首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake of atmospheric CO2 during sample collection and analysis, and consequent lowering of estimated ages, has rarely been considered in radiocarbon dating of groundwater. Using field and laboratory experiments, we show that atmospheric CO2 can be easily and rapidly absorbed in hyperalkaline solutions used for the extraction of dissolved inorganic carbon, resulting in elevated 14C measurements. Kinetic isotope fractionation during atmospheric CO2 uptake may also result in decrease of δ13C, leading to insufficient corrections for addition of dead carbon by geochemical processes. Consequently, measured 14C values of groundwater should not be used for age estimation without corresponding δ13C values, and historical 14C data in the range of 1 to 10% modern Carbon should be re‐evaluated to ensure that samples with atmospheric contamination are recognized appropriately. We recommend that samples for 14C analysis should be collected and processed in the field and the laboratory without exposure to the atmosphere. These precautions are considered necessary even if 14C measurements are made with an accelerator mass spectrometer.  相似文献   

2.
A rapid assessment of burial age for sedimentary materials is useful to aid in-situ interpretation of sites and sequences during fieldwork. This can assist with targeted field sampling strategies for full dating back in the laboratory, for example when the study is concerned with reconstructing landscape dynamics during a specific time period. Field-based luminescence measurements are possible using a portable luminescence reader; the challenge is translating relative portable luminescence reader signal intensities of samples into an estimate of age. This study uses a portable luminescence reader for the first time in the analysis of African dunefield sediments. Samples from the Namib Sand Sea (NSS) with established luminescence ages are used to assess what in-situ information about relative sample age can be gleamed at and between sites using the portable luminescence reader, and to establish whether first-order estimates of sample age can be obtained. Two sites in the NSS, which are of modern, very late Holocene and last interglacial age were selected for this assessment and a simple calibration between portable luminescence reader signals and sample age is made. Results show that portable luminescence reader signals differ by over two orders of magnitude between late Holocene and last interglacial age samples and that useful relative-age information can be established using bulk material in the field. Predicted ages from portable luminescence reader signals using a linear regression appear to be indicative and useful. Further development of this calibration using a wider range of sample ages would confirm its applicability in the NSS, and a similar approach is applicable to other sand sea environments.  相似文献   

3.
The extent of natural attenuation is an important consideration in determining the most appropriate corrective action at sites where ground water quality has been impacted by releases of petroleum hydrocarbons or other chemicals. The objective of this study was to develop a practical approach that would evaluate natural attenuation based on easily obtained field data and field tested indicators of natural attenuation. The primary indicators that can he used to evaluate natural attenuation include plume characteristics and dissolved oxygen levels in ground water. Case studies of actual field sites show that plumes migrate more slowly than expected, reach a steady state, and decrease in extent and concentration when natural attenuation is occurring. Background dissolved oxygen levels greater than 1 to 2 mg/L and an inverse correlation between dissolved oxygen and contaminant levels have been identified through laboratory and field studies as key indicators of aerobic biodegradation. an important attenuation mechanism. Secondary indicators such as geochemical data, and more intensive methods such as contaminant mass balances, laboratory microcosm studies, and detailed ground water modeling can demonstrate natural attenuation as well. The recommended approach for evaluating natural attenuation is to design site assessment activities so that required data such as dissolved oxygen levels and historical plume flow path concentrations are obtained. With the necessary data, the primary indicators should be applied to evaluate natural attenuation. II the initial evaluation suggests that natural attenuation is a viable corrective action alternative, then a monitoring plan should be implemented to verify the extent of natural attenuation.  相似文献   

4.
Detection of free-phase gas (FPG) in groundwater wells is critical for accurate assessment of dissolved gas concentrations and the occurrence of FPG in the subsurface, with consequent implications for understanding groundwater contamination and greenhouse gas emissions. However, identifying FPG is challenging during routine groundwater monitoring and there is poor agreement on the best approach to detect the occurrence of FPG in groundwater. In this study, laboratory experiments in a water column were designed to mimic nonflowing and flowing conditions in a groundwater well to evaluate how the presence of FPG affects water pressure and commonly used continuous field parameters. The laboratory results were extrapolated to interpret field data at an abandoned exploration well with episodic release of free-gas CO2. The FPG effect on water pressure varied between flowing and nonflowing wells, and depending on whether the FPG was above or below the sensor. Electrical conductivity values were decreased and/or behaved erratically when FPG was present in the water column. Findings from this study have shown that the combined measurement of water pressure, electrical conductivity, and total dissolved gas pressure can provide information about the occurrence of FPG in groundwater wells. Measurement of these parameters at different depths can also provide information about relative depths and amounts of FPG within the well water column. This approach can be used for long-term monitoring of groundwater gases, managing gas-locking in production wells with gassy groundwater, and measuring fugitive greenhouse gas emissions from groundwater wells.  相似文献   

