首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
低盐透镜现象是珠江口陆架海域常见的一种中尺度现象,它的出现会影响水下声传播环境。利用南海北部陆架区的CTD资料分析了低盐透镜的结构特征,基于简正波和射线模型,建立二维波导环境,设置不同声源条件,对低盐透镜环境的声传播特性进行了研究。结果表明:低盐透镜会在海水上层形成声道,距离15 km处其传播损失较没有低盐透镜的情况小约15 dB。虽然低盐透镜声道厚度通常较小,但是较大的盐度梯度可以保证声道对声能的有效传播。当频率高于截止频率的声源置于低盐透镜内,声道效应有助于声音的远距离传播。  相似文献   

2.
It is extremely difficult to determine shallow ocean bottom properties (such as sediment layer thicknesses, densities, and sound speeds). However, when acoustic propagation is affected by such environmental parameters, it becomes possible to use acoustic energy as a probe to estimate them. Matched-field processing (MFP) which relies on both field amplitude and phase can be used as a basis for the inversion of experimental data to estimate bottom properties. Recent inversion efforts applied to a data set collected in October 1993 in the Mediterranean Sea north of Elba produce major improvements in MFP power, i.e., in matching the measured field by means of a model using environmental parameters as inputs, even using the high-resolution minimum variance (MV) processor that is notoriously sensitive and usually results in very low values. The inversion method applied to this data set estimates water depth, sediment thickness, density, and a linear sound-speed profile for the first layer, density and a linear sound-speed profile for a second layer, constant sound speed for the underlying half space, array depth, and source range and depth. When the inversion technique allows for the array deformations in range as additional parameters (to be estimated within fractions of a wavelength, e.g., 0.1 m), the MFP MV peak value for the Med data at 100 Hz can increase from 0.48 (using improved estimates of environmental parameters and assuming a vertical line array) to 0.68 (using improved estimates of environmental parameters PLUS improved phone coordinates). The ideal maximum value would be 1.00 (which is achieved for the less sensitive Linear processor). However, many questions remain concerning the reliability of these inversion results and of inversion methods in general  相似文献   

3.
北极冰下声传播特性实验研究   总被引:1,自引:0,他引:1  
通过2017年8月6日在北极海域开展的一次声传播实验,开展了冰下声传播特性实验研究。结合Burke-Twersky (BT)散射模型与射线模型,分析了冰下声传播的多途到达结构,研究了接收声强变化规律,解释了接收声强在30 min内衰减20 dB的现象,分析了接收信号的时间相关性,探讨了接收信号相关性较低的原因。实验结果表明,表面接收信号主要由小角度多次反转反射声线、一次海底反射声线和二次海底反射声线依次构成,表面声道到达信号显著强于海底反射信号。试验冰站在试验期间的运动导致了声传播信号强度和相关性的迅速衰减,并通过仿真得到了验证。  相似文献   

4.
When modeling sound propagation through the uppermost layers of the ocean, the presence of bubble clouds cannot be ignored. Their existence can convert a range-independent sound propagation problem into a range-dependent one. Measurements show that strong changes in sound speed and attenuation are produced by the presence of swarms of microbubbles which can be depicted as patchy clouds superimposed on a very weak background layer. While models suitable for use in acoustic calculations are available for the homogeneous bubble layer (which results from long time averages of the total bubble population), no similar parameterizations are available for the more realistic inhomogeneous bubble layer. Based on available information and within the framework of a classification scheme for bubble plumes proposed by Monahan, a model for the range and depth dependence of the bubbly environment is developed to fill this void. This model, which generates a possible realization of the bubbly environment, is then used to calculate the frequency-dependent change in the sound speed and attenuation induced by the presence of the bubble plumes. Time evolution is not addressed in this work  相似文献   

5.
以分析季节对大西洋声传播的影响为研究目的,应用WOA13季节平均数据和Mackenzie声速经验公式,分析了大西洋声道轴和表层声速值的四季分布情况,再利用BELLHOP水声学数值模型,在设定的声源频率1 000 Hz和掠射角15°~-15°情况下,仿真计算选用位置点5 m深度声源的四季声传播情况,研究结果表明:按照实际的季节,大西洋会聚区波导的反转深度,冬季最小,春季增大,夏季最大,秋季再减小.在中低纬度的典型声速剖面下,夏季会聚区跨度最大,秋季和冬季递减,春季最小,第一会聚区的四季跨度差在1 km内.在高纬度的正梯度声速剖面下,夏季声传播距离最远,秋季减小,冬季最近,春季增大,且传播距离的差别较大.各变化规律均以四季循环更替的形式出现.  相似文献   

