首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.  相似文献   

2.
中国西北干旱内陆河流域分布式出山径流模型   总被引:1,自引:0,他引:1  
In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover,etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km^2. The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years‘ data are used to simulate, while the last 5 years‘ data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681,5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapoWanspimtion decrease of the watershed, adjust the runoff orocess, and increase the soil water content.  相似文献   

3.
Runoff in the source region of a river makes up most of water resources in the whole basin in arid and semi-arid areas. It is very important for water resources management to timely master the latest dynamic changes of the runoff and quantitatively reveal its main driving factors. This paper aims to discover the variation heterogeneity of runoff and the impacts of climatic factors on this runoff in the source region of the Yellow River(SRYR) in China from 1961 to 2016. We divided SRYR into four sub-regions, and analyzed changes of their contributions to total runoff in SRYR. We also revealed the impacts of precipitation, temperature and potential evapotranspiration on runoff in each sub-region by constructing the regression relationships between them at multiple temporal scales. The changes of runoff in the four sub-regions and their contributions to the total runoff were not exactly consistent. The climatic variables’ changes also have heterogeneity, and runoff was mainly affected by precipitation compared to influences of temperature or potential evapotranspiration. Their impacts on runoff have spatiotemporal heterogeneity and can be reflected by very significant-linear regression equations.It provided a simple method to predict headwater runoff for better water management in the whole basin.  相似文献   

4.
Understanding the interaction between groundwater and surface water in permafrost regions is essential to study flood frequencies and river water quality, especially in the high latitude/altitude basins. The application of heat tracing method,based on oscillating streambed temperature signals, is a promising geophysical method for identifying and quantifying the interaction between groundwater and surface water. Analytical analysis based on a one-dimensional convective-conductive heat transport equation combined with the fiber-optic distributed temperature sensing method was applied on a streambed of a mountainous permafrost region in the Yeniugou Basin, located in the upper Heihe River on the northern Tibetan Plateau. The results indicated that low connectivity existed between the stream and groundwater in permafrost regions.The interaction between surface water and groundwater increased with the thawing of the active layer. This study demonstrates that the heat tracing method can be applied to study surface water-groundwater interaction over temporal and spatial scales in permafrost regions.  相似文献   

5.
地下水位变化对干旱区植被盖度的影响及其空间变异特征   总被引:5,自引:0,他引:5  
Sampling and testing are conducted on groundwater depth and vegetation coverage in the 670 km^2 of the Sangong River Basin and semi-variance function analysis is made afterwards on the data obtained by the application of geo-statistics. Results showed that the variance curve of the groundwater depth and vegetation coverage displays an exponential model. Analysis of sampling data in 2003 indicates that the groundwater depth and vegetation coverage change similarly in space in this area. The Sangong River Basin is composed of upper oasis, middle ecotone and lower sand dune. In oasis and ecotone, influenced by irrigation of the adjoining oasis, groundwater level has been raised and soil water content also increased compared with sand dune nearby, vegetation developed well. But in the lower reaches of the Sangong River Basin, because of descending of groundwater level, soil water content decreased and vegetation degenerated. From oasis to abandoned land and desert grassland, vegetation coverage and groundwater level changed greatly with significant difference respectively in spatial variation. Distinct but similar spatial variability exists among the groundwater depth and vegetation coverage in the study area, namely, the vegetation coverage decreasing (increasing) as the groundwater depth increases (decreases). This illustrates the great dependence of vegetation coverage on groundwater depth in arid regions and further implies that among the great number of factors affecting vegetation coverage in arid regions, groundwater depth turns out to be the most determinant one.  相似文献   

6.
The karst region of southern China is a fragile ecological zone with widespread rocky desertification. This paper describes the rocky desertification occurring in this region in terms of both natural and anthropogenic factors. During geological time periods, the region’s changing environment governed the natural rocky desertification processes, whereas during historical and modern times, anthropogenic processes have been superimposed on these natural processes. Human activities have accelerated and exacerbated rocky desertification. The period from the beginning to the middle of the Qing dynasty was an important transitional period in which human activities began to exert a particularly strong influence on rocky desertification. Since then, the effect of anthropogenic factors has increasingly exceeded the effect of natural factors. The rocky desertification process in southern China’s karst region combines surface ecological processes (including vegetation degradation and loss, soil erosion, surface water loss, and bedrock solution) with a reduction of the land’s biological productivity, leading to degradation that produces rocky desert. Controlling rocky desertification requires comprehensive development of sustainable agriculture and economic development that provides employment alternatives to agriculture and thereby promotes the rehabilitation of rocky desertified land.  相似文献   

