首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A well-stratified succession of fossiliferous sediments occurs in Tight Entrance Cave, southwestern Australia. These infill deposits contain the remains of megafauna and have accumulated intermittently since the Middle Pleistocene: >137, 137–119 and 50–29 ka, according to the results of 14C, U–Th, ESR and OSL dating techniques. Megafaunal species richness was highest in the latest part of the penultimate glacial maximum and during the subsequent last interglacial (137–119 ka), but remains are less abundant following an apparent 70 ka depositional hiatus in the sequence. Most megafaunal specimens from the upper (<44 ka) units are fragmentary, and reworking from older strata cannot yet be ruled out. However, one specimen of Simosthenurus occidentalis (a large extinct kangaroo), a pair of articulated dentaries showing no signs of secondary transportation, was found within a sedimentary layer deposited between 48 and 50 ka. This represents one of the youngest demonstrably in situ occurrences of an Australian megafaunal taxon.  相似文献   

2.
Amphibians are well known as being one of the main groups of animals today most threatened by environmental changes but they are also some of the least well understood of all terrestrial vertebrates. This gap in knowledge is much greater as we look further back into the relatively recent past, despite representing an invaluable resources in archaeological and palaeontological assemblages that are more indicative of palaeoclimate conditions than most other vertebrate taxa. This in part stems from their remains being typically much less studied, partly due to the less common forms of expertise required for identifications based on skeletal morphology – the most frequently observed tissue that remains in ancient assemblages. Here we apply a method of biomolecular species identification by collagen peptide mass fingerprinting to the British Late Pleistocene assemblage of Pin Hole Cave (Creswell Crags, UK) as well as a range of relevant extant taxa for comparison. Our results demonstrate the ability to separate at the species level with all modern taxa investigated, allowing for the identification of these archaeological remains to the amphibian taxa known to exist in Late Pleistocene Britain. Analyses of the Pin Hole assemblage found a dominance of the two species previously known from the site (common frogs and toads: Rana temporaria and Bufo bufo, respectively) and also a small number of the rarer natterjack toad (Epidalea calamita) not previously identified in the Creswell Crags region but known from other sites in the UK; additionally, one specimen appeared to yield the fingerprint of the moor frog (R. arvalis), now extinct in the UK. As such, collagen fingerprinting is here shown to widen the known palaeobiodiversity of taxa, and highlights the further potential to enhance our understanding of climate change in the past.  相似文献   

3.
Near-complete collagen (I) sequences are proposed for elephantid and mammutid taxa, based upon available African elephant genomic data and supported with LC-MALDI-MS/MS and LC-ESI-MS/MS analyses of collagen digests from proboscidean bone. Collagen sequence coverage was investigated from several specimens of two extinct mammoths (Mammuthus trogontherii and Mammuthus primigenius), the extinct American mastodon (Mammut americanum), the extinct straight-tusked elephant (Elephas (Palaeoloxodon) antiquus) and extant Asian (Elephas maximus) and African (Loxodonta africana) elephants and compared between the two ionization techniques used. Two suspected mammoth fossils from the British Middle Pleistocene (Cromerian) deposits of the West Runton Forest Bed were analysed to investigate the potential use of peptide mass spectrometry for fossil identification. Despite the age of the fossils, sufficient peptides were obtained to identify these as elephantid, and sufficient sequence variation to discriminate elephantid and mammutid collagen (I). In-depth LC-MS analyses further failed to identify a peptide that could be used to reliably distinguish between the three genera of elephantids (Elephas, Loxodonta and Mammuthus), an observation consistent with predicted amino acid substitution rates between these species.  相似文献   

