首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The catchments in the Loess Plateau, in China's middle reaches of the Yellow River Basin, experienced unprecedented land use changes in the last 50 years as a result of large‐scale soil conservation measure to control soil erosion. The climate of the region also exhibited some levels of change with decreased precipitation and increased temperature. This study combined the time‐trend analysis method with a sensitivity‐based approach and found that annual streamflow in the Loess Plateau decreased significantly since the 1950s and surface runoff trends appear to dominate the streamflow trends in most of the catchments. Annual baseflow exhibited mostly downward trends, but significant upward trends were also observed in 3 out of 38 gauging stations. Mean annual streamflow during 1979?2010 decreased by up to 65% across the catchments compared with the period of 1957?1978, indicating significant changes in the hydrological regime of the Loess Plateau. It is estimated that 70% of the streamflow reduction can be attributed to land use change, while the remaining 30% is associated with climate variability. Land use change because of the soil conservation measures and reduction in precipitation are the key drivers for the observed streamflow trends. These findings are consistent with results of previous studies for the region and appear to be reasonable given the accelerated level of the soil conservation measures implemented since the late 1970s. Changes in sea surface temperature in the Pacific Ocean, as indicated by variations in El Niño–Southern Oscillation and phase shifts of the Pacific Decadal Oscillation, appear to have also affected the annual streamflow trends. The framework described in this study shows promising results for quantifying the effects of land use change and climate variability on mean annual streamflow of catchments within the Loess Plateau. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) are two important climate oscillations that affect hydrological processes at global and regional scales. However, few studies have attempted to identify their single and combined influences on water discharge variability at multiple timescales. In this study, we examine temporal variation in water discharge from the Yangtze River into the sea and explore the influence of the ENSO and the PDO on multiscale variations in water discharge over the last century. The results of the wavelet transform analysis of the water discharge series show significant periodic variations at the interannual timescale of 2 to 8 years and the decadal timescale of 15 to 17 years. Water discharge tended to be higher during the La Niña–PDO cold phase and lower during the El Niño–PDO warm phase. The results of the cross wavelet spectrum and wavelet coherence analyses confirm the relationship between the interannual (i.e., 2 to 8 years) and decadal (i.e., 15 to 17 years) periodicities in water discharge with the ENSO and the PDO, respectively. As an important large‐scale climate background, the PDO can modulate the influence of the ENSO on water discharge variability. In general, the warm PDO enhances the influence of El Niño events, and the cold PDO enhances the influence of La Niña events. Our study is helpful in understanding the influencing mechanism of climate change on hydrological processes and provides an important scientific guideline for water resource prediction and management.  相似文献   

3.
Decadal variability and trends of the isothermal layer depth (ILD), mixed layer depth (MLD), and barrier layer thickness (BLT) were analyzed for the tropical Pacific during 1979–2015. The decadal variability of ILD, MLD, and BLT shows a close connection with the Pacific Decadal Oscillation (PDO). At PDO positive phase, the eastward shift of precipitation and weakened trade winds result in thinner BLT in western Pacific and thicker BLT in central and eastern Pacific. The situation is reversed at PDO negative phase. The differences in BLT can be up to 9–15 m. The spatial distributions of decadal trends of ILD and MLD are complex, but a thickening of BLT in the western tropical Pacific is clearly present. The raw trends of ILD, MLD, and BLT averaged in the tropical Pacific (30° N–30° S, 120° E–75° W) from 1979 to 2015 are 1.62, 1.20, and 0.51 m per decade, respectively. PDO can explain about 25% of the increasing trends of BLT, while El Niño-Southern Oscillation (ENSO) only explains about 1.7%. Global warming and/or variability at longer time scales is responsible for the remaining increasing trends. The BLT change is related to the warming and freshening of the western Pacific warm pool in recent decades. The ocean-atmosphere interactions about trade winds, wind-driven ocean circulation, temperature, and precipitation/evaporation are discussed.  相似文献   

4.
Abstract

Changes in trend and quasi-periodicities are sought in the time series of river discharges in all major South American basins. The relationship between trends and quasi-periodicities found and climate variations on interannual and longer time scales are discussed. Consideration of multiple rivers gives insight into the geographical extent of hydrological signals and climate impacts. It is found that the streamflow of all major rivers of South America has experienced an increased trend since the early 1970s. It is suggested that this simultaneity may reflect the impact of a large-scale climate change. All the time series of river streamflows that were analysed show El Niño-like periodicities. Only for La Plata Basin do these explain a larger part of the total variance than the other quasi-periodicities. There are two other quasi-oscillations in the time series analysed: one of them with a longer period—around 17 years—and the other of about 9 years. Previous work has related these oscillations to sea-surface temperature anomalies in the Atlantic Ocean.  相似文献   

