with respect to the complex real‐world geometry. We provide different strategies for addressing the accuracy of numerical simulations in the case of arbitrary structures. The presented computations demonstrate the expected great advantage of positioning transmitters or receivers close to the target. For direct‐current geoelectrics, 50% change in electric potential may be detected even at the Earth's surface. Monitoring with inductive methods is also promising. For a well‐positioned surface transmitter, more than 10% difference in the vertical electric field is predicted for a receiver located 200 m above the target. Our borehole transient electromagnetics results demonstrate that traditional transient electromagnetics with a vertical magnetic dipole source is not well suited for monitoring a thin horizontal resistive target. This is due to the mainly horizontal current system, which is induced by a vertical magnetic dipole.  相似文献   

13.
Seismic imaging is an important step for imaging the subsurface structures of the Earth. One of the attractive domains for seismic imaging is explicit frequency–space (fx) prestack depth migration. So far, this domain focused on migrating seismic data in acoustic media, but very little work assumed visco‐acoustic media. In reality, seismic exploration data amplitudes suffer from attenuation. To tackle the problem of attenuation, new operators are required, which compensates for it. We propose the weighted L 1 ‐error minimisation technique to design visco‐acoustic f – x wavefield extrapolators. The L 1 ‐error wavenumber responses provide superior extrapolator designs as compared with the previously designed equiripple L 4 ‐norm and L‐norm extrapolation wavenumber responses. To verify the new compensating designs, prestack depth migration is performed on the challenging Marmousi model dataset. A reference migrated section is obtained using non‐compensating fx extrapolators on an acoustic dataset. Then, both compensating and non‐compensating extrapolators are applied to a visco‐acoustic dataset, and both migrated sections are then compared. The final images show that the proposed weighted L 1 ‐error method enhances the resolution and results in practically stable images.  相似文献   

14.
For 3‐D shallow‐water seismic surveys offshore Abu Dhabi, imaging the target reflectors requires high resolution. Characterization and monitoring of hydrocarbon reservoirs by seismic amplitude‐versus‐offset techniques demands high pre‐stack amplitude fidelity. In this region, however, it still was not clear how the survey parameters should be chosen to satisfy the required data quality. To answer this question, we applied the focal‐beam method to survey evaluation and design. This subsurface‐ and target‐oriented approach enables quantitative analysis of attributes such as the best achievable resolution and pre‐stack amplitude fidelity at a fixed grid point in the subsurface for a given acquisition geometry at the surface. This method offers an efficient way to optimize the acquisition geometry for maximum resolution and minimum amplitude‐versus‐offset imprint. We applied it to several acquisition geometries in order to understand the effects of survey parameters such as the four spatial sampling intervals and apertures of the template geometry. The results led to a good understanding of the relationship between the survey parameters and the resulting data quality and identification of the survey parameters for reflection imaging and amplitude‐versus‐offset applications.  相似文献   

15.
Hydrocarbon production and fluid injection affect the level of subsurface stress and physical properties of the subsurface, and can cause reservoir‐related issues, such as compaction and subsidence. Monitoring of oil and gas reservoirs is therefore crucial. Time‐lapse seismic is used to monitor reservoirs and provide evidence of saturation and pressure changes within the reservoir. However, relative to background velocities and reflector depths, the time‐lapse changes in velocity and geomechanical properties are typically small between consecutive surveys. These changes can be measured by using apparent displacement between migrated images obtained from recorded data of multiple time‐lapse surveys. Apparent displacement measurements by using the classical cross‐correlation method are poorly resolved. Here, we propose the use of a phase‐correlation method, which has been developed in satellite imaging for sub‐pixel registration of the images, to overcome the limitations of cross‐correlation. Phase correlation provides both vertical and horizontal displacements with a much better resolution. After testing the method on synthetic data, we apply it to a real dataset from the Norne oil field and show that the phase‐correlation method can indeed provide better resolution.  相似文献   

16.
The Ketzin project provides an experimental pilot test site for the geological storage of CO2. Seismic monitoring of the Ketzin site comprises 2D and 3D time-lapse experiments with baseline experiments in 2005. The first repeat 2D survey was acquired in 2009 after 22 kt of CO2 had been injected into the Stuttgart Formation at approximately 630 m depth. Main objectives of the 2D seismic surveys were the imaging of geological structures, detection of injected CO2, and comparison with the 3D surveys. Time-lapse processing highlighted the importance of detailed static corrections to account for travel time delays, which are attributed to different near-surface velocities during the survey periods. Compensation for these delays has been performed using both pre-stack static corrections and post-stack static corrections. The pre-stack method decomposes the travel time delays of baseline and repeat datasets in a surface consistent manner, while the latter cross-aligns baseline and repeat stacked sections along a reference horizon.Application of the static corrections improves the S/N ratio of the time-lapse sections significantly. Based on our results, it is recommended to apply a combination of both corrections when time-lapse processing faces considerable near-surface velocity changes. Processing of the datasets demonstrates that the decomposed solution of the pre-stack static corrections can be used for interpretation of changes in near-surface velocities. In particular, the long-wavelength part of the solution indicates an increase in soil moisture or a shallower groundwater table in the repeat survey.Comparison with the processing results of 2D and 3D surveys shows that both image the subsurface, but with local variations which are mainly associated to differences in the acquisition geometry and source types used. Interpretation of baseline and repeat stacks shows that no CO2 related time-lapse signature is observable where the 2D lines allow monitoring of the reservoir. This finding is consistent with the time-lapse results of the 3D surveys, which show an increase in reflection amplitude centered around the injection well. To further investigate any potential CO2 signature, an amplitude versus offset (AVO) analysis was performed. The time-lapse analysis of the AVO does not indicate the presence of CO2, as expected, but shows signs of a pressure response in the repeat data.  相似文献   

