首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nagahama Bay of Satsuma Iwo‐Jima Island, southwest Japan, is an excellent place for studying sedimentation of iron‐oxyhydroxides by shallow‐marine low‐temperature hydrothermal activity. Its fishing port has a narrow entrance that limits exchange of seawater between the bay and open ocean, allowing the accumulation of fine‐grained precipitates of iron‐bearing materials (Fe‐oxyhydroxides) on the seafloor. The fishing port is usually filled with orange‐ to brown‐colored Fe‐rich water, and deposits >1.5 m thick Fe‐rich sediments. To elucidate the movement and depositional processes of the Fe‐rich precipitates in the bay, we conducted continuous profiling of turbidity throughout the tidal cycle and monitoring of surface water. The results showed that clear seawater entered the bay during the rising tide, and turbid colored water flowed into the ocean during the ebb tide. Neap tide was found to be an optimal condition for sedimentation of Fe‐oxyhydroxides due to weak tidal currents. Storms and heavy rains were also found to have influenced precipitation of Fe‐oxyhydroxides. Storm waves disturbed the bottom sediments, resulting in increased turbidity and rapid re‐deposition of Fe‐oxyhydroxides with an upward‐fining sequence. Heavy rain carried Fe‐oxyhydroxides originally accumulated in nearby beach sands to the bay. Our findings provide information on optimal conditions for the accumulation of Fe‐rich sediments in shallow‐marine hydrothermal settings.  相似文献   

2.
Expeditions to Muztagata (in the eastern Pamirs) during the summer seasons of 2002 and 2003 collected precipitation samples and measured their oxygen isotopes. The δ 18O in precipitation displays a wide range, varying from −17.40‰ to +1.33‰ in June-September 2002 and from −22.31‰ to +4.59‰ in May-August 2003. The δ 18O in precipitation correlates with the initial temperature of precipitation during the observing periods. The positive correlation between δ 18O and temperature suggests that δ 18O can be used as an indicator of temperature in this region. The δ 18O values in fresh-snow samples collected from two snow events at different elevations on the Muztagata Glacier show a strong “altitude effect”, with a ratio of nearly −0.40% per 100 m from 5500 m to 7450 m.  相似文献   

3.
ABSTRACT

The temporal variations in electrical conductivity and the stable isotopes of water, δD and δ18O, were examined at Chhota Shigri Glacier, India, to understand water sources and flow paths to discharge. Discharge is highly influenced by supraglacially derived meltwater during peak ablation, and subglacial meltwaters are more prominent at the end of the melt season. The slope of the best fit linear regression line for δD versus δ18O, for both supraglacial and runoff water, is lower than that for precipitation (snow and rain) and surface ice, indicating strong isotopic fractionation associated with the melting processes. The slope of the local meteoric water line (LMWL) is close to that of the global meteoric water line (GMWL), reflecting that the moisture source is predominantly oceanic. The d-excess variation in rainwater confirms that the southwest monsoon is the main contributor during summer while the remainder including winter is mostly influenced by westerlies.  相似文献   

4.
A laboratory inorganic carbonate precipitation experiment at high pH of 8.96 to 9.34 was conducted, and the boron isotopic fractionations of the precipitated carbonate were measured. The data show that boron isotopic fractionation factors (αcarb-3) between carbonate and B(OH)3 in seawater range 0.937 and 0.965, with an average value of 0.953. Our results together with those reported by Sanyal and collaborators show that the αcarb-3 values between carbonate and B(OH)3 in solution are not constant but are negatively correlated with the pH of seawater. The measured boron isotopic compositions of carbonate precipitation (δ11Bcarb) do not exactly lie on the best-fit theoretical δ11B4-pH curves and neither do they exactly parallel any theoretical δ11B4-pH curves. Therefore, it is reasonable to argue that a changeable proportion of B(OH)3 with pH of seawater should also be incorporated into carbonate except for the dominant incorporation of B(OH)4 in carbonate. Hence, in the reconstruction of the paleo-pH of seawater from boron isotopes in marine biogenic carbonates, the use of theoretical boron isotopic fractionation factor (α4−3) between B(OH)4 and B(OH)3 is not suitable. Instead, an empirical equation should be established. Supported by National Natural Science Foundation of China (Nos. 40573013 and 40776071), State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (Grant No SKLLQG0502) and State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences  相似文献   

