首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1892篇
  免费   83篇
  国内免费   29篇
测绘学   60篇
大气科学   195篇
地球物理   418篇
地质学   671篇
海洋学   156篇
天文学   294篇
综合类   4篇
自然地理   206篇
  2022年   13篇
  2021年   34篇
  2020年   39篇
  2019年   24篇
  2018年   53篇
  2017年   45篇
  2016年   84篇
  2015年   51篇
  2014年   72篇
  2013年   121篇
  2012年   59篇
  2011年   105篇
  2010年   90篇
  2009年   100篇
  2008年   100篇
  2007年   99篇
  2006年   105篇
  2005年   78篇
  2004年   70篇
  2003年   55篇
  2002年   58篇
  2001年   51篇
  2000年   33篇
  1999年   43篇
  1998年   32篇
  1997年   20篇
  1996年   23篇
  1995年   20篇
  1994年   13篇
  1993年   24篇
  1992年   7篇
  1991年   21篇
  1990年   18篇
  1989年   18篇
  1988年   5篇
  1987年   17篇
  1986年   22篇
  1985年   13篇
  1984年   10篇
  1983年   16篇
  1982年   14篇
  1981年   17篇
  1980年   14篇
  1979年   13篇
  1978年   12篇
  1977年   9篇
  1976年   13篇
  1975年   11篇
  1974年   9篇
  1973年   8篇
排序方式: 共有2004条查询结果,搜索用时 31 毫秒
1.
Current efforts to assess changes to the wetland hydrology caused by growing anthropogenic pressures in the Athabasca Oil Sands Region (AOSR) require well-founded spatial and temporal estimates of actual evapotranspiration (ET), which is the dominant component of the water budget in this region. This study assessed growing season (May–September) and peak growing season (July) ET variability at a treed moderate-rich fen and treed poor fen (in 2013–2018), open poor fen (in 2011–2014), and saline fen (in 2015–2018) using eddy covariance technique and a set of complementary environmental data. Seasonal fluctuations in ET were positively related to net radiation, air temperature and vapour pressure deficit and followed trends typical for the Boreal Plains (BP) and AOSR with highest rates in June–July. However, no strong effect of water table position on ET was found. Strong surface control on ET is evident from lower ET values than potential evapotranspiration (PET); the lowest ET/PET was observed at saline fen, followed by open fen, moderately treed fen, and heavily treed fen, suggesting a strong influence of vegetation on water loss. In most years PET exceeded precipitation (P), and positive relations between P/PET and ET were observed with the highest July ET rates occurring under P/PET ~1. However, during months with P/PET > 1, increased P/PET was associated with decreased July ET. With respect to 30-year mean values of air temperature and P in the area, both dry and wet, cool and warm growing seasons (GS) were observed. No clear trends between ET values and GS wetness/coldness were found, but all wet GS were characterized by peak growing seasons with high daily ET variability.  相似文献   
2.
Long-term experimental watershed studies have significantly influenced our global understanding of hydrological processes. The discovery and characterization of how stream water quantity and quality respond to a changing environment (e.g. land-use change, acidic deposition) has only been possible due to the establishment of catchments devoted to long-term study. One such catchment is the Fernow Experimental Forest (FEF) located in the headwaters of the Appalachian Mountains in West Virginia, a region that provides essential freshwater ecosystem services to eastern and mid-western United States communities. Established in 1934, the FEF is among the earliest experimental watershed studies in the Eastern United States that continues to address emergent challenges to forest ecosystems, including climate change and other threats to forest health. This data note describes available data and presents some findings from more than 50 years of hydrologic research at the FEF. During the first few decades, research at the FEF focused on the relationship between forest management and hydrological processes—especially those related to the overall water balance. Later, research included the examination of interactions between hydrology and soil erosion, biogeochemistry, N-saturation, and acid deposition. Hydro-climatologic and water quality datasets from long-term measurements and data from short-duration studies are publicly available to provide new insights and foster collaborations that will continue to advance our understanding of hydrology in forested headwater catchments. As a result of its rich history of research and abundance of long-term data, the FEF is positioned to continue to advance understanding of forest ecosystems in a time of unprecedented change.  相似文献   
3.