5.
The use of in‐field analysis of vapor‐phase samples to provide real‐time volatile organic compound (VOC) concentrations in groundwater has the potential to streamline monitoring by simplifying the sample collection and analysis process. A field validation program was completed to (1) evaluate methods for collection of vapor samples from monitoring wells and (2) evaluate the accuracy and precision of field‐portable instruments for the analysis of vapor‐phase samples. The field program evaluated three vapor‐phase sample collection methods: (1) headspace samples from two locations within the well, (2) passive vapor diffusion (PVD) samplers placed at the screened interval of the well, and (3) field vapor headspace analysis of groundwater samples. Two types of instruments were tested: a field‐portable gas chromatograph (GC) and a photoionization detector (PID). Field GC analysis of PVD samples showed no bias and good correlation to laboratory analysis of groundwater collected by low‐flow sampling (slope = 0.96, R2 = 0.85) and laboratory analysis of passive water diffusion bag samples from the well screen (slope = 1.03; R2 = 0.96). Field GC analysis of well headspace samples, either from the upper portion of the well or at the water‐vapor interface, resulted in higher variability and much poorer correlation (consistently biased low) relative to laboratory analysis of groundwater samples collected by low‐flow sample or passive diffusion bags (PDBs) (slope = 0.69 to 0.76; R2 = 0.60 to 0.64). These results indicate that field analysis of vapor‐phase samples can be used to obtain accurate measurements of VOC concentrations in groundwater. However, vapor samples collected from the well headspace were not in equilibrium with water collected from the well screen. Instead, PVD samplers placed in the screened interval represent the most promising approach for field‐based measurement of groundwater concentrations using vapor monitoring techniques and will be the focus of further field testing.  相似文献   

6.
ESTUARINE AND COASTAL SEDIMENTATION PROBLEMS   总被引:1,自引:0,他引:1  
This keynote lecture addresses engineering sedimentation problems in estuarine and coastal environments and practical solutions of these problems based on the results of field measurements, laboratory scale models and numerical models. The three most basic design rules are: (1) try to understand the physical system based on available field data; perform new field measurements if the existing field data set is not sufficient (do not reduce on the budget for field measurements); (2)try to estimate the morphological effects of engineering works based on simple methods (rules of thumb, simplified models, analogy models, i.e. comparison with similar cases elsewhere); and (3)use detailed models for fine-tuning and determination of uncertainties (sensitivity study trying to find the most influencial parameters). Engineering works should be designed in such a way that side effects (sand trapping, sand starvation, downdrift erosion) are minimum. Furthermore, engineering works should be designed and constructed or built in harmony rather than in conflict with nature. This ‘building with nature‘ approach requires a profound understanding of the sediment transport processes in morphological systems.  相似文献   

7.
The emerging technology of wireless sensor networks (WSNs) is an integrated, distributed, wireless network of sensing devices. It has the potential to monitor dynamic hydrological and environmental processes more effectively than traditional monitoring and data acquisition techniques by providing environmental information at greater spatial and temporal resolutions. Furthermore, due to continuing high-performance computing development, these data may be introduced into increasingly robust and complex numerical models; for instance, the parameters of subsurface transport simulators may be automatically updated. Early field deployments and laboratory experiments conducted using in situ sensor technology and WSNs indicated significant fundamental issues concerning sensor and network hardware reliability—suggesting that investigations should first be conducted in controlled environments before field deployment. A first step in this validation process involves evaluating the predictive capability of a computational advection-dispersion transport model when incorporating concentration data from a WSN simulation. Data quality is a major concern, especially when sensor readings are automatically fed into data assimilation procedures. The appropriate employment of an independent WSN fault detection service can ensure that erroneous data (e.g., missing or anomalous values) do not mislead the model. Parameter estimation regularization techniques may then deal with remaining data noise. The primary purpose of this study is to determine the suitability of WSNs (and other in situ data delivery technologies) for use in contaminant transport modeling applications by conducting research in a realistic simulative environment.  相似文献   

8.
刘建中 《地震研究》1993,16(3):281-290
本文从弹性力学、断裂力学的基本理论出发,结合室内实验和野外观测结果研究了尺度、缝长对水压致裂应力测量结果的影响规律。研究结果表明,室内实验样品的孔径比不应大于四分之一,最好小于十分之一,较大的绝对尺度可以使实验结果变得稳定。野外实际测量除了满足上述要求外,裂缝单翼长度不应小于十倍的钻孔半径,否则测不到可靠的封闭压力。据此,进行大尺度水压致裂室内模拟实验对于提高压裂技术,完善水压致裂应力测量理论是非常必要的。  相似文献   