5.
Combining the temperature and precipitation data from 77 climatological stations and the climatic and hydrological change data from three headstreams of the Tarim River: Hotan, Yarkant, and Aksu in the study area, the plausible association between climate change and the variability of water resources in the Tarim River Basin in recent years was investigated, the long-term trend of the hydrological time series including temperature, precipitation, and stream-flow was detected, and the possible association between the El Nino/Southern Oscillation (ENSO) and these three kinds of time series was tested. The results obtained in this study show that during the past years, the temperature experienced a significant monotonic increase at the speed of 5%, nearly 1℃rise; the precipitation showed a significant decrease in the 1970s, and a significant increase in the 1980s and 1990s, the average annual precipitation was increased with the magnitude of 6.8 mm per decade. A step change occurred in both temperature and  相似文献   

6.
Runoff signatures, including low flow, high flow, mean flow and flow variability, have important implications on the environment and society, predominantly through drought, flooding and water resources. Yet, the response of runoff signatures has not been previously investigated at the global scale, and the influencing mechanisms are largely unclear. Hence, this study makes a global assessment of runoff signature responses to the El Niño and La Niña phases using daily streamflow observations from 8217 gauging stations during 1960–2015. Based on the Granger causality test, we found that ~15% of the hydrological stations of multiple runoff signatures show a significant causal relationship with El Niño–southern oscillation (ENSO). The quantiles of all runoff signatures were larger during the El Niño phase than during the La Niña phase, implying that the entire flow distribution tends to shift upward during El Niño and downward during La Niña. In addition, El Niño has different effects on low and high flows: it tends to increase the low and mean flow signatures but reduces the high flow and flow variability signatures. In contrast, La Niña generally reduces all runoff signatures. We highlight that the impacts of ENSO on streamflow signatures are manifested by its effects on precipitation (P), potential evaporation (PET) and leaf area index (LAI) through ENSO-induced atmospheric circulation changes. Overall, our study provides a comprehensive picture of runoff signature responses to ENSO, with valuable insights for water resources management and flood and drought disaster mitigation.  相似文献   