5.
The mineralogical and geochemical characteristics of Fe-oxyhydroxide samples from one dredge station (long. 103°54.48′W, lat. 12°42.30′N, water depth 2655 m) on the East Pacific Rise near lat 13°N were analyzed by XRD, ICP-AES, and ICP-MS. Most Fe-oxyhydroxides are amorphous, with a few sphalerite microlites. In comparison with Fe-oxyhydroxides from other fields, the variable ranges in the chemical composition of Fe-oxyhydroxide samples are very narrow; their Fe, Si, and Mn contents were 39.90%, 8.92%, and 1.59%, respectively; they have high Cu (0.88%–1.85%) and Co (65×10−6−704×10−6) contents, and contain Co+Cu+Zn+Ni> 1.01%. The trace-element (As, Co, Ni, Cu, Zn, Ba, Sr) and major-element (Fe, Ca, Al, Mg) contents of these samples are in the range of hydrothermal sulfide from the East Pacific Rise near 13°N, reflecting that this type of Fe-oxyhydroxide constitutes a secondary oxidation product of hydrothermal sulfide. The Fe-oxyhydroxide samples from one dredge station on the East Pacific Rise near 13°N are lower in ΣREE (5.44×10−6–17.01×10−6), with a distinct negative Ce anomaly (0.12–0.28). The Fe-oxyhydroxide samples have similar chondrite-normalized rare-earth-element (REE) patterns to that of seawater, and they are very different from the REE composition characteristics of hydrothermal plume particles and hydrothermal fluids, showing that the REEs of Fe-oxyhydroxide are a major constituent of seawater and that the Fe-oxyhydroxides can become a sink of REE from seawater. The quick settling of hydrothermal plume particles resulted in the lower REE content and higher Mn content of these Fe-oxyhydroxides, which are captured in part of the V and P from seawater by adsorption. The Fe-oxyhydroxides from one dredge station on the East Pacific Rise near 13°N were formed by secondary oxidation in a low temperature, oxygenated environment. In comparison with the elemental (Zn, Cd, Pb, Fe, Co, Cu) average content of hydrothermal sulfide samples from the East Pacific Rise near 13°N, the Zn, Cd, and Pb contents of the Fe-oxyhydroxides are lower, and their Fe, Co, and Cu contents are higher. Supported in part by the Pilot Project of Knowledge Innovation Project, Chinese Academy of Sciences (Grant No. KZCX3-SW-223), and the Special Foundation for the Tenth Five Plan of COMRA (Grant No. DY105-01-03-1)  相似文献   

6.
In this paper, the fate of iron in Lake Cristallina, an acidic lake in the Alps of Switzerland, is discussed. A simple conceptual model is developed in order to explain the observed diel variation in dissolved iron(II) concentration. Biotite weathering provides reduced iron that is oxidized and subsequently precipitated in the lake. The amorphous Fe(III)hydroxide (FeOOH xH2O), found in the sediments of Lake Cristallina, is an Fe(II) oxidation product. This oxygenation reaction is most probably catalyzed by bacteria surfaces, as indicated by the relatively high estimated oxidation rate compared to the oxidation rate of the homogeneous oxidation of inorganic Fe(II) species at the ambient pH of Lake Cristallina (pH 5.4 at 4 °C) and by the scanning electron micrograph pictures. Under the influence of light, these amorphous iron(III)hydroxide phases are reductively dissolved. The net concentration of Fe(II) reflects the balance of the reductive dissolution and the oxidation/precipitation reactions and tends to parallel the light intensity, leading to a diurnal variation in the Fe(II) concentration. The rate of the photochemical reductive dissolution of Lake Cristallina iron(III)hydroxides is greatly enhanced in situ and in the laboratory by addition of oxalate to the lake water.  相似文献   