6.
利用在东海测量的双跃层声速剖面和修改的单跃层声速剖面,数值模拟了2种跃层条件下不同收发深度声脉冲传播的波形。模拟结果表明,当声源或接收器位于上混合层时,信号波形在2种条件下都出现梳状多途结构。当声源和接收器都位于下混合层时,信号波形在2种条件下均相似。当声源位于中间均匀层时,信号波形在除上混合层以外的4层都有显著差异。用简正波的深度-简正波号域的幅度和相应的群速度解释了双跃层和单跃层声速剖面条件下信号波形特点以及异同的原因。  相似文献   

7.
将Argo浮标资料与卫星遥感再分析数据相结合,调用基于抛物方程算法的RAM(Range-dependent Acoustic Model)模型,研究了2012年第14号台风“天秤”对不完整深海声道(3 000 m)和完整深海声道(5 500 m)两种水深条件下声传播特性的影响。结果显示:台风对海水的影响局限于表层水体,具体为混合层加厚,混合层内温度梯度接近于零,声速在混合层内正梯度分布;混合层下方一定深度的水体增温,相应的声速也增大。声源在混合层内时,主要对海表层的声传播产生影响,两种水深条件下均出现表面波导声传播模式以及泄漏模式。声源在混合层以下时,不完整深海声道条件下台风使得会聚区向着声源方向靠近;完整深海声道条件下台风对会聚区的位置影响不明显,但声波的翻转深度增加近500 m。  相似文献   

8.
The results of experiments on the physical modeling of long-range infrasonic propagation in the atmosphere are given. Such modeling is based on the possible coincidence between the forms of the vertical profiles of the effective sound speed stratification in the atmospheric boundary layer (between 0 and 600 m for the case under consideration) and in the atmosphere as a whole (from the land surface up to thermospheric heights (about 150 km)). The source of acoustic pulses was an oscillator of detonation type. Owing to the detonation of a gas mixture of air (or oxygen) and propane, this generator was capable of producing short, powerful (the maximum acoustic pressure was on the order of 30 to 60 Pa at a distance of 50 to 100 m from the oscillator), and sufficiently stable acoustic pulses with a spectral maximum at frequencies of 40 to 60 Hz and a pulsing period of 20 to 30 s. The sites of acoustic-signal recording were located at different distances (up to 6.5 km) from the source and in different azimuthal directions. The temperature and wind stratifications were monitored in real time during the experiments with an acoustic locator—a sodar—and a temperature profiler. The data on the physical modeling of long-range sound propagation in the atmosphere are analyzed to verify the physical and mathematical models of predicting acoustic fields in the inhomogeneous moving atmosphere on the basis of the parabolic equation and the method of normal waves. A satisfactory agreement between calculated and experimental data is obtained. One more task was to compare the theoretical relations between variations in the azimuths and angles of tilting of sound rays about the horizon and the parameters of anisotropic turbulence in the lower troposphere and stratosphere with the experimental data. A theoretical interpretation of the experimental results is proposed on the basis of the theory of anisotropic turbulence in the atmosphere. The theoretical and experimental results are compared, and a satisfactory agreement between these results is noted.  相似文献   

9.
海洋中声速起伏导致水声信道发生变化,进而引起声线到达结构的变化,对水声传播及定位精度产生一定影响。为讨论这一效应,基于TDOA体制建立了考虑声线弯曲的水下目标无源定位模型,分析了声速起伏对水下声传播路径及传播时间的影响,进而研究了声速起伏对水下无源定位测量精度影响程度。结果表明:当水平传播距离较大时,声速剖面起伏对声传播路径及传播时间的影响更为显著;以典型四元阵为例,若基线长度为20 km,接收阵位于水下5 km处,在不考虑其它随机误差影响下,海洋声速起伏造成的声源定位误差量级在0.5 m以内。分析结果有助于更好地利用环境特征优化无源定位测量方案,可为高精度水下无源定位系统设计及精度评估提供依据。  相似文献   

10.
Since tactical acoustic systems such as towed arrays