7.
Paired watershed experiments involving the removal or manipulation of forest cover in one of the watersheds have been conducted for more than a century to quantify the impact of forestry operations on streamflow. Because climate variability is expected to be large, forestry treatment effects would be undetectable without the treatment–control comparison. New understanding of climate variability provides an opportunity to examine whether climate variability interacts with forestry treatments, in a predictable manner. Here, we use data from the H. J. Andrews Experimental Forest, Oregon, USA, to examine the impact of the El Niño‐Southern Oscillation on streamflow linked to forest harvesting. Our results show that the contrast between El Niño and La Niña events is so large that, whatever the state of the treated watershed in terms of regrowth of the forest canopy, extreme climatic variability related to El Niño‐Southern Oscillation remains the more dominant driver of streamflow response at this location. Improvements in forecasting interannual variation in climate might be used to minimize the impact of forestry treatments on streamflow by avoiding initial operations in La Niña years. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The relationship between El Niño Southern Oscillation (ENSO) and precipitation along the Peruvian Pacific coast is investigated over 1964–2011 on the basis of a variety of indices accounting for the different types of El Niño events and atmospheric and oceanographic manifestations of the interannual variability in the tropical Pacific. We show the existence of fluctuations in the ENSO/precipitation relationship at decadal timescales that are associated with the ENSO property changes over the recent decades. Several indices are considered in order to discriminate the influence of the two types of El Niño, namely, the eastern Pacific El Niño and the central Pacific El Niño, as well as the influence of large‐scale atmospheric variability associated to the Madden and Julian Oscillation, and of regional oceanic conditions. Three main periods are identified that correspond to the interleave periods between the main climatic transitions over 1964–2011, i.e. the shifts of the 1970s and the 2000s, over which ENSO experiences significant changes in its characteristics. We show that the relationship between ENSO and precipitation along the western coast of Peru has experienced significant decadal change. Whereas El Niño events before 2000 lead to increased precipitation, in the 2000s, ENSO is associated to drier conditions. This is due to the change in the main ENSO pattern after 2000 that is associated to cooler oceanic conditions off Peru during warm events (i.e. central Pacific El Niño). Our analysis also indicates that the two extreme El Niño events of 1982/1983 and 1997/1998 have overshadowed actual trends in the relationship between interannual variability in the tropical Pacific and precipitation along the coast of Peru. Overall, our study stresses on the complexity of the hydrological cycle on the western side of the Andes with regard to its relationship with the interannual to decadal variability in the tropical Pacific. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Drought is a slow‐onset, creeping natural hazard which is an inevitable part of normal climate fluctuation especially in arid and semiarid regions, and its variability can be explained in terms of large‐scale atmospheric circulation patterns. Standardized streamflow index (SSFI) was utilized to characterize hydrological drought in the west of Iran for the hydrological years of 1969–1970 to 2008–2009. The linkage of atmospheric circulation patterns (ENSO, NAO) to hydrological drought was also used to reveal relations of climate variability affecting hydrological drought. River discharges exhibited negative anomalies during the warm phase of ENSO (El Niño) which caused the extreme and severe droughts in the study area, being strongest during the hydrological years of 2007–2008 and 2008–2009. The analysis also indicated the teleconnection impact of ENSO on the hydrological drought severity in the first half of the hydrological year especially between November and March. Moreover, the concurrent and lag correlations revealed a weak relationship between the SSFI drought severity and the NAO index. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
River flow constitutes an important element of the terrestrial branch of the hydrological cycle, yet knowledge regarding the extent to which its variability, at a range of timescales, is linked to a number of modes of atmospheric circulation is meagre. This is especially so in the Southern Hemisphere where strong candidates, such as El Niño Southern Oscillation and the Southern Annular Mode (SAM), for influencing climate and thus river flow variability can be found. This paper presents the results of an analysis of the impact of the SAM on winter and summer river flow variability across New Zealand, purposefully controlling for the influence of El Niño Southern Oscillation and the tendency for the SAM to adopt a positive phase over the last 10–20 years. Study results, based on identifying hydrological regions and applying circulation‐to‐environment and environment‐to‐circulation approaches commonly used in synoptic climatology, reveal a seasonal asymmetry of the response of river flow variability to the SAM; winter flows demonstrate a higher degree of statistical association with the SAM compared to summer flows. Further, because of the complex orography of New Zealand and its general disposition normal to zonal flows of moisture bearing winds, there are intraseasonal spatial variations in river flow SAM associations with clear rain shadow effects playing out in resultant river flow volumes. The complexity of SAM river flow associations found in this study warns against using indices of large scale modes of atmospheric circulation as blunt tools for hydroclimatological prediction at scales beyond hydroclimatological regions or areas with internal hydrological consistency.  相似文献   

11.
It is a common practice to employ hydrologic models for assessing present and future states of watersheds and assess the degree of alterations for a range of hydrologic indicators. Previous studies indicate that the hydrologic model may not be able to replicate some of the indicators of interest, which raises questions on the reliability of model simulated changes. Hence, we initiated a study to evaluate the replicability of the streamflow changes by employing the widely used variable infiltration capacity hydrologic model for sub‐basins and mainstem of the Fraser River Basin, Canada. Given that the hydrologic regime of the region is known to be influenced by teleconnections to the Pacific Decadal Oscillation (PDO) and El Niño–Southern Oscillation (ENSO), we used hydrologic responses to the PDO and ENSO states as analogues for evaluating the model's ability to simulate climate‐induced changes. The results revealed that the qualitative patterns of response, such as lower flows for the warm PDO state compared to the cool state, and progressively higher flows for the warm, neutral and cool ENSO states, were generally well reproduced for most hydrologic indicators. Additionally, while the directions of change between the different PDO and ENSO states were mostly well replicated, the magnitude of change for some of the indicators showed considerable differences. Hence, replicability of both magnitude and direction of change need to be carefully examined before using the simulated indicators for assessing future hydrologic changes, and a reliable replication increases the confidence of projected changes. Copyright © 2016 Her Majesty the Queen in Right of Canada. Hydrological Processes. © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The Georgia Basin–Puget Sound Lowland region of British Columbia (Canada) and Washington State (USA) presents a crucial test in environmental management due to its combination of abundant salmonid habitat, rapid population growth and urbanization, and multiple national jurisdictions. It is also hydrologically complex and heterogeneous, containing at least three streamflow regimes: pluvial (rainfall-driven winter freshet), nival (melt-driven summer freshet), and hybrid (both winter and summer freshets), reflecting differing elevation ranges within various watersheds. We performed bootstrapped composite analyses of river discharge, air temperature, and precipitation data to assess El Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) impacts upon annual hydrometeorological cycles across the study area. Canadian and American data were employed from a total of 21 hydrometric and four meteorological stations. The surface meteorological anomalies showed strong regional coherence. In contrast, the seasonal impacts of coherent modes of Pacific circulation variability were found to be fundamentally different between streamflow regimes. Thus, ENSO and PDO effects can vary from one stream to the next within this region, albeit in a systematic way. Furthermore, watershed glacial cover appeared to complicate such relationships locally; and an additional annual streamflow regime was identified that exhibits climatically driven non-linear phase transitions. The spatial heterogeneity of seasonal flow responses to climatic variability may have substantial implications to catchment-specific management and planning of water resources and hydroelectric power generation, and it may also have ecological consequences due to the matching or phase-locking of lotic and riparian biological activity and life cycles to the seasonal cycle. The results add to a growing body of literature suggesting that assessments of the streamflow impacts of ocean–atmosphere circulation modes must accommodate local hydrological characteristics and dynamics. Copyright © 2007 John Wiley & Sons, Ltd. The copyright in Paul H. Whitfield's contribution belongs to the Crown in right of Canada and such copyright material is reproduced with the permission of Environment Canada.  相似文献   