7.
The stable oxygen and hydrogen isotopic features of precipitation in Taiwan, an island located at the western Pacific monsoon area, are presented from nearly 3,500 samples collected during the past decade for 20 stations. Results demonstrate that moisture sources from diverse air masses with different isotopic signals are the main parameter in controlling the precipitation's isotope characteristics. The air mass from polar continental (Pc) region contributes the precipitation with high deuterium excess values (up to 23‰) and relatively enriched isotope compositions (e.g., ? 3.2‰ for δ18O) during the winter with prevailing northeasterly monsoon. By contrast, air masses from equatorial maritime (Em) and tropical maritime (Tm) supply the precipitation with low deuterium excess values (as low as about 7‰) and more depleted isotope values (e.g., ? 8.9‰ and ? 6.0‰ for δ18O of Tm and Em, respectively) during the summer with prevailing southwesterly monsoon. Thus seasonal differences in terms of δ18O, δD, and deuterium excess values are primarily influenced by the interactions among various precipitation sources. While these various air masses travel through Taiwan, secondary evaporation effects further modify the isotope characteristics of the inland precipitation, such as raindrop evaporation (reduces the deuterium excess of winter precipitation) and moisture recycling (increases the deuterium excess of summer precipitation). The semi-quantitative estimations in terms of evaluation for changes in the deuterium excess suggest that the raindrop evaporation fractions for winter precipitation range 7% to 15% and the proportions of recycling moisture in summer precipitation are less than 5%. Additionally, the isotopic altitude gradient in terms of δ18O for summer precipitation is ? 0.22‰/100 m, greater than ? 0.17‰/100 m of winter precipitation. The greater isotopic gradient in summer can be attributed to a higher temperature vs. altitude gradient relative to winter. The observed spatial and seasonal stable isotopic characteristics in Taiwan's precipitation not only contribute valuable information for regional monsoon research crossing the continent–ocean interface of East Asia, but also can serve as very useful database for local water resources management.  相似文献   

8.
The surface tension lowering by surface-active substances has been measured on rainwater, melted snow, and dispersions of atmospheric particles in water, with a film balance and a tensiometer. The precipitation water was sampled during 1979, 1980, and 1981 in the city of Frankfurt/Main. From measurements with the film balance technique, normalized concentrations of insoluble and weakly soluble surface-active substances have been estimated. Soluble surface-active substances were determined from measurements with a tensiometer. It was found that the normalized concentration of theinsoluble and weakly soluble surface-active material on rainwater or melted snow shows a maximum during late spring of about 2.5 · 10−7 moles/l and a minimum during wintertime of about 5 · 10−8 moles/l. These concentrations are too low to influence significantly the condensation of water vapour on cloud droplets or the evaporation of water from them. Thesoluble surface-active material on rainwater or melted snow was found to have concentrations of the order of 2 · 10−6 moles/l. These concentrations are also too small to have a significant influence on cloud physical processes.  相似文献   

9.
The Hg concentration in seawater and copepod samples collected from the area around hydrothermal vents at Kueishan Island and the adjacent marine environment in northeastern Taiwan were analyzed to study Hg bioaccumulation in copepods living in polluted and clean marine environments. The seawater collected from the hydrothermal vent area had an extremely high concentration of dissolved Hg, 50.6–256 ng l−1. There was slightly higher Hg content in the copepods, 0.08–0.88 μg g−1. The dissolved Hg concentration in the hydrothermal vent seawater was two to three orders of magnitude higher than that in the adjacent environment. The bioconcentration factor of the studied copepods ranged within 103–106, and showed higher dissolved concentration as the bioconcentration factor was lower. A substantial abundance, but with less copepod diversity was recorded in the seawater around the hydrothermal vent area. Temora turbinata was the species of opportunity under the hydrothermal vent influence.  相似文献   