Most source-to-sink studies typically focus on the dynamics of clastic sediments and consider erosion, transport and deposition of sediment particles as the sole contributors. Although often neglected, dissolved solids produced by weathering processes contribute significantly in the sedimentary dynamics of basins, supporting chemical and/or biological precipitation. Calcium ions are usually a major dissolved constituent of water drained through the watershed and may facilitate the precipitation of calcium carbonate when supersaturating conditions are reached. The high mobility of Ca2+ ions may cause outflow from an open system and consequently loss. In contrast, in closed basins, all dissolved (i.e. non-volatile) inputs converge at the lowest point of the basin. The endoreic Great Salt Lake basin constitutes an excellent natural laboratory to study the dynamics of calcium on a basin scale, from the erosion and transport through the watershed to the sink, including sedimentation in lake's waterbody. The current investigation focused on the Holocene epoch. Despite successive lake level fluctuations (amplitude around 10 m), the average water level seems to have not been affected by any significant long-term change (i.e. no increasing or decreasing trend, but fairly stable across the Holocene). Weathering of calcium-rich minerals in the watershed mobilizes Ca2+ ions that are transported by surface streams and subsurface flow to the Great Salt Lake (GSL). Monitoring data of these flows was corrected for recent anthropogenic activity (river management) and combined with direct precipitation (i.e. rain and snow) and atmospheric dust income into the lake, allowing estimating the amount of calcium delivered to the GSL. These values were then extrapolated through the Holocene period and compared to the estimated amount of calcium stored in GSL water column, porewater and sediments (using hydrochemical, mapping, coring and petrophysical estimates). The similar estimate of calcium delivered (4.88 Gt) and calcium stored (3.94 Gt) is consistent with the premise of the source-to-sink approach: a mass balance between eroded and transported compounds and the sinks. The amount of calcium deposited in the basin can therefore be predicted indirectly from the different inputs, which can be assessed with more confidence. When monitoring is unavailable (e.g. in the fossil record), the geodynamic context, the average lithology of the watershed and the bioclimatic classification of an endoreic basin are alternative properties that may be used to estimate the inputs. We show that this approach is sufficiently accurate to predict the amount of calcium captured in a basin and can be extended to the whole fossil record and inform on the storage of calcium.  相似文献   
4.
5.
Crack nucleation has been the subject of important contributions in the last two last decades. However, it seems that few attention has been granted to the case of saturated porous media. This is the question addressed in the present paper which is devoted to nucleation in traction mode. From a physical point of view, nucleation is a sudden phenomenon, so that the material response is both adiabatic and undrained. In the spirit of the variational approach, the nucleated crack is viewed as the final state of a region of space in which the material undergoes a full damage process. In traction mode, the opening of a saturated crack in undrained condition induces a drop of fluid pressure. In case of low fluid compressibility, the presence of the fluid delays the brittle failure usually associated with nucleation, as long as the fluid pressure remains above the saturation vapor pressure. Nucleation is therefore possible only if a partial vaporization of the fluid takes place.  相似文献   
6.
This work presents new 87Sr/86Sr and δ88/86SrSRM987 isotopic values of thirteen mineral, vegetal and animal reference materials. Except for UB‐N, all our results are consistent with previously published data. Our results highlight intermediate precisions among the best presently published and a non‐significant systematic shift with the calculated δ88/86SrSRM987 mean values for the three most analysed reference materials in the literature (i.e., IAPSO, BCR‐2 and JCp‐1). By comparison with the literature and between two distinct digestions, a significant bias of δ88/86SrSRM987 values was highlighted for two reference materials (UB‐N and GS‐N). It has also been shown that digestion protocols (nitric and multi‐acid) have a moderate impact on the δ88/86SrSRM987 isotopic values for the Jls‐1 reference materials suggesting that a nitric acid digestion of carbonate can be used without significant bias from partial digestion of non‐carbonate impurities. Different δ88/86SrSRM987 values were measured after two independent Sr/matrix separations, according to the same protocol, for a fat‐rich organic reference material (BCR‐380R) and have been related to a potential post‐digestion heterogeneity. Finally, the δ88/86SrSRM987 value differences measured between animal‐vegetal and between coral‐seawater reference materials agree with the previously published results, highlighting an Sr isotopic fractionation along the trophic chain and during carbonate precipitation.  相似文献   
7.
ABSTRACT

The importance of including a contextual underpinning to the spatial analysis of social data is gaining traction in the spatial science community. The challenge, though, is how to capture these data in a rigorous manner that is translational. One method that has shown promise in achieving this aim is the spatial video geonarrative (SVG), and in this paper we pose questions that advance the science of geonarratives through a case study of criminal ex-offenders. Eleven ex-offenders provided sketch maps and SVGs identifying high-crime areas of their community. Wordmapper software was used to map and classify the SVG content; its spatial filter extension was used for hot spot mapping with statistical significance tested using Monte Carlo simulations. Then, each subject’s sketch map and SVG were compared. Results reveal that SVGs consistently produce finer spatial-scale data and more locations of relevance than the sketch maps. SVGs also provide explanation of spatial-temporal processes and causal mechanisms linked to specific places, which are not evident in the sketch maps. SVG can be a rigorous translational method for collecting data on the geographic context of many phenomena. Therefore, this paper makes an important advance in understanding how environmentally immersive methods contribute to the understanding of geographic context.  相似文献   
8.