4.
This paper describes a large collection of Quaternary fossil fauna from the Luangwa Rift Valley, Zambia. Stone Age artefacts have been recovered from stratified fluvial contexts, but no in situ fossil faunas have yet been recovered. We report on 500 fossil specimens collected from the surface of point bars exposed seasonally along the banks of the main Luangwa River channel. We used non‐destructive X‐ray fluorescence analysis of the fossils' chemical signatures to determine whether they derive from one or many primary contexts, and the relationship between chemical signature and state of preservation. Specimens are identified to taxon (genus) to reconstruct palaeoenvironments and biochronology. A relatively wide range of taxa is identified, including a fossil hominin talus, described here. None of the fossils is positively attributable to extinct species, except a femur of an extinct Theropithecus reported in 2003. Although no additional extinct taxa were identified, some of the remains were attributable to genera that are not currently found in this region. The results suggest that most of the assemblage derives from sediments which are Middle Pleistocene or later, and that past environments in the Luangwa Valley may have differed from the habitat availability found today.  相似文献   

5.
Competition between taxa related to climate changes has been proposed as a possible factor in Pleistocene megafaunal extinctions, and here we present isotope evidence of the diets of three co-existing bear species [black bear (Ursus americanus), brown bear (Ursus arctos), and the now extinct short-faced bear (Arctodus simus)] from a locale in western North America dating to the Late (Terminal) Pleistocene (~14.5–11.7 ka). The three bear species were found at several sites on Vancouver Island, on the western coast of Canada. To examine the chronological overlap and niche partitioning between these species of bear, we used direct radiocarbon dating, stable isotope analysis and ZooMS proteomic identification methods. Here we present new radiocarbon evidence from Terminal Pleistocene U. americanus, U. arctos and A. simus from several sites on the island, along with both bulk collagen and compound-specific isotope data for these species. Radiocarbon dates confirm the chronological overlap of Arctodus and both Ursus species in the montane regions of the island at the end of the Pleistocene. Stable isotope data reveal niche differentiation between these species, with U. americanus occupying a distinctly lower trophic position than the other two taxa.  相似文献   

6.
Although the recent history of human colonisation and impact on Mauritius is well documented, virtually no records of the pre-human native ecosystem exist, making it difficult to assess the magnitude of the changes brought about by human settlement. Here, we describe a 4000-year-old fossil bed at Mare aux Songes (MAS) in south-eastern Mauritius that contains both macrofossils (vertebrate fauna, gastropods, insects and flora) and microfossils (diatoms, pollen, spores and phytoliths). With >250 bone fragments/m2 and comprising 50% of all known extinct and extant vertebrate species (ns = 44) of Mauritius, MAS may constitute the first Holocene vertebrate bone Concentration-Lagerstätte identified on an oceanic volcanic island. Fossil remains are dominated by extinct giant tortoises Cylindraspis spp. (63%), passerines (~10%), small bats (7.8%) and dodo Raphus cucullatus (7.1%). Twelve radiocarbon ages [four of them duplicates] from bones and other material suggest that accumulation of fossils took place within several centuries. An exceptional combination of abiotic conditions led to preservation of bones, bone collagen, plant tissue and microfossils. Although bone collagen is well preserved, DNA from dodo and other Mauritian vertebrates has proved difficult. Our analysis suggests that from ca 4000 years ago (4 ka), rising sea levels created a freshwater lake at MAS, generating an oasis in an otherwise dry environment which attracted a diverse vertebrate fauna. Subsequent aridification in the south-west Indian Ocean region may have increased carcass accumulation during droughts, contributing to the exceptionally high fossil concentration. The abundance of floral and faunal remains in this Lagerstätte offers a unique opportunity to reconstruct a pre-human ecosystem on an oceanic island, providing a key foundation for assessing the vulnerability of island ecosystems to human impact.  相似文献   

