首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The accuracy of Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), wavelet-ANN and wavelet-ANFIS in predicting monthly water salinity levels of northwest Iran’s Aji-Chay River was assessed. The models were calibrated, validated and tested using different subsets of monthly records (October 1983 to September 2011) of individual solute (Ca2+, Mg2+, Na+, SO4 2? and Cl?) concentrations (input parameters, meq L?1), and electrical conductivity-based salinity levels (output parameter, µS cm?1), collected by the East Azarbaijan regional water authority. Based on the statistical criteria of coefficient of determination (R2), normalized root mean square error (NRMSE), Nash–Sutcliffe efficiency coefficient (NSC) and threshold statistics (TS) the ANFIS model was found to outperform the ANN model. To develop coupled wavelet-AI models, the original observed data series was decomposed into sub-time series using Daubechies, Symlet or Haar mother wavelets of different lengths (order), each implemented at three levels. To predict salinity input parameter series were used as input variables in different wavelet order/level-AI model combinations. Hybrid wavelet-ANFIS (R2 = 0.9967, NRMSE = 2.9 × 10?5 and NSC = 0.9951) and wavelet-ANN (R2 = 0.996, NRMSE = 3.77 × 10?5 and NSC = 0.9946) models implementing the db4 mother wavelet decomposition outperformed the ANFIS (R2 = 0.9954, NRMSE = 3.77 × 10?5 and NSC = 0.9914) and ANN (R2 = 0.9936, NRMSE = 3.99 × 10?5 and NSC = 0.9903) models.  相似文献   

2.
A multispecies bloom caused by the centric diatoms, viz. Coscinodiscus radiatus, Chaetoceros lorenzianus and the pennate diatom Thalassiothrix frauenfeldii was investigated in the context of its impact on phytoplankton and microzooplankton (the loricate ciliate tintinnids) in the coastal regions of Sagar Island, the western part of Sundarban mangrove wetland, India. Both number (15–18 species) and cell densities (12.3 × 103 cells l−1 to 11.4 × 105 cells l−1) of phytoplankton species increased during peak bloom phase, exhibiting moderately high species diversity (H′ = 2.86), richness (R′ = 6.38) and evenness (E′ = 0.80). The diatom bloom, which existed for a week, had a negative impact on the tintinnid community in terms of drastic changes in species diversity index (1.09–0.004) and population density (582.5 × 103 to 50 × 103 ind m−3). The bloom is suggested to have been driven by the aquaculture activities and river effluents resulting high nutrient concentrations in this region. An attempt has been made to correlate the satellite remote sensing-derived information to the bloom conditions. MODIS-Aqua derived chlorophyll maps have been interpreted.  相似文献   

3.
Long-term historical records of rainfall (P), runoff (Q) and other climatic factors were used to investigate hydrological variability and trends in the Volta River Basin over the period 1901-2002. Potential (Ep) and actual evaporation (E), rainfall variability index (δ), Budyko’s aridity index (IA), evaporation ratio (CE) and runoff ratio (CQ) were estimated from the available hydroclimatological records. Mann-Kendall trend analysis and non-parametric Sen’s slope estimates were performed on the respective time series variables to detect monotonic trend direction and magnitude of change over time.Rainfall variability index showed that 1968 was the wettest year (δ = +1.75) while 1983 was the driest (δ = −3.03), with the last three decades being drier than any other comparable period in the hydrological history of the Volta. An increase of 0.2 mm/yr2 (P < 0.05) was observed in Ep for the 1901-1969 sub-series while an increased of 1.8 mm/yr2 (P < 0.01) was recorded since 1970. Rainfall increased at the rate of 0.7 mm/yr2 or 49 mm/yr between 1901 and 1969, whereas a decrease of 0.2 mm/yr2 (6 mm/yr) was estimated for 1970-2002 sub-series. Runoff increased significantly at the rate of 0.8 mm/yr (23 mm/yr) since 1970. Runoff before dam construction was higher (87.5 mm/yr) and more varied (CV = 41.5%) than the post-dam period with value of 73.5 mm/yr (CV = 23.9%). A 10% relative decrease in P resulted in a 16% decrease in Q between 1936 and 1998. Since 1970, all the months showed increasing runoff trends with significant slopes (P < 0.05) in 9 out of the 12 months. Possible causes, such as climate change and land cover change, on the detected changes in hydroclimatology are briefly discussed.  相似文献   