10.
Three-dimensional distributions of fluorescent whitening agents (FWAs: more specifically, DSBP and DAS1), which are sewage-derived water-soluble markers, were observed in Tokyo Bay water through multi-layer sampling of water at 20 locations. In summer, FWAs predominated in the surface layers, with trace but significant concentration of FWAs in bottom water due to stratification of seawater. In winter, on the other hand, FWAs were extensively mixed into the bottom layers because of the vertical mixing of seawater. In the surface layer, FWA concentrations and the DSBP/DAS1 ratio (the concentration ratio of DSBP to DAS1) were lower in summer than in winter, suggesting more efficient photodegradation of FWAs in euphotic zones during the summer due to stronger solar radiation. Horizontally, FWAs were widely distributed over the surface layer of Tokyo Bay. Surface water with DSBP concentrations above 50ng/L, corresponding to <200 times dilution of sewage effluent, was found to have spread up to 10km from the coastline. In addition, an offshore decline in FWA concentrations was observed, showing a half-distance of 10-20km. The decrease was caused by dilution by seawater of fresh water containing FWAs. The eastern part of the bay was different with respect to surface layers, with higher concentrations seen in northeastern parts. Furthermore, dispersion of combined sewer overflow (CSO)-derived water mass was observed in Tokyo Bay after heavy rain.  相似文献   

11.
The results of biogeochemical and microbiological studies of three small lakes in southwestern Arkhangelsk province are presented. The lakes differ in their morphometric characteristics, thermal and oxygen regimes, and the extent of anthropogenic impact they experience. In the periods of summer and winter stratification, anaerobic water layers with higher phosphates, ammonium, and sulfide sulfur (hydrogen sulfide) are found to form in the bottom horizon of deep-water zones of the lakes. The highest concentrations of sulfide sulfur (150–210 μg dm−3) were recorded in the shallow Beloe Lake during winter low-water period, while in summer, sulfide concentration did not differ from those obtained in other lakes (∼10 μg dm−3). The abundance of sulfate-reducing bacteria in lake bottom sediments varied from 10 to 100000 cell cm−3, and the rate of sulfate reduction process varied from 29 to 3746 μg S dm−3 day−1. Seasonal variations were revealed in hydrogen sulfide distribution over the water column and in the rate of sulfate reduction process in the upper horizons of bottom sediments in the examined lakes.  相似文献   

12.
This study presents daily and seasonal variations of PAH concentrations in Erzurum atmosphere in summer season of 2008 and in winter seasons of 2008 and 2009. Sampling location at Erzurum urban center was selected to represent the effects of traffic (University junction). 18 PAH compounds were analyzed by GC–MS. Average total PAH concentration (gas + particulate) of 18 PAH compounds were measured during 2008 winter (431 ngm?3) and summer (103 ngm?3) seasons at the University junction. Daily and seasonal variations of PAH compounds were investigated and compared with other urban centers in the literature. Multiple linear regression and artificial neural network (ANN) models were constructed to determine the impacts of meteorological parameters on measured individual PAH concentrations. Results of the multiple linear regression and ANN models indicated that wind speed, wind direction and intensity of total solar radiation were the most significant factors for the measured concentrations of PAH compounds.  相似文献   