7.
Titanosaurs were a globally distributed group of sauropod dinosaurs. They had diverse forms and a wide-gauge stance, with a few of their species reaching immense sizes, such as Argentinosaurus huinculensis and Patagotitan mayorum (reaching >35 m in length). There are about 100 valid titanosaur species known so far, but most of the originally described species are no longer valid, due to the incomplete nature of fossil materials. Our understanding of titanosaur skull morphology is based on very few incomplete fragmented cranial materials and findings of the complete skull are even rarer. Understanding the skull morphology of extinct animals helps palaeontologists make deductions of feeding mechanisms and also provide an idea about their appearance when they were alive. Diversity in titanosaur skull morphology is greater than that of any other sauropod clade, indicating diversity in feeding mechanism among these dinosaurs. Titanosaurs were the last surviving clade of sauropod dinosaurs, occupying nearly every ecological niche around the world during the Late Cretaceous, and resulting in a rich diversity in this group. This article highlights diversity in the basic structure of sauropods with special emphasis on titanosaur skull morphology.  相似文献   

8.
Palaeolithic people commonly hunted Equus hydruntinus, an extinct species of equid whose cursorial body proportions suggest an adaptation to semi-arid conditions. Despite the frequency with which it is encountered in fossil deposits, only partial cranial remains have been reported until now. As a result, the systematic affiliation of the species remains a subject of controversy. Two nearly complete E. hydruntinus crania are presented here for the first time. These skulls show that E. hydruntinus is a distinct species, more closely related to the hemiones (Asiatic asses) than to any other equid. This suggests that the social organisation of E. hydruntinus followed one of two known equid sociotypes: resource defense territoriality.  相似文献   

9.
Palaeolithic people commonly hunted Equus hydruntinus, an extinct species of equid whose cursorial body proportions suggest an adaptation to semi-arid conditions. Despite the frequency with which it is encountered in fossil deposits, only partial cranial remains have been reported until now. As a result, the systematic affiliation of the species remains a subject of controversy. Two nearly complete E. hydruntinus crania are presented here for the first time. These skulls show that E. hydruntinus is a distinct species, more closely related to the hemiones (Asiatic asses) than to any other equid. This suggests that the social organisation of E. hydruntinus followed one of two known equid sociotypes: resource defense territoriality.  相似文献   

10.
Palaeontology was established as a science in the Victorian era, yet has roots that stretch deeper into the recesses of history. More than 2000 years ago, the Greek philosopher Aristotle deduced that fossil sea shells were once living organisms, and around 500 ad Xenophanes used fossils to argue that many areas of land must have previously been submarine. In 1027, the Persian scholar Avicenna suggested that organisms were fossilized by petrifying fluids; this theory was accepted by most natural philosophers up until the eighteenth century Enlightenment, and even beyond. The late 1700s were notable for the work of Georges Cuvier who established the reality of extinction. This, coupled with advances in the recognition of faunal successions made by the canal engineer William Smith, laid the framework for the discipline that would become known as palaeontology. As the nineteenth century progressed, the scientific community became increasingly well organized. Most fossil workers were gentleman scientists and members of the clergy, who self‐funded their studies in a new and exciting field. Many of the techniques used to study fossils today were developed during this ‘classical’ period. Perhaps the most fundamental of these is to expose a fossil by splitting the rock housing it, and then conduct investigations based upon the exposed surface ( Fig. 1 ). This approach has served the science well in the last two centuries, having been pivotal to innumerable advances in our understanding of the history of life. Nevertheless, there are many cases where splitting a rock in this way results in incomplete data recovery; those where the fossils are not flattened, but are preserved in three‐dimensions. Even the ephemeral soft‐tissues of organisms are occasionally preserved in a three‐dimensional state, for example in the Herefordshire, La Voulte Sûr Rhone and Orsten ‘Fossil Lagerstätten’ (sites of exceptional fossil preservation). These rare and precious deposits provide a wealth of information about the history of life on Earth, and are perhaps our most important resource in the quest to understand the palaeobiology of extinct organisms. With the aid of twenty‐first century technology, we can now make the most of these opportunities through the field of ‘virtual palaeontology’—computer‐aided visualization of fossils.
Figure 1 Open in figure viewer PowerPoint A split nodule showing the fossil within, in this case a cockroachoid insect. Fossil 4 cm long (From Garwood & Sutton, in press ).  相似文献   