4.
Özgür Kişi 《水文研究》2009,23(2):213-223
This paper reports on investigations of the abilities of three different artificial neural network (ANN) techniques, multi‐layer perceptrons (MLP), radial basis neural networks (RBNN) and generalized regression neural networks (GRNN) to estimate daily pan evaporation. Different MLP models comprising various combinations of daily climatic variables, that is, air temperature, solar radiation, wind speed, pressure and humidity were developed to evaluate the effect of each of these variables on pan evaporation. The MLP estimates are compared with those of the RBNN and GRNN techniques. The Stephens‐Stewart (SS) method is also considered for the comparison. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE) and determination coefficient (R2) statistics. Based on the comparisons, it was found that the MLP and RBNN computing techniques could be employed successfully to model the evaporation process using the available climatic data. The GRNN was found to perform better than the SS method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The annual and life-cycle mercury bioaccumulation pattern in selected tissues of the economically relevant Elasmobranchii species Scyliorhinus canicula was studied, and the risks associated with its consumption evaluated.Preferential mercury bioaccumulation occurred in muscle tissue, and followed the order muscle > heart > liver > gills > pancreas. Total mercury in muscle tissue ranged from 0.13 mg kg−1 (wwt) in 1+ year old males to 0.8 mg kg−1 (wwt) in 8+ year old mature females, with no significant differences found between genders, and no clear lifespan bioaccumulation pattern observed, except for mature females. Organic mercury in the muscle ranged from 0.05 mg kg−1 (wwt) to 0.52 mg kg−1 (wwt), corresponding to an average of 70% of total mercury content. In mature females, a significant correlation (R = 0.99, P = 0.01) was found between size and organic mercury fraction, suggesting reproduction as an important factor controlling organic mercury bioaccumulation in the spotted dogfish.  相似文献   

6.
Karenia brevis, a toxic dinoflagellate that blooms regularly in the Gulf of Mexico, frequently causes widespread ecological and economic damage and can pose a serious threat to human health. A means for detecting blooms early and monitoring existing blooms that offers high spatial and temporal resolution is desired. Between 1999 and 2001, a large bio-optical data set consisting of spectral measurements of remote-sensing reflectance (Rrs(λ)), absorption (a(λ)), and backscattering (bb(λ)) along with chlorophyll a concentrations and K. brevis cell counts was collected on the central west Florida shelf (WFS) as part of the Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) and Hyperspectral Coastal Ocean Dynamics Experiment (HyCODE) programs. Reflectance model simulations indicate that absorption due to cellular pigmentation is not responsible for the factor of ∼3–4 decrease observed in Rrs(λ) for waters containing greater than 104 cells l−1 of K. brevis. Instead, particulate backscattering is responsible for this decreased reflectivity. Measured particulate backscattering coefficients were significantly lower when K. brevis concentrations exceeded 104 cells l−1 compared to values measured in high-chlorophyll (>1.5 mg m−3), diatom-dominated waters containing fewer than 104 cells l−1 of K. brevis. A classification technique for detecting high-chlorophyll, low-backscattering K. brevis blooms is developed. In addition, a method for quantifying chlorophyll concentrations in positively flagged pixels using fluorescence line height (FLH) data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) is introduced. Both techniques are successfully applied to Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and MODIS data acquired in late August 2001 and validated using in situ K. brevis cell concentrations.  相似文献   

7.
To reduce the complexity and save computation time, an isotropic and a scalar dispersion model are explored and compared to the anisotropic advection/dispersion model to study the interstitial flow in a stream and lake sediment induced by a periodic pressure wave. In these systems, the solute transport is controlled by the ratio (R = a/(LS)) of the pressure wave steepness (a/L) to the stream slope (S), and the dispersivity ratio (λ = αL/L) that measures the longitudinal dispersivity (αL) relative to the pressure wave length (L). Through a series of numerical experiments, the conclusion is reached that a scalar dispersion model can be applied with satisfactory results for advection-dominated transport, i.e. when R ?  0.1 and λ ? 0.01, or λ ? 0.0001, i.e. Peclet number (Pe) ? 10000; an isotropic dispersion model can be applied when R ? 10 or λ ? 0.001, and the full anisotropic advection/dispersion model has to be applied when R > 10 and λ > 0.001.  相似文献   