13.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   

14.
15.
The distribution and abundance of thaliaceans were studied in relation to physical and biological variables during summer and winter in the northwest continental shelf of South China Sea. Based on the topography and water mass of the surveyed region, it was divided into three subregions: region I (onshore waters of the east Leizhou Peninsula), region II (onshore waters of the east and southeast Hainan Island) and region III (offshore waters from Leizhou Peninsula to Hainan Island). During summer due to a strong southwest monsoon, a cold eddy and coastal upwelling dominated in regions I and II, respectively, whereas the onshore and offshore waters were vertically mixed during winter due to a strong northeast monsoon. A total of 18 thaliacean species (including 3 subspecies) were collected. The mean species richness was higher in summer compared to winter, with the occurrence of higher values during summer and winter at region II and region III, respectively. The average thaliacean abundance is also higher in summer than in winter, with higher values at region I in summer and no significant difference among three subregions in winter. Doliolum denticulatum and Thalia democratica were the dominant species during summer and winter. The results suggested that the seasonal and spatial distribution of thaliacean richness was considered to be the result of physical factors such as temperature and ocean current in summer and winter. Spatial distribution of thaliacean abundance was affected by chlorophyll a concentration increased by the occurrence of coastal upwelling and cold eddy in summer. Southwest and northeast monsoons are shown to play an important role in shaping the distribution of species richness and abundance of thaliaceans in the northwest continental shelf of South China Sea.  相似文献   

16.
Formic acid is the major contributor to acid rain in some regions but its sources are not fully understood. We investigated the aqueous‐phase reactions of HCHO (aq) and OH . radicals at enlarged rainwater pH values (2.49–5.89) in Guiyang, China from May 2006 to April 2007. Our results show that there were no significant correlation between the [HCOOH]t/[HCHO] (aq) and the rainwater pH. The ratio did not appear to vary consistently as a function of rainwater pH as predicted by theoretical model. In addition, we saw no clear evidence that oxidation of HCHO (aq) would produce significant HCOOH (aq) which indicates this reaction may be only a minor contribution to the budget of HCOOH (g) in atmosphere. Further investigation is strongly suggested to be carried out in field cloud water, fog water, or rainwater because the ratios would be diverged from equilibrium value as a result of other chemical or physical processes.  相似文献   

17.
Warm winters and high precipitation in north-eastern Japan generate snow covers of more than three meters depth and densities of up to 0.55 g cm−3. Under these conditions, rain/snow ratio and snowmelt have increased significantly in the last decade under increasing warm winters. This study aims at understanding the effect of rain-on-snow and snowmelt on soil moisture under thick snow covers in mid-winter, taking into account that snowmelt in spring is an important source of water for forests and agriculture. The study combines three components of the Hydrosphere (precipitation, snow cover and soil moisture) in order to trace water mobility in winter, since soil temperatures remained positive in winter at nearly 0.3°C. The results showed that soil moisture increased after snowmelt and especially after rain-on-snow events in mid-winter 2018/2019. Rain-on-snow events were firstly buffered by fresh snow, increasing the snow water equivalent (SWE), followed by water soil infiltration once the water storage capacity of the snowpack was reached. The largest increase of soil moisture was 2.35 vol%. Early snowmelt increased soil moisture with rates between 0.02 and 0.035 vol% hr−1 while, rain-on-snow events infiltrated snow and soil faster than snowmelt and resulted in rates of up to 1.06 vol% hr−1. These results showed the strong connection of rain, snow and soil in winter and introduce possible hydrological scenarios in the forest ecosystems of the heavy snowfall regions of north-eastern Japan. Effects of rain-on-snow events and snowmelt on soil moisture were estimated for the period 2012–2018. Rain/snow ratio showed that only 30% of the total precipitation in the winter season 2011/2012 was rain events while it was 50% for the winter 2018/2019. Increasing climate warming and weakening of the Siberian winter monsoons will probably increase rain/snow ratio and the number of rain-on-snow events in the near future.  相似文献   