9.
Field and laboratory analyses of pH, alkalinity, and specific conductance from water samples collected from the Columbia aquifer on the Delmarva Peninsula in eastern Maryland were compared to determine if laboratory analyses could be used for making regional water-quality interpretations. On the basis of 170 field pH and specific conductance measurements, 165 laboratory pH and specific conductance measurements, and 86 field and 135 laboratory alkalinity measurements, a significant difference at the 0.1-percent level was found between laboratory and field analyses of pH and specific conductance. No significant difference was found between laboratory and field analyses of alkalinity. In most samples, laboratory pH was greater than field pH, laboratory specific conductance was less than field specific conductance, and laboratory alkalinity was equally likely to be less than, the same as, or greater than field alkalinity. Kruskal-Wallis tests of field and laboratory data grouped by north-south and east-west coordinates and by land use indicate that the difference between field and laboratory values is usually not enough to affect the outcome of the statistical tests. Thus, laboratory measurements of these constituents may be adequate for making certain regional water-quality interpretations, although they may result in errors if used for geochemical interpretations.  相似文献   

10.
昆仑山MS81地震的已有研究结果在破裂带长度、破裂面方向、破裂面大小等震源破裂特征参数方面存在较大差异.本文采用D-InSAR技术首次获得昆仑山MS81地震干涉同震形变场,结合野外科学考察的实测值,进行了主破裂带InSAR视线向变化量的分解,通过对InSAR分解结果、野外科学考察、遥感解译等多源数据综合分析,重新划分了昆仑山地震的次级破裂段.进而通过对地震南北盘同震应变的分析,发现了昆仑山地震的南北两盘分别受挤压和拉张两种应力作用,研究表明多种岩石在拉张和压力作用下其最小主应力下的杨氏模量表现出非线性弹性特征,从而提出对昆仑山地震地表位移及震源特征参数分析时应考虑非线弹性介质导致的非线性弹性位移分布特征.基于上述原因,本文对Okada线弹性位错模型的算法进行了改进,提出了“多震源、非均一位错分量、多破裂段叠加”的线弹性模型,该模型模拟出的形变场干涉纹图较好地体现了地震形变场的分布特征,并由此获得了一套较为完整的地震发震断层的几何学特征参数,为破裂带长度、破裂面方向、破裂面大小等震源破裂特征参数研究提供了较好的解释.  相似文献   

11.
Recent advances in high throughput/automated compositing with robotics/field-screening methods offer seldom-tapped opportunities for achieving cost-reduction in ground water quality monitoring programs. An economic framework is presented in this paper for the evaluation of sample compositing as a screening tool in ground water quality monitoring. When the likelihood of occurrence of a contaminant in a well is very small, the use of sample compositing instead of routine exhaustive sampling will lead to reduction in analytical efforts. Such reduction will be maximum when there are no contaminated wells in the network. An N-fold reduction will result when none of the wells in a network of N wells are contaminated. When 25 percent or more wells in a network are contaminated, the use of sample compositing will require, at the most, an additional 50 percent analytical effort compared to exhaustive sampling. A quantitative measure of the cost-effectiveness of sample compositing as a screening tool is shown to be dependent on two factors: a ratio (f1) of laboratory analytical cost to that of well installation and field sampling costs and a ratio (f2) of the expected number of contaminated wells to that of the total number of wells in the network. Several useful mathematical results of primary interest are derived and illustrated with case examples in the paper. Selected areas for further research are also outlined.  相似文献   

12.
Static Coulomb stress change induced by earthquake slip is frequently used to explain earthquake activities and aftershock distribution.However,some parameters for the Coulomb stress calculation are unable to be well constrained from laboratory experiments and field observations.Different parameters may directly affect the pattern of static Coulomb stress.The static Coulomb stress changes induced by the Wenchuan earthquake calculated by six research groups are not consistent with each other.To investigate how the parameters affect the calculation results,we change the parameters in turn through modeling and compare the results of different calculation parameters.We find that gravity,position and strike of receiver faults have little influence on coseismic Coulomb stress calculations,but other parameters can change the value and sign of the results in various degrees especially around the earthquake rupture plane.Therefore the uncertainty analysis of static Coulomb stress change induced by earthquake should be taken into consideration in the earthquake hazard analysis.  相似文献   