8.
ABSTRACT

Accurate runoff forecasting plays a key role in catchment water management and water resources system planning. To improve the prediction accuracy, one needs to strive to develop a reliable and accurate forecasting model for streamflow. In this study, the novel combination of the adaptive neuro-fuzzy inference system (ANFIS) model with the shuffled frog-leaping algorithm (SFLA) is proposed. Historical streamflow data of two different rivers were collected to examine the performance of the proposed model. To evaluate the performance of the proposed ANFIS-SFLA model, six different scenarios for the model input–output architecture were investigated. The results show that the proposed ANFIS-SFLA model (R2 = 0.88; NS = 0.88; RMSE = 142.30 (m3/s); MAE = 88.94 (m3/s); MAPE = 35.19%) significantly improved the forecasting accuracy and outperformed the classic ANFIS model (R2 = 0.83; NS = 0.83; RMSE = 167.81; MAE = 115.83 (m3/s); MAPE = 45.97%). The proposed model could be generalized and applied in different rivers worldwide.  相似文献   

9.
The droplet size distribution of dispersed phase (oil and/or gas) in submerged buoyant jets was addressed in this work using a numerical model, VDROP-J. A brief literature review on jets and plumes allows the development of average equations for the change of jet velocity, dilution, and mixing energy as function of distance from the orifice. The model VDROP-J was then calibrated to jets emanating from orifices ranging in diameter, D, from 0.5 mm to 0.12 m, and in cross-section average jet velocity at the orifice ranging from 1.5 m/s to 27 m/s. The d50/D obtained from the model (where d50 is the volume median diameter of droplets) correlated very well with data, with an R2 = 0.99. Finally, the VDROP-J model was used to predict the droplet size distribution from Deepwater Horizon blowouts. The droplet size distribution from the blowout is of great importance to the fate and transport of the spilled oil in marine environment.  相似文献   

10.
The concentrations of chlorophyll-a (chl-a), total suspended solids (TSS) and the absorption coefficient of colored dissolved organic matter (aCDOM(400)) are estimated in Case II waters using medium resolution imaging spectrometer (MERIS) satellite (full resolution [FR] level 1b, 300 m resolution) and AISA airborne spectrometer data acquired during a spring bloom in the Gulf of Finland, Baltic Sea on April 27, 2004. The accuracy of the estimation is analyzed using empirical band-ratio algorithms together with in situ observations that include water samples analyzed in a laboratory (variation ranges: 22–130 μg/l, 2.9–20 mg/l, and 1.29–2.61 m−1 for chl-a, TSS and aCDOM(400), respectively). Additional in situ estimates (transects) on these characteristics are available through absorption and scattering coefficients measured with an ac-9 absorption and attenuation meter installed in a flow-through system. The retrieval accuracy (R2) of all three water quality characteristics with MERIS data is close to or above 0.9, while the RMSE is 7.8 μg/l (22%), 0.74 mg/l (16%) and 0.08 m−1 (5%), for chl-a, TSS and aCDOM(400), respectively. The validity of the chl-a algorithm is tested using nine additional data points. The BIAS-error for these points is 5.2 μg/l and the RMSE is 10.6 μg/l. The effects of changes in the atmospheric characteristics on band-ratio algorithms in cases where no concurrent in situ reference data are available are analyzed using the MODerate spectral resolution atmospheric TRANSmittance algorithm and computer model (MODTRAN). The additional error due to these changes is estimated to be below 20% for the applied ratio algorithms. The water quality data available in the level 2 MERIS-product distributed by the European Space Agency did not include valid results for the date investigated here.  相似文献   