18.
A critical evaluation of literature values for the solubility products, K sp NBS = [Fe2+][HS] Fe2+ HS (H NBS + )–1, of various iron sulphide phases results in consensus values for the pKs of 2.95 ± 0.1 for amorphous ferrous sulphide, 3.6 ± 0.2 for mackinawite, 4.4 ± 0.1 for greigite, 5.1 ± 0.1 for pyrrhotite, 5.25 ± 0.2 for troilite and 16.4 ± 1.2 for pyrite.Where the analogous ion activity products have been measured in anoxic freshwaters in which there is evidence for the presence of solid phase FeS, the values lie within the range of 2.6–3.22, indicating that amorphous iron sulphide is the controlling phase. The single value for a groundwater of 2.65 (2.98 considering carbonate complexation) agrees. In seawater four values range between 3.85 to 4.2, indicating that mackinawite or greigite may be the controlling phase. The single low value of 2.94 is in a situation where particularly high fluxes of Fe (II) and S (–II) may result in the preferential precipitation of amorphous iron sulphide. Formation of framboidal pyrite in these sulphidic environments may occur in micro-niches and does not appear to influence bulk concentrations. Calculations show that the formation of Fe2S2 species probably accounts for very little of the iron or sulphide in most natural waters. Previously reported stability constants for the formation of Fe (HS)2 and (Fe (HS)3) are shown to be suspect, and these species are also thought to be negligible in natural waters. In completely anoxic pore waters polysulphides also have a negligible effect on speciation, but in tidal sediments they may reach appreciable concentrations and lead to the direct formation of pyrite. Concentrations of iron and sulphide in pore waters can be controlled by the more soluble iron sulphide phase. The change in the IAP with depth within the sediment may reflect ageing of the solid phase or a greater flux of Fe (II) and S (–II) nearer the sediment surface. This possible kinetic influence on the value of IAPs has implications for their use in geochemical studies involving phase formation.  相似文献   

19.
Multivariate analysis methods have been applied to studying variations in the concentrations of Ag, Al, As, B, Ba, Br, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Si, Sn, Sr, Th, Tl, U, V, Zn, Cl?, NO 3 ? , SO 4 2? as components of precipitation at 11 rural stations under project “Ecogeochemistry of Barents Region”. Hierarchic factor analysis revealed the structure and space-time distribution of seven first-order factors and two second-order factors. The combinations of ingredients that determine the composition of first-order factors characterize the sources of precipitation composition, which have been found to be specific and volatile products of fuel oil and coal combustion, marine and earth aerosols, and biogenic processes. Second-order factors showed two independent sets of components, which are typical of the chemistry of precipitation at the examined stations in winter and summer. Step-by-step discriminant and cluster analysis made it possible to classify the observational stations by precipitation chemistry and demonstrate the extent of difference between them.  相似文献   

20.
A mutual climatic range method is applied to the Mediterranean marine pollen record of Semaforo (Vrica section, Calabria, Italy) covering the period from ∼2.46 Ma to ∼2.11 Ma. The method yields detailed information on summer, annual and winter temperatures and on precipitation during the nine obliquity and precession-controlled ‘glacial’ periods (marine isotope stages 96 to 80) and eight ‘interglacial’ periods (marine isotope stages 95 to 81) characterising this time interval. The reconstruction reveals higher temperatures of at least 2.8 °C in mean annual and 2.2 °C in winter temperatures, and 500 mm in precipitation during the ‘interglacials’ as compared to the present-day climate in the study area. During the ‘glacials’, temperatures are generally lower as compared to the present-day climate in the region, but precipitation is equivalent. Along the consecutive ‘interglacials’, a trend toward a reduction in annual and winter temperatures by more than 2.3 °C, and toward a higher seasonality is observed. Along the consecutive ‘glacials’, a trend toward a strong reduction in all temperature parameters of at least 1.6 °C is reconstructed. Climatic amplitudes of ‘interglacial–glacial’ transitions increase from the older to the younger cycles for summer and annual temperatures. The cross-spectral analyses suggest obliquity related warm/humid–cold/dry ‘interglacial–glacial’ cycles which are superimposed by precession related warm/dry– cold/humid cycles. A time displacement in the development of temperatures and precipitation is indicated for the obliquity band by temperatures generally leading precipitation change at ∼4 kyr, and on the precession band of ∼9.6 kyr in maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号