11.
A new polypore fungus beetle is described and illustrated, under the name of Thescelostrophus cretaceus gen. et sp. nov., representing the first documented occurrence of the tribe Eustrophini. The well-preserved specimen was collected from the Upper Cretaceous (Cenomanian, ca. 99 Ma) amber near the Hukawng Valley of northern Myanmar. This fossil species can be assigned to the extant subfamily Eustrophinae based on its elongate oval and strongly narrowed posteriorly body, simple and narrow tarsi, and somewhat clubbed antennomeres. The comparison among the extinct and extant eustrophines supports the previous hypothesis that antennal morphology of early eustrophines was very diverse. Additionally, an overall similarity between Thescelostrophus and extant eustrophines suggests a potential fungivory of this fossil species. Morphological characters preserved in the Burmese amber highlight the diversity of tetratomids during the Late Mesozoic and provide data for future phylogenetic studies of Tetratomidae.  相似文献   

12.
A diverse assemblage of late Pleistocene marsupial trackways on a lake bed in south-western Victoria provides the first information relating to the gaits and morphology of several megafaunal species, and represents the most speciose and best preserved megafaunal footprint site in Australia. The 60–110 ka volcaniclastic lacustrine sedimentary rocks preserve trackways of the diprotodontid Diprotodon optatum, a macropodid (probably Protemnodon sp.) and a large vombatid (perhaps Ramsayia magna or ‘Phascolomysmedius) and possible prints of the marsupial lion, Thylacoleo carnifex. The footprints were imprinted within a short time period, demonstrating the association of the taxa present, rather than the time-averaged accumulations usually observed in skeletal fossil deposits. Individual manus and pes prints are distinguishable in some trackways, and in many cases some digital pad morphology is also present. Several parameters traditionally used to differentiate ichnotaxa, including trackway gauge and the degree of print in-turning relative to the midline, are shown to be subject to significant intraspecific variation in marsupials. Sexual dimorphism in the trackway proportions of Diprotodon, and its potential for occurrence in all large bodied, quadrupedal marsupials, is identified here for the first time.  相似文献   

13.
14.
Ancient bone remains are widely utilized when investigating vertebrate biodiversity of past animal populations but are often so highly fragmented that the majority of specimens cannot be identified to any meaningful taxonomic level. Recently, high‐throughput methods for objective species identification using collagen peptide mass fingerprinting have been created to overcome this with the added indication that they could also offer a means of relative ageing through decay measurement. Here we explore both species identification and decay measurements for the Pin Hole Cave ‘microfaunal’ assemblage, the site that has been designated as a representative for Marine Oxygen Isotope Stage 3 in Britain in terms of its suite of mammalian fauna. We explore the technique's potential to corroborate the faunal diversity established previously by macroscopic studies and evaluate the decay measurements across the species boundary. The results support that the analysis of fragmentary remains by collagen fingerprinting can yield a more diverse set of fauna, and offer additional information relating to taphonomy, than the analysis of morphologically intact bones on their own. However, although useful for identifying likely contaminations of an assemblage, there was an unexpected decrease in the decay measurements observed for some megafauna compared with much younger microfauna, indicating that other factors need to be carefully monitored before it could be used as a relative ageing technique in Quaternary deposits.  相似文献   

15.
The cave bear ( Ursus spelaeus ) was one of several spectacular megafaunal species that became extinct in northern Eurasia during the late Quaternary. Vast numbers of their remains have been recovered from many cave sites, almost certainly representing animals that died during winter hibernation. On the evidence of skull anatomy and low δ15N values of bone collagen, cave bears appear to have been predominantly vegetarian. The diet probably included substantial high quality herbaceous vegetation. In order to address the reasons for the extinction of the cave bear, we have constructed a chronology using only radiocarbon dates produced directly on cave bear material. The date list is largely drawn from the literature, and as far as possible the dates have been audited (screened) for reliability. We also present new dates from our own research, including results from the Urals. U. spelaeus probably disappeared from the Alps and adjacent areas – currently the only region for which there is fairly good evidence – c . 24 000 radiocarbon years BP ( c . 27 800 cal. yr BP), approximately coincident with the start of Greenland Stadial 3 ( c . 27 500 cal. yr BP). Climatic cooling and inferred decreased vegetational productivity were probably responsible for its disappearance from this region. We are investigating the possibility that cave bear survived significantly later elsewhere, for example in southern or eastern Europe.  相似文献   