13.
Measurement of magnetic properties of steel sheets   总被引:1,自引:0,他引:1  
Magnetic methods are used in detection of environmental, engineering and military objects fabricated of thin ferromagnetic sheets having volume susceptibilities higher than 100 SI units. Magnetic modelling of such objects would be advantageous, but it requires knowledge of the susceptibility and remanence values of sheet materials, which is scarce. We introduce a magnetometer method for the determination of susceptibility and remanence on thin steel samples. The area of the sample must be so large that its within-sheet magnetization remains below the saturation state. The measurements are made in normal office surroundings in the Earth's magnetic field with an ordinary fluxgate magnetometer. The square-shaped sheet samples measured in this work have an edge length of 17.5 cm and a thickness in the range 0.5–1.0 mm. During the measuring procedure the sample is placed in four positions on a subvertical measurement board. For each position, the magnetic field in the dip direction of the board plane is measured on the opposite sides of the sample. The secondary field values are averaged for each sample position in order to reduce the effect of sample inhomogeneities. With these data, the susceptibility and remanence of the sample in its edge directions are then determined, based on a model curve which is calculated numerically using thin-sheet integral equations. The susceptibilities measured for different steel types (cold rolled and hot-dip zinc-coated steel sheets) varied in the range 200–500 SI units, and the remanence varied in the range 1000–20 000 A/m. No systematic differences were observed between the magnetic properties of various steel types. The repeatability of the susceptibility measurements was good (variations < 5%) but the remanence could be changed by 50% between repeated determinations. The measured susceptibility range signifies that pieces of steel with a typical thickness of 0.5 mm remain below magnetic saturation when their edge dimension is larger than 5 cm. Therefore magnetic modelling of larger steel pieces must be made using the thin-sheet theory with known magnetic properties, whereas smaller saturated pieces can be alternatively modelled as an equipotential system.  相似文献   

14.
In hydrogeology there is a variety of empirical formulae available for determination of hydraulic conductivity of porous media, all based on the analysis of grain size distributions of aquifer materials. Sensitivity of NMR measurements to pore sizes makes it a good indicator of hydraulic conductivity. Analogous to laboratory NMR, Magnetic Resonance Sounding (MRS) relaxation data are of a multi-exponential (ME) nature due to the distribution of different pore sizes in an investigated rock layer. ME relaxation behaviour will also arise due to the superposition of NMR signals which originate from different layers. It has been shown, that both kinds of ME behaviour coexist in MRS and can principally be separated by ME inversion of the field data. Only a few publications exist that have proposed approaches to qualitatively and quantitatively estimate petrophysical parameters such as the hydraulic conductivity from MRS measurements, i.e. MRS porosity and decay times. The so far used relations for the estimation of hydraulic conductivity in hydrogeology and NMR experiments are compared and discussed with respect to their applicability in MRS. Taking into account results from a variety of laboratory NMR and MRS experiments mean rock specific calibration factors are introduced for a data-base-calibrated estimation of hydraulic conductivity when no on-site calibration of MRS is available. Field data have been analysed using conventional and ME inversion using such mean calibration values. The results for conventional and ME inversion agree with estimates obtained from well core analysis for shallow depths but are significantly improved using a ME inversion approach for greater depths.  相似文献   

15.
In hydrogeology there is a variety of empirical formulae available for determination of hydraulic conductivity of porous media, all based on the analysis of grain size distributions of aquifer materials. Sensitivity of NMR measurements to pore sizes makes it a good indicator of hydraulic conductivity. Analogous to laboratory NMR, Magnetic Resonance Sounding (MRS) relaxation data are of a multi-exponential (ME) nature due to the distribution of different pore sizes in an investigated rock layer. ME relaxation behaviour will also arise due to the superposition of NMR signals which originate from different layers. It has been shown, that both kinds of ME behaviour coexist in MRS and can principally be separated by ME inversion of the field data. Only a few publications exist that have proposed approaches to qualitatively and quantitatively estimate petrophysical parameters such as the hydraulic conductivity from MRS measurements, i.e. MRS porosity and decay times. The so far used relations for the estimation of hydraulic conductivity in hydrogeology and NMR experiments are compared and discussed with respect to their applicability in MRS. Taking into account results from a variety of laboratory NMR and MRS experiments mean rock specific calibration factors are introduced for a data-base-calibrated estimation of hydraulic conductivity when no on-site calibration of MRS is available. Field data have been analysed using conventional and ME inversion using such mean calibration values. The results for conventional and ME inversion agree with estimates obtained from well core analysis for shallow depths but are significantly improved using a ME inversion approach for greater depths.  相似文献   