11.
Ozgur Kisi 《水文研究》2008,22(14):2449-2460
The potential of three different artificial neural network (ANN) techniques, the multi‐layer perceptrons (MLPs), radial basis neural networks (RBNNs) and generalized regression neural networks (GRNNs), in modelling of reference evapotranspiration (ET0) is investigated in this paper. Various daily climatic data, that is, solar radiation, air temperature, relative humidity and wind speed from two stations, Pomona and Santa Monica, in Los Angeles, USA, are used as inputs to the ANN techniques so as to estimate ET0 obtained using the FAO‐56 Penman–Monteith (PM) equation. In the first part of the study, a comparison is made between the estimates provided by the MLP, RBNN and GRNN and those of the following empirical models: The California Irrigation Management Information System (CIMIS) Penman (1985), Hargreaves (1985) and Ritchie (1990). In this part of the study, the empirical models are calibrated using the standard FAO‐56 PM ET0 values. The estimates of the ANN techniques are also compared with those of the calibrated empirical models. Mean square errors, mean absolute errors and determination coefficient statistics are used as comparing criteria for the evaluation of the models' performances. Based on the comparisons, it is found that the MLP and RBNN techniques could be employed successfully in modelling the ET0 process. In the second part of the study, the potential of ANN techniques and the empirical methods in ET0 estimation using nearby station data is investigated. Among the models, the calibrated Hargreaves model is found to perform better than the others. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Lead concentrations and isotopes in aerosols from Xiamen, China   总被引:1,自引:0,他引:1  
To investigate the magnitude and origin of lead (Pb) pollution in the atmosphere of Xiamen, China, 40 aerosol samples were collected from the coast of Xiamen from January to December 2003. All these samples were measured for Pb isotopic compositions (208Pb/206Pb = 2.10897 ± 0.00297, 207Pb/206Pb = 0.85767 ± 0.00159, n = 40) using a Multi-collector-Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). Thirty-five out of forty samples were also measured for Pb concentrations (79.1 ± 38.3 ng/m3, n = 35) by Atomic Absorption Spectroscopy (AAS). The results indicate that the Pb concentrations display significant seasonal variations while Pb isotopic ratios remain relatively constant. The Pb concentrations were high in January and February, abruptly decreased in March, remained relatively constant (but low) from April to August, and then gradually increased from September to December. This corresponds to the rainless climate in winter and rain scavenging in summer. The higher Pb concentration of Xiamen aerosols in winter and spring may be also caused by long-range transferred anthropogenic Pb during the northeastern monsoon seasons. Although the use of leaded gasoline in Xiamen was banned in 2000, our new data indicate that the Pb annual concentrations of aerosols in Xiamen increased about 12% when compared to the data measured between 1991 and 1993. Thus, Pb pollution in the atmosphere of Xiamen has not receded even after the phase-out of leaded gasoline. Our results further confirm the previous studies’ conclusion that the primary source of atmospheric Pb in China, especially in South China, is the vast combustion of lead-containing coal, not leaded gasoline.  相似文献   

13.
We have numerically modeled evolving fluid pressures and concentrations from a nine-year in situ osmosis experiment in the Pierre Shale, South Dakota. These data were obtained and recently interpreted by one of us (C.E.N.) as indicating a potentially significant role for chemical osmosis in media like the Pierre Shale. That analysis considered only the final pressure differentials among boreholes that were assumed to represent osmotic equilibrium. For this study, the system evolution was modeled using a recently developed transient model for membrane transport. The model simulates hydraulically and chemically driven fluid and solute transport. The results yield an estimate of the thickness of the water film between the clay platelets b of 40 Å, which corresponds to an osmotic efficiency σ of 0.21 for the ambient pore water salinity of 3.5 g/l TDS. These values largely confirm the results of the earlier equilibrium analysis. However, the new model analysis provides additional constraints suggesting that intrinsic permeability k = 1.4 × 10−19 m2, specific storage Ss = 1.7 × 10−5 m−1, and diffusion coefficient D* = 6 × 10−11 m2/s. The k value is larger than certain independent estimates which range from 10−21 to 10−20; it may indicate opening of microcracks during the experiments. The fact that the complex transient pressure and concentration behavior for the individual wells could be reproduced quite accurately, and the inferred parameter values appear to be realistic for the Pierre Shale, suggests that the new model is a useful tool for modeling transient coupled flows in groundwater systems.  相似文献   