7.
Dai  Erfu  Wang  Yahui 《地理学报(英文版)》2020,30(6):1005-1020
Ecosystem services, which include water yield services, have been incorporated into decision processes of regional land use planning and sustainable development. Spatial pattern characteristics and identification of factors that influence water yield are the basis for decision making. However, there are limited studies on the driving mechanisms that affect the spatial heterogeneity of ecosystem services. In this study, we used the Hengduan Mountain region in southwest China, with obvious spatial heterogeneity, as the research site. The water yield module in the In VEST software was used to simulate the spatial distribution of water yield. Also, quantitative attribution analysis was conducted for various geomorphological and climatic zones in the Hengduan Mountain region by using the geographical detector method. Influencing factors, such as climate, topography, soil, vegetation type, and land use type and pattern, were taken into consideration for this analysis. Four key findings were obtained. First, water yield spatial heterogeneity is influenced most by climate-related factors, where precipitation and evapotranspiration are the dominant factors. Second, the relative importance of each impact factor to the water yield heterogeneity differs significantly by geomorphological and climatic zones. In flat areas, the influence of evapotranspiration is higher than that of precipitation. As relief increases, the importance of precipitation increases and eventually, it becomes the most influential factor. Evapotranspiration is the most influential factor in a plateau climate zone, while in the mid-subtropical zone, precipitation is the main controlling factor. Third, land use type is also an important driving force in flat areas. Thus, more attention should be paid to urbanization and land use planning, which involves land use changes, to mitigate the impact on water yield spatial pattern. The fourth finding was that a risk detector showed that Primarosol and Anthropogenic soil areas, shrub areas, and areas with slope 5° and 25°–35° should be recognized as water yield important zones, while the corresponding elevation values are different among different geomorphological and climatic zones. Therefore, the spatial heterogeneity and influencing factors in different zones should be fully con-sidered while planning the maintenance and protection of water yield services in the Hengduan Mountain region.  相似文献   

8.
China’s southwestern special terrain pattern as parallel arrangement between longitudinal towering mountains and deep valleys has significant effects on the differentiation of local natural environment and eco-geographical pattern in this region.The 1:50,000 Digital Elevation Model(DEM) data of Longitudinal Range-Gorge Region(LRGR),meteorological observation data from the station establishment to 2010,hydrological observation data,Normalized Difference Vegetation Index(NDVI) and Net Primary Productivity(NPP) products of MOD13 and MOD17 as well as 1:1,000,000 vegetation type data were used.Moisture indices including surface atmospheric vapor content,precipitation,aridity/humidity index,surface runoff,and temperature indices including average temperature,annual accumulated temperature,total solar radiation were selected.Based on ANUSPLIN spline function,GIS spatial analysis,wavelet analysis and landscape pattern analysis,regional differentiation characteristics and main-control factors of hydrothermal pattern,ecosystem structure and function in this region were analyzed to reveal the effects of terrain pattern on regional differentiation of eco-geographical elements.The results show that:influenced by terrain pattern,moisture,temperature and heat in LRGR have shown significant distribution characteristics as intermittent weft differences and continuous warp extension.Longitudinal mountains and valleys not only have a north-south corridor function and diffusion effect on the transfer of major surface materials and energy,but also have east-west barrier function and blocking effect.Special topographic pattern has important influences on vegetation landscape diversity and spatial pattern of ecosystem structure and function,which is the main-control factor on vegetation landscape diversity and spatial distribution of ecosystem.Wavelet variance analysis reflects the spatial anisotropy of environmental factors,NDVI and NPP,while wavelet consistency analysis reveals the control factors on spatial distribution of NDVI and NPP as well as the quantitative relationship with control degree.Special terrain pattern in LRGR is the major influencing factor on eco-geographical regional differentiation in this region.Under the combined effect of zonality and non-zonality laws with "corridor-barrier" function as the main characteristic,special spatial characteristics of eco-geographical regional system in LRGR is formed.  相似文献   