ABSTRACT

Crime often clusters in space and time. Near-repeat patterns improve understanding of crime communicability and their space–time interactions. Near-repeat analysis requires extensive computing resources for the assessment of statistical significance of space–time interactions. A computationally intensive Monte Carlo simulation-based approach is used to evaluate the statistical significance of the space-time patterns underlying near-repeat events. Currently available software for identifying near-repeat patterns is not scalable for large crime datasets. In this paper, we show how parallel spatial programming can help to leverage spatio-temporal simulation-based analysis in large datasets. A parallel near-repeat calculator was developed and a set of experiments were conducted to compare the newly developed software with an existing implementation, assess the performance gain due to parallel computation, test the scalability of the software to handle large crime datasets and assess the utility of the new software for real-world crime data analysis. Our experimental results suggest that, efficiently designed parallel algorithms that leverage high-performance computing along with performance optimization techniques could be used to develop software that are scalable with large datasets and could provide solutions for computationally intensive statistical simulation-based approaches in crime analysis.  相似文献   
9.

Prediction of true classes of surficial and deep earth materials using multivariate spatial data is a common challenge for geoscience modelers. Most geological processes leave a footprint that can be explored by geochemical data analysis. These footprints are normally complex statistical and spatial patterns buried deep in the high-dimensional compositional space. This paper proposes a spatial predictive model for classification of surficial and deep earth materials derived from the geochemical composition of surface regolith. The model is based on a combination of geostatistical simulation and machine learning approaches. A random forest predictive model is trained, and features are ranked based on their contribution to the predictive model. To generate potential and uncertainty maps, compositional data are simulated at unsampled locations via a chain of transformations (isometric log-ratio transformation followed by the flow anamorphosis) and geostatistical simulation. The simulated results are subsequently back-transformed to the original compositional space. The trained predictive model is used to estimate the probability of classes for simulated compositions. The proposed approach is illustrated through two case studies. In the first case study, the major crustal blocks of the Australian continent are predicted from the surface regolith geochemistry of the National Geochemical Survey of Australia project. The aim of the second case study is to discover the superficial deposits (peat) from the regional-scale soil geochemical data of the Tellus Project. The accuracy of the results in these two case studies confirms the usefulness of the proposed method for geological class prediction and geological process discovery.

  相似文献   
10.
As mineral exploration seeks deeper targets, there will be a greater reliance on geophysical data and a better understanding of the geological meaning of the responses will be required, and this must be achieved with less geological control from drilling. Also, exploring based on the mineral system concept requires particular understanding of geophysical responses associated with altered rocks. Where petrophysical datasets of adequate sample size and measurement quality are available, physical properties show complex variations, reflecting the combined effects of various geological processes. Large datasets, analysed as populations, are required to understand the variations. We recommend the display of petrophysical data as frequency histograms because the nature of the data distribution is easily seen with this form of display. A petrophysical dataset commonly contains a combination of overlapping sub-populations, influenced by different geological factors. To understand the geological controls on physical properties in hard rock environments, it is necessary to analyse the petrophysical data not only in terms of the properties of different rock types. It is also necessary to consider the effects of processes such as alteration, weathering, metamorphism and strain, and variables such as porosity and stratigraphy. To address this complexity requires that much more supporting geological information be acquired than in current practice. The widespread availability of field portable instruments means quantitative geochemical and mineralogical data can now be readily acquired, making it unnecessary to rely primarily on categorical rock classification schemes. The petrophysical data can be combined with geochemical, petrological and mineralogical data to derive explanations for observed physical property variations based not only on rigorous rock classification methods, but also in combination with quantitative estimates of alteration and weathering. To understand how geological processes will affect different physical properties, it is useful to define three end-member forms of behaviour. Bulk behaviour depends on the physical properties of the dominant mineral components. Density and, to a lesser extent, seismic velocity show such behaviour. Grain and texture behaviour occur when minor components of the rock are the dominate controls on its physical properties. Grain size and shape control grain properties, and for texture properties the relative positions of these grains are also important. Magnetic and electrical properties behave in this fashion. Thinking in terms of how geological processes change the key characteristics of the major and minor mineralogical components allows the resulting changes in physical properties to be understood and anticipated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号