14.
Diverse linear and nonlinear statistical parameters of rainfall under aggregation in time and the kind of temporal memory are investigated. Data sets from the Andes of Colombia at different resolutions (15 min and 1-h), and record lengths (21 months and 8-40 years) are used. A mixture of two timescales is found in the autocorrelation and autoinformation functions, with short-term memory holding for time lags less than 15-30 min, and long-term memory onwards. Consistently, rainfall variance exhibits different temporal scaling regimes separated at 15-30 min and 24 h. Tests for the Hurst effect evidence the frailty of the R/S approach in discerning the kind of memory in high resolution rainfall, whereas rigorous statistical tests for short-memory processes do reject the existence of the Hurst effect.Rainfall information entropy grows as a power law of aggregation time, S(T) ∼ Tβ with 〈β〉 = 0.51, up to a timescale, TMaxEnt (70-202 h), at which entropy saturates, with β = 0 onwards. Maximum entropy is reached through a dynamic Generalized Pareto distribution, consistently with the maximum information-entropy principle for heavy-tailed random variables, and with its asymptotically infinitely divisible property. The dynamics towards the limit distribution is quantified. Tsallis q-entropies also exhibit power laws with T, such that Sq(T) ∼ Tβ(q), with β(q) ? 0 for q ? 0, and β(q) ? 0.5 for q ? 1. No clear patterns are found in the geographic distribution within and among the statistical parameters studied, confirming the strong variability of tropical Andean rainfall.  相似文献   

15.
Abstract

The behaviour of various formulas for evapotranspiration of grass in Nonrestricted soil water conditions is considered. These are the expressions based on the Penman formula, i.e. “old” Penman, Penman-Monteith, Thorn-Oliver and the version recommended more recently by the FAO. Moreover, the Priestley-Taylor and the Makkink formulas are considered, which are radiation-based. Comparisons are made between daily mean values estimated with these formulas and direct measurements. The latter were collected over grass in the period 1979–1982 in the catchment area of the Hupselse Beek (The Netherlands). It was found that if all required input data were measured, the Priestley-Taylor and the “old” Penman formula yielded the best results. The assumption that soil heat flux can be neglected introduces a systematic and a random error of roughly 5%. The empirical estimates for net radiation from sunshine duration, temperature and humidity appear to perform rather poorly. These estimates improved significantly if solar radiation was measured directly. The empirical expression proposed by Slob (unpublished) that requires incoming solar radiation only as input, provided better results than the other more complicated expressions. Moreover, this study reveals that evaporation of unstressed grass is primarily determined by the available energy, i.e. good evaporation estimates can be obtained by using simply λE = 0.86(Rn ? G). The Makkink method appears to be attractive for practical applications. These findings support the use of Makkink's formula for routine calculations of crop-reference evapotranspiration as has been done by the Royal Netherlands Meteorological Institute since 1987.  相似文献   

16.
ABSTRACT

Evaporation is one of the most important components in the energy and water budgets of lakes and is a primary process of water loss from their surfaces. An artificial neural network (ANN) technique is used in this study to estimate daily evaporation from Lake Vegoritis in northern Greece and is compared with the classical empirical methods of Penman, Priestley-Taylor and the mass transfer method. Estimation of the evaporation over the lake is based on the energy budget method in combination with a mathematical model of water temperature distribution in the lake. Daily datasets of air temperature, relative humidity, wind velocity, sunshine hours and evaporation are used for training and testing of ANN models. Several input combinations and different ANN architectures are tested to detect the most suitable model for predicting lake evaporation. The best structure obtained for the ANN evaporation model is 4-4-1, with root mean square error (RMSE) from 0.69 to 1.35 mm d?1 and correlation coefficient from 0.79 to 0.92.
EDITOR M.C. Acreman

ASSOCIATE EDITOR not assigned  相似文献   

17.
The sequence of large Vulcanian explosions occurring at the andesitic Popocatépetl volcano, Mexico during November 1998 to April 1999 was studied. The size of 26 largest explosions was estimated from broadband seismic records at the distance of 4 km from the crater. The sequence began with the largest explosion (E = 2.6 × 1012 J) occurring on 25 November at 08:05, and following largest daily explosions were characterized by gradual decrease in the energy. The energy of 20 large (E ≥ 1011 J) explosions was distributed as Student's t-distribution with a geometrical mean Log E = 11.81 (J).  相似文献   