9.
Che  Lei  Zhou  Liang  Xu  Jiangang 《地理学报(英文版)》2021,31(2):281-297
The Yarlung Zangbo River Basin(YZRB) is a key ecological protection area on the Qinghai–Tibet Plateau(QTP). Determination of the ecosystem service values(ESVs) can help recognize the benefits of sustainable management. It is gradually becoming the main path that constructs plateau spatial planning of integrating ecological protection, and achieves global sustainable development goals(SDGs) in China. In this paper, the spatio-temporal dynamic evolutions of the ESVs were estimated on the multiple scales of "basin, subbasin and watershed" from 1980 to 2015. The main factors influencing ESVs were explored in terms of physical geography, human activities, and climate change. It had been proposed that sustainable spatial planning including ecological protection, basin management, and regional development was urgent to set up. Our results show that the increase in wetland and forest and results in an increase of 9.4% in the ESVs. Attention should be paid to the reduction of water and grassland. Water conservation(WC), waste treatment(WT), and soil formation and conservation(SFC) are the most important ecosystem services in the YZRB. At present, the primary problem is to solve the ESVs decreasing caused by glacier melting, grassland degradation, and desertification in the upper reaches region. The middle reaches should raise the level of supply services. Regulation services should be increased in the lower reaches region on the premise of protecting vegetation. The ESVs in adjacent watersheds are interrelated and the phenomenon of "high agglomeration and low agglomeration" is obvious, existing hot-spots and cold-spots of ESVs. Additionally, when the altitude is 4500-5500 m, the temperature is 3-8°C, and the annual precipitation is 350-650 mm, ESVs could reach its maximum. A framework of sustainable plateau spatial planning could provide references to delimit the ecological protection red line, key ecological function zone, and natural resource asset accounting on the QTP.  相似文献   

10.
The vegetation coverage dynamics and its relationship with climate factors on different spatial and temporal scales in Inner Mongolia during 2001-2010 were analyzed based on MODIS-NDVI data and climate data.The results indicated that vegetation coverage in Inner Mongolia showed obvious longitudinal zonality,increasing from west to east across the region with a change rate of 0.2/10°N.During 2001-2010,the mean vegetation coverage was 0.57,0.4 and 0.16 in forest,grassland and desert biome,respectively,exhibiting evident spatial heterogeneities.Totally,vegetation coverage had a slight increasing trend during the study period.Across Inner Mongolia,the area of which the vegetation coverage showed extremely significant and significant increase accounted for 11.25% and 29.13% of the area of whole region,respectively,while the area of which the vegetation coverage showed extremely significant and significant decrease accounted for 7.65% and 26.61%,respectively.On inter-annual time scale,precipitation was the dominant driving force of vegetation coverage for the whole region.On inter-monthly scale,the change of vegetation coverage was consistent with both the change of temperature and precipitation,implying that the vegetation growth within a year is more sensitive to the combined effects of water and heat rather than either single climate factor.The vegetation coverage in forest biome was mainly driven by temperature on both inter-annual and inter-monthly scales,while that in desert biome was mainly influenced by precipitation on both the two temporal scales.In grassland biome,the yearly vegetation coverage had a better correlation with precipitation,while the monthly vegetation coverage was influenced by both temperature and precipitation.In grassland biome,the impacts of precipitation on monthly vegetation coverage showed time-delay effects.  相似文献   

11.
通过对地形、综合地层剖面年代、遥感影像、历史地图和历史文献等的分析,深入探讨了无定河上游历史时期河湖水系的情况。现今无定河上游,即萨拉乌苏河上游山区的水源地为袭夺无定河的另外一条支流芦河而来,且袭夺发生在北魏以后,明代之前。袭夺之前,东西向湖泽湿地的存在,影响了该区历史人类活动的空间分布,主要表现在人类聚落选址、交通通道等。本研究为重新认识《水经注》中有关奢延水的记载提供了新的地理参照,有助于重建无定河上游的历史景观,同时为理解黄土地区的历史河流演化提供了典型案例,具有重要意义。  相似文献   

12.
黄河流域河型转化现象初探   总被引:9,自引:0,他引:9  
黄河以其高含沙水流以及下游河道的高沉积速率而著称于世。迄今的研究, 主要针对黄河中下游流域的 侵蚀、水文泥沙和河床演变方面的研究, 而对黄河流域主支流发生河型转化的现象关注不够。在黄河的不同河段, 河型的变化频繁, 类型多样, 现象复杂, 是研究者不可回避的科学问题。本文选取黄河上游第一弯的玛曲河段、黄河 上游末段托克托附近河段及黄河下游高村上下河段来研究河型转化的形式及影响因素。玛曲河段沿流向发生网状 河型→弯曲河型→辫状河型的转化现象, 该系列转化呈现出由极稳定河型向极不稳定河型的转化, 这与世界上通 常可以观察到的沿流向不稳定河型向稳定河型转化的情况完全相反。这主要受到地壳的抬升、上下峡谷卡口、水动 力特征、边界沉积物特征及植被的区域分布等因素的控制。托克托附近沿流向发生了弯曲河型→顺直河型转化的 现象, 这是较稳定河型向极稳定河型的转化, 主要受到边界沉积物、水动力等因素的控制。高村上下河段沿流向发 生的辫状河型→弯曲河型转化的现象, 是由极不稳定河型向较稳定河型转化的现象, 河道边界沉积物及水动力是 其主要控制因素, 人工大堤只是限制了河道摆动的最大幅度, 对河型的性质影响不大, 但其上游河段修筑的水库导 致下泻的水流在辫状河段的侵蚀能力增强而使其边界沉积物粗化, 并将泥质物大量沉积在弯曲河段, 客观上促进 了河型的转化。  相似文献   