17.
This article addresses the question whether time‐lapse seismic reflection techniques can be used to follow and quantify the effects of solution salt mining. Specifically, the production of magnesium salts as mined in the north of the Netherlands is considered. The use of seismic time‐lapse techniques to follow such a production has not previously been investigated. For hydrocarbon production and CO2 storage, time‐lapse seismics are used to look at reservoir changes mainly caused by pressure and saturation changes in large reservoirs, while for solution mining salt is produced from caverns with a limited lateral extent, with much smaller production volumes and a fluid (brine) replacing a solid (magnesium salt). In our approach we start from the present situation of the mine and then study three different production scenarios, representing salt production both in vertical and lateral directions of the mine. The present situation and future scenarios have been transformed into subsurface models that were input to an elastic finite‐difference scheme to create synthetic seismic data. These data have been analysed and processed up to migrated seismic images, such that time‐lapse analyses of intermediate and final results could be done. From the analyses, it is found that both vertical and lateral production is visible well above the detection threshold in difference data, both at pre‐imaging and post‐imaging stages. In quantitative terms, an additional production of the mine of 6 m causes time‐shifts in the order of 2 ms (pre‐imaging) and 4 ms (post‐imaging) and amplitude changes of above 20% in the imaged sections. A laterally oriented production causes even larger amplitude changes at the edge of the cavern due to replacement of solid magnesium salt with brine introducing a large seismic contrast. Overall, our pre‐imaging and post‐imaging time‐lapse analysis indicates that the effects of solution salt mining can be observed and quantified on seismic data. The effects seem large enough to be observable in real seismic data containing noise.  相似文献   

18.
Conventional seismic data are band limited and therefore, provide limited geological information. Every method that can push the limits is desirable for seismic data analysis. Recently, time‐frequency decomposition methods are being used to quickly extract geological information from seismic data and, especially, for revealing frequency‐dependent amplitude anomalies. Higher frequency resolution at lower frequencies and higher temporal resolution at higher frequencies are the objectives for different time‐frequency decomposition methods. Continuous wavelet transform techniques, which are the same as narrow‐band spectral analysis methods, provide frequency spectra with high temporal resolution without the windowing process associated with other techniques. Therefore, this technique can be used for analysing geological information associated with low and high frequencies that normally cannot be observed in conventional seismic data. In particular, the continuous wavelet transform is being used to detect thin sand bodies and also as a direct hydrocarbon indicator. This paper presents an application of the continuous wavelet transform method for the mapping of potential channel deposits, as well as remnant natural gas detection by mapping low‐frequency anomalies associated with the gas. The study was carried out at the experimental CO2 storage site at Ketzin, Germany (CO2SINK). Given that reservoir heterogeneity and faulting will have significant impact on the movement and storage of the injected CO2, our results are encouraging for monitoring the migration of CO2 at the site. Our study confirms the efficiency of the continuous wavelet transform decomposition method for the detection of frequency‐dependent anomalies that may be due to gas migration during and after the injection phase and in this way, it can be used for real‐time monitoring of the injected CO2 from both surface and borehole seismics.  相似文献   

19.
20.
Interferometric redatuming is a data‐driven method to transform seismic responses with sources at one level and receivers at a deeper level into virtual reflection data with both sources and receivers at the deeper level. Although this method has traditionally been applied by cross‐correlation, accurate redatuming through a heterogeneous overburden requires solving a multidimensional deconvolution problem. Input data can be obtained either by direct observation (for instance in a horizontal borehole), by modelling or by a novel iterative scheme that is currently being developed. The output of interferometric redatuming can be used for imaging below the redatuming level, resulting in a so‐called interferometric image. Internal multiples from above the redatuming level are eliminated during this process. In the past, we introduced point‐spread functions for interferometric redatuming by cross‐correlation. These point‐spread functions quantify distortions in the redatumed data, caused by internal multiple reflections in the overburden. In this paper, we define point‐spread functions for interferometric imaging to quantify these distortions in the image domain. These point‐spread functions are similar to conventional resolution functions for seismic migration but they contain additional information on the internal multiples in the overburden and they are partly data‐driven. We show how these point‐spread functions can be visualized to diagnose image defocusing and artefacts. Finally, we illustrate how point‐spread functions can also be defined for interferometric imaging with passive noise sources in the subsurface or with simultaneous‐source acquisition at the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号