18.
Snow water equivalent (SWE) is an important indicator used in hydrology, water resources, and climate change impact. There are various methods of estimating SWE (falling in 3 categories: indirect sensors, empirical models, and process‐based models), but few studies that provide comparison across these different categories to help users make decisions on monitoring site design or method selection. Five SWE estimation methods were compared against manual snow course data collected over 2 years (2015–2016) from the Dorset Environmental Science Centre, including the gamma‐radiation‐based CS725 sensor, 3 empirical estimation models (Sexstone snow density model, McCreight & Small snow density model, and a meteorology‐based model), and the University of British Columbia Watershed Model snow energy‐balance model. Snow depth, density, and SWE were measured at the Dorset Environmental Science Centre weather station in south‐central Ontario, on a daily basis over 6 winters from 2011 to 2016. The 2 snow density‐based models, requiring daily snow depth as input, gave the best performance (R2 of .92 and .92 for McCreight & Small and Sexstone models, respectively). The CS725 sensor that receives radiation coming from soil penetrating the snowpack provided the same performance (R2 = .92), proving that the sensor is an applicable method, although it is expensive. The meteorology‐based empirical model, requiring daily climate data including temperature, precipitation and solar radiation, gave the poorest performance (R2 = .77). The energy‐balance‐based University of British Columbia Watershed Model snow module, only requiring climate data, worked better than the empirical meteorology‐based model (R2 = .9) but performed worse than the density models or CS725 sensor. Given differences in application objectives, site conditions, and budget, this comparison across SWE estimation methods may help users choose a suitable method. For ongoing and new monitoring sites, installation of a CS725 sensor coupled with intermittent manual snow course measurements (e.g., weekly) is recommended for further SWE method estimation testing and development of a snow density model.  相似文献   

19.
In the Jungwon area, South Korea, two contrasting types of deep thermal groundwater (around 20–33 °C) occur together in granite. Compared to shallow groundwater and surface water, thermal groundwaters have significantly lower δ18O and δD values (> 1‰ lower in δ18O) and negligible tritium content (mostly < 2 TU), suggesting a relatively high age of these waters (at least pre-thermonuclear period) and relatively long subsurface circulation. However, the hydrochemical evolution yielded two distinct water types. CO2-rich water (PCO2 = 0.1 to 2 atm) is characterized by lower pH (5.7–6.4) and higher TDS content (up to 3300 mg/L), whereas alkaline water (PCO2 = 10− 4.1–10− 4.6 atm) has higher pH (9.1–9.5) and lower TDS (< 254 mg/L). Carbon isotope data indicate that the CO2-rich water is influenced by a local supply of deep CO2 (potentially, magmatic), which enhanced dissolution of silicate minerals in surrounding rocks and resulted in elevated concentrations of Ca2+, Na+, Mg2+, K+, HCO3 and silica under lower pH conditions. In contrast, the evolution of the alkaline water was characterized by a lesser degree of water–rock (granite) interaction under the negligible inflow of CO2. The application of chemical thermometers indicates that the alkaline water represents partially equilibrated waters coming from a geothermal reservoir with a temperature of about 40 °C, while the immature characteristics of the CO2-rich water resulted from the input of CO2 in Na–HCO3 waters and subsequent rock leaching.  相似文献   

20.
Hudson River sediment microcosms from Piles Creek (PC), Piermont Marsh (PM), and Iona Island (II) were amended with ∼100 mM nitrate or sulfate to stimulate anaerobic bioremediation. Nitrate and sulfate decreased over two years of field incubation and the fraction of these losses due to diffusion to the water column was predicted using Fick’s law. Apparent diffusion (Dapp) values of 1-4 × 10−10 m2 s−1 predicted the majority of loss/gain from/to the sediments by 700 d, but not at all times. Effective diffusion (Deff) values predicted by the porosity function (Deff = Dmol ε4/3) were larger than those observed in the field, and field data indicates a cube power relationship: Deff = Dmol ε3. Dapp greatly increased in surficial layers at PM and PC in year two, suggesting that bioadvection caused by bioturbating organisms had occurred. The effects of bioturbation on transport to/from the sediments are modeled, and results can be applied to various sediment treatment scenarios such as capping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号