13.
Extreme wet and dry years (± 1 standard deviation, respectively), as well as the top 95 percentile (P95) of daily precipitation events, derived from tropical cyclone (TC) and nontropical cyclone (NTC) rainfall, were analyzed in coastal river basins in Southern Oaxaca, Mexico (Río Verde, Río Tehuantepec, and the Southern Coast). The study is based on daily precipitation records from 47 quality-controlled stations for the 1961 to 1990 period and TC data for the Eastern Tropical Pacific (EPAC). The aim of this study was to evaluate extreme (dry and wet) trends in the annual contribution of daily P95 precipitation events and to determine the relationship of summer precipitation with El Niño Southern Oscillation (ENSO) and the Pacifical Decadal Oscillation (PDO). A regionalization based on a rotated principal component analysis (PCA) was used to produce four precipitation regions in the coastal river basins. A significant negative correlation (significance at the 95% level) was only found with ONI in rainfall Region 3, nearest to the Gulf of Tehuantepec. Wet years, mainly linked to TC-derived P95 precipitation events, were associated with SST anomalies (≥?0.6°C) similar to weak La Niña and Neutral cool conditions, while dry years were associated with SST positive anomalies similar to Neutral warm conditions (≤?0.5°C). The largest contribution of extreme P95 precipitation derived from TCs to the annual precipitation was observed in Region 3. A significant upward trend in the contribution of TC-derived precipitation to the annual precipitation was found only in Region 1, low Río Verde.  相似文献   

14.
In this paper, the effects of the El Niño-Southern Oscillation (ENSO) on the annual maximum flood (AMF) and volume over threshold (VOT) in two major neighbouring river basins in southwest Iran are investigated. The basins are located upstream of the Dez and Karun-I dams and cover over 40?000 km2 in total area. The effects of ENSO on the frequency, magnitude and severity (frequency times magnitude) of flood characteristics over the March–April period were analysed. ENSO indices were also correlated with both AMF and VOT. The results indicate that, in the Dez and Karun basins, the El Niño phenomenon intensifies March–April floods compared with neutral conditions. The opposite is true in La Niña conditions. The degree of the effect is more intense in the El Niño period.  相似文献   

15.
In order to analyse the long‐term trend of precipitation in the Asian Pacific FRIEND region, records from 30 river basins to represent the large range of climatic and hydrological characteristics in the study area are selected. The long‐term trend in precipitation time series and its association with the southern oscillation index (SOI) series are investigated. Application of the nonparametric Mann–Kendall test for 30 precipitation time series has shown that only four of these 30 time series have a long‐term trend at the 5% level of significance. Nevertheless, most of the records tend to decrease over the last several decades. The dataset is further divided geographically into northern, middle, and southern zones, with 20°N and 20°S latitude as the dividing lines. The middle zone has the greatest variation and the southern zone the least variation over the past century. Also, the southern zone has greater variation during the past 30 years. The association between precipitation and SOI is investigated by dividing the precipitation records of each station into El Niño, La Niña, and neutral periods. The Wilcoxon rank‐sum test showed that differences in precipitation for the three classes were most marked in the southern zone of the study area. The frequencies of below‐ and above‐average precipitation for El Niño, La Niña, and neutral periods are estimated for the 30 precipitation time series as well. The results show that the frequencies of precipitation under each set of conditions, with lower precipitation generally associated with El Niño periods in the southern zone. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Wave climate simulation for southern region of the South China Sea   总被引:2,自引:0,他引:2  
This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.  相似文献   