16.
Advancements in ancient DNA analyses now permit comparative molecular and morphological studies of extinct animal dung commonly preserved in caves of semiarid regions. These new techniques are showcased using a unique dung deposit preserved in a late glacial vizcacha (Lagidium sp.) midden from a limestone cave in southwestern Argentina (38.5° S). Phylogenetic analyses of the mitochondrial DNA show that the dung originated from a small ground sloth species not yet represented by skeletal material in the region, and not closely related to any of the four previously sequenced extinct and extant sloth species. Analyses of pollen and plant cuticles, as well as analyses of the chloroplast DNA, show that the Cuchillo Curá ground sloth browsed on many of the same herb, grass, and shrub genera common at the site today, and that its habitat was treeless Patagonian scrub-steppe. We envision a day when molecular analyses are used routinely to supplement morphological identifications and possibly to provide a time-lapse view of molecular diversification.  相似文献   

17.
Prophaenognatha robusta gen. et sp. nov. (Scarabaeoidea: Scarabaeidae: Aclopinae), the best-preserved aclopine fossil so far, is described and illustrated from the Upper Jurassic–Lower Cretaceous Yixian Formation of the Jehol Biota, western Liaoning Province, NE China. The key to extinct and extant genera of Aclopinae is given and the monophyly of extant and fossil Aclopinae lineages is supported by five character states. The new taxon provides evidence about the evolution of Scarabaeoidea with its phylogenetic position inferred based on 68 morphological characters.  相似文献   

18.
19.
角质层微细构造特征是化石植物鉴定的重要依据,实验研究了云南腾冲新近系樟科润楠属薄叶润楠Machilus leptophylla和长梗润楠(近似种)Machilus cf. longipedicellata两个化石种的表皮微细构造特征,并与现存对应种类进行了表皮构造和叶结构特征的对比分析,补充证实了两化石种均属于自然分类属性。丰富了我国樟科润楠属化石记录。鉴于大气CO2浓度与植物叶片气孔指数呈负相关关系,Machilus叶片可以作为大气CO2浓度的生物指示器。研究表明,利用该类化石叶片气孔参数可推测地史时期古大气CO2浓度,揭示了新近纪滇西地区为温暖湿润性气候。  相似文献   

20.
Organic molecules such as proteins can be preserved in certain fossils. The bulk properties of fossil proteins of both vertebrates and invertebrates have been studied for over half a century. Named proteins have so far been identified, however, only in vertebrate fossils, such as collagen from mammoth bones. Using immunological assays, we examined 1500 year old fossils of the extinct land snail Mandarina luhuana from the Bonin islands for the presence of dermatopontin, a molluscan shell matrix protein. First, we examined the shell microstructure and mineralogy of the fossil shells using scanning electron microscopy (SEM) and powder X-ray diffraction (XRD) in order to estimate the extent of diagenetic alteration. The results suggest that the original microstructure and mineralogy of the shells are preserved. Antiserum raised against the Type-1 dermatopontin fragment of the living land snail Euhadra brandtii showed significant immunological reactivity with the extracts from the fossil shells of M. luhuana. Immunological binding curves drawn for the shell extracts of extant M. aureola and the extinct M. luhuana confirmed the presence of dermatopontin in the fossil shells and provided an estimate that about 75–98% of the original dermatopontin was lost from the M. luhuana fossils. This is the first report of a named protein being identified in invertebrate fossils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号