13.
宛川河阶地的年代与下切机制   总被引:4,自引:3,他引:1  
宛川河是黄河一条小规模支流,在榆中盆地中发育了至少四级堆积阶地。以"古土壤断代法"为基础,结合OSL测年和14C测年,较准确的确定了宛川河四级阶地形成的年代为330、130、50和10 ka。区域构造表明榆中盆地相对下陷,地面抬升不是引起河流下切的主要原因,同时阶地位相说明作为宛川河侵蚀基准面的黄河对宛川河下切影响只限于距河口不远的一小段距离。每级阶地面上都堆积一层古土壤指示宛川河下切于古土壤开始发育时期,对应于气候由冷干向暖湿转换的时期,河流下切的主要原因是气候变化。  相似文献   

14.
黄渭洛三河汇流区湿地景观变化   总被引:4,自引:1,他引:3  
李景宜 《干旱区地理》2008,31(2):210-214
流域经济快速发展使得黄河、渭河及北洛河三河汇流区湿地景观变化显著。应用GIS/RS技术与景观格局分析软件FRAGSTATS,对1989、1996、2000年5月黄渭洛三河汇流区湿地景观的演变过程进行计算和分析,探讨了湿地景观格局特征的变化趋势以及湿地景观演化的驱动力因素,主要结论为:①水文因素和人文因素是汇流区景观变化的主要驱动力;②草地、盐碱地和裸地的面积在增加,而耕地和水域的面积在减少;③土地盐碱化形势依旧严峻,分别有1.38 km2的耕地、0.54 km2的草地和0.47 km2的水域演化为盐碱地;④景观指标表明湿地景观多样性和均匀性逐年升高。  相似文献   

15.
16.
17.
岷江上游多级多期崩滑堵江事件初步研究   总被引:7,自引:1,他引:7  
柴贺军  刘汉超 《山地学报》2002,20(5):616-620
本文研究了岷江上游地区较场-茂县-汶川长约100km河段上形成多级、多期大型滑坡堵江事件。研究表明,这类特殊的地质灾害有其发生发展的特殊的地质背景,它们造成的灾害和环境效应较一般的滑坡灾害更严重。有针对性对岷江上游这类灾害进一步深入研究是很必要的。  相似文献   

18.
数字流域及其在流域综合管理中的应用   总被引:8,自引:1,他引:8  
流域的治理需要从系统的角度出发 ,综合考虑流域的自然、经济和社会子系统 ,实行综合管理。本文从新近发展起来的数字地球的概念出发 ,建立了数字流域的基本模式 ,初步探讨了数字流域的数据采集、处理、集成、显示及其在流域综合管理中的应用。  相似文献   

19.
《The Journal of geography》2012,111(3):118-123
Abstract

The Chicago River, though only a few miles long, has long been a focal point for human activities, as it forms the shortage land bridge between the Great Lakes and the Mississippi River system. Through history, because of developments and events in the region and elsewhere, its role and use have chamged. Today, high-status residential development and recreational facilities are appearing along its banks.  相似文献   

20.
三江源地区植被指数下降趋势的空间特征及其地理背景   总被引:21,自引:3,他引:18  
利用8km分辨率的Pathfinder NOAA/AVHRR-NDVI数据,结合1km分辨率的DEM,1 ∶ 250000道路、居民点、水系数据以及野外调查数据,分析了植被指数变化总体态势、植被指数变化与海拔及与距道路、水源和居民点距离之间的关系,探讨了三江源区1981~2001年间植被指数变化趋势和空间分异特征。结果表明:①三江源地区植被指数变化以下降趋势为主,下降区域占源区总面积的18.92%,增加区域占13.99%;②不同植被和冻土类型下的植被指数下降特征:灌丛区和森林区下降率最高,下降率与各类型区的居民点密度、生计方式有关;植被指数下降程度与冻土类型关系不明显;③植被指数下降的区域差异明显:下降率各区域分别为长江源区13.56%、黄河源区32.51%和澜沧江源区18.1%;④植被指数下降率随着距道路、河流的距离增加而逐渐减小;下降率在距居民点18~24km的缓冲带上达到最高后随着距离增大而下降;植被指数下降率随着海拔高程的升高呈"低-高-低-高"态势,下降率与居民点的分布高度相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号