16.
The character of a change in the ionospheric electric field when several auroral arcs crossed the region of radar measurements has been analyzed. In one case the plasma conductivity and electric field normal component in an arc increased as compared to their undisturbed values. In another case the field and conductivity changed traditionally (in antiphase). Arcs with an increased field were previously classified as correlating arcs, but their existence was subsequently open to question during optical observations. The usage of the ALIS system of digital cameras made it possible to decrease the errors introduced by optical equipment. The measurements in the vicinity of correlating arcs were performed when these arcs were generated, and a traditional arc was a completed formation. In an originating arc, the field value can depend not only on the ionospheric plasma conductivity but also on the processes in the magnetospheric-ionospheric system resulting in the field enhancement.  相似文献   

17.
Efforts to sample representative, undisturbed distributions of uranium in ground water beneath the Fernald Environmemal Management Project (FEMP) prompted the application of a novel technique that is less invasive in the monitoring well. Recent studies (Kearl et al. 1992; Barcelona et al. 1994) indicate that representative samples can and should be collected without prior well volume exchange purging or borehole evacuation. Field experiments conducted at the FMMP demonstrate that under specific sampling conditions in a welldefined hydrogeologic system, representative ground water samples for a monitoring program can be obtained without removing the conventional three well volumes from the well. The assumption is made that indicator parameter equilibration may not be necessary to determine when to collect representative samples at the P'liMP. Preliminary results obtained from the field experiment suggest that this may be true. The technique employs low purge rates (< 1 L/min) with dedicated bladder pumps with inlets located in the screened interval of the well, while not disturbing the stagnant water column above the screened interval. If adopted, this technique, termed micro-purge low-flow sampling, will produce representative ground water samples, significantly reduce sampling costs, and minimize; waste water over the monitoring life cycle at the FEMP. This technique is well suited for sites that have been fully characterized and are undergoing long-term monitoring.  相似文献   

18.
Synthetic rock samples can offer advantages over natural rock samples when used for laboratory rock physical properties studies, provided their success as natural analogues is well understood. The ability of synthetic rocks to mimic the natural stress dependency of elastic wave, electrical and fluid transport properties is of primary interest. Hence, we compare a consistent set of laboratory multi-physics measurements obtained on four quartz sandstone samples (porosity range 20–25%) comprising two synthetic and two natural (Berea and Corvio) samples, the latter used extensively as standards in rock physics research. We measured simultaneously ultrasonic (P- and S-wave) velocity and attenuation, electrical resistivity, permeability and axial and radial strains over a wide range of differential pressure (confining stress 15–50 MPa; pore pressure 5–10 MPa) on the four brine saturated samples. Despite some obvious physical discrepancies caused by the synthetic manufacturing process, such as silica cementation and anisotropy, the results show only small differences in stress dependency between the synthetic and natural sandstones for all measured parameters. Stress dependency analysis of the dry samples using an isotropic effective medium model of spheroidal pores and penny-shaped cracks, together with a granular cohesion model, provide evidence of crack closure mechanisms in the natural sandstones, seen to a much lesser extent in the synthetic sandstones. The smaller grain size, greater cement content, and cementation under oedometric conditions particularly affect the fluid transport properties of the synthetic sandstones, resulting in lower permeability and higher electrical resistivity for a similar porosity. The effective stress coefficients, determined for each parameter, are in agreement with data reported in the literature. Our results for the particular synthetic materials that were tested suggest that synthetic sandstones can serve as good proxies for natural sandstones for studies of elastic and mechanical properties, but should be used with care for transport properties studies.  相似文献   

19.
The effects of the scale of measurement, i.e., the field of view, on the interpretation of fracture properties from seismic wave propagation was investigated using an acoustic lens system to produce a pseudo-collimated wavefront. The incident wavefront had a controllable beam diameter that set the field of view at 15 mm, 30 mm and 60 mm. On a smaller scale, traditional acoustic scans were used to probe the fracture in 2 mm increments. This laboratory approach was applied to two limestone samples, each containing a single induced fracture and compared to an acrylic control sample. From the analysis of the average coherent sum of the signals measured on each scale, we observed that the scale of the field of view affected the interpretation of the fracture specific stiffness. Many small-scale measurements of the seismic response of a fracture, when summed, did not predict the large-scale response of the fracture. The change from a frequency-independent to frequency-dependent fracture stiffness occurs when the scale of the field of view exceeds the spatial correlation length associated with fracture geometry. A frequency-independent fracture specific stiffness is not sufficient to classify a fracture as homogeneous. A nonuniform spatial distribution of fracture specific stiffness and overlapping geometric scales in a fracture cause a scale-dependent seismic response, which requires measurements at different field of views to fully characterize the fracture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号