17.
For small tropical islands with limited freshwater resources, understanding how island hydrology is influenced by regional climate is important, considering projected hydroclimate and sea level changes as well as growing populations dependent on limited groundwater resources. However, the relationship between climate variability and hydrologic variability for many tropical islands remains uncertain due to local hydroclimatic data scarcity. Here, we present a case study from Kiritimati, Republic of Kiribati (2°N, 157°W), utilizing the normalized difference vegetation index to investigate variability in island surface water area, an important link between climate variability and groundwater storage. Kiritimati surface water area varies seasonally, following wet and dry seasons, and interannually, due to hydroclimate variability associated with the El Niño/Southern Oscillation. The NIÑO3.4 sea surface temperature index, satellite‐derived precipitation, precipitation minus evaporation, and local sea level all had significant positive correlations with surface water area. Lagged correlations show sea level changes and precipitation influence surface water area up to 6 months later. Differences in the timing of surface water area changes and variable climate‐surface water area correlations in island subregions indicate that surface hydrology on Kiritimati is not uniform in response to climate variations. Rather, the magnitude of the ocean–atmosphere anomalies and island–ocean connectivity determine the extent to which sea level and precipitation control surface water area. The very strong 2015–2016 El Niño event led to the largest surface water area measured in the 18‐year data set. Surface water area decreased to pre‐event values in a similarly rapid manner (<6 months) after both the very strong 2015–2016 event and the 2009–2010 moderate El Niño event. Future changes in the frequency and amplitude of interannual hydroclimate variability as well as seasonal duration will thus alter surface water coverage on Kiritimati, with implications for freshwater resources, flooding, and drought.  相似文献   

18.
Understanding the impacts of climate change and human activity on the hydrological processes in river basins is important for maintaining ecosystem integrity and sustaining local economic development. The objective of this study was to evaluate the impact of climate variability and human activity on mean annual flow in the Wei River, the largest tributary of the Yellow River. The nonparametric Mann–Kendall test and wavelet transform were applied to detect the variations of hydrometeorological variables in the semiarid Wei River basin in the northwestern China. The identifications were based on streamflow records from 1958 to 2008 at four hydrological stations as well as precipitation and potential evapotranspiration (PET) data from 21 climate stations. A simple method based on Budyko curve was used to evaluate potential impacts of climate change and human activities on mean annual flow. The results show that annual streamflow decreased because of the reduced precipitation and increased PET at most stations. Both annual and seasonal precipitation and PET demonstrated mixed trends of decreasing and increasing, although significant trends (P < 0.05) were consistently detected in spring and autumn at most stations. Significant periodicities of 0.5 and 1 year (P < 0.05) were examined in all the time series. The spectrum of streamflow at the Huaxian station shows insignificant annual cycle during 1971–1975, 1986–1993 and 1996–2008, which is probably resulted from human activities. Climate variability greatly affected water resources in the Beiluo River, whereas human activities (including soil and water conservation, irrigation, reservoirs construction, etc.) accounted more for the changes of streamflow in the area near the Huaxian station during different periods. The results from this article can be used as a reference for water resources planning and management in the semiarid Wei River basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
20.
《水文科学杂志》2012,57(1):57-70
ABSTRACT

Leading patterns of observed seasonal extreme and mean streamflow on the Korean peninsula were estimated using an empirical orthogonal teleconnection (EOT) technique. In addition, statistical correlations on a seasonal basis were calculated using correlation and regression analyses between the leading streamflow patterns and various climate indices based on atmospheric–ocean circulation. The spatio-temporal patterns of the leading EOT modes for extreme and mean streamflow indicate an upstream mode for the Han River, with increasing trends in summer, and a downstream mode for the Nakdong River, with oscillations mainly on inter-decadal time scales in winter. The tropical ENSO (El Niño Southern Oscillation) forcing for both extreme and mean streamflow is coherently associated with summer to winter streamflow patterns. The western North Pacific monsoon has a negative correlation with winter streamflow variability, and tropical cyclone indices also exhibit significant positive correlation with autumn streamflow. Leading patterns of autumn and winter streamflow time series show predictability up to two seasons in advance from the Pacific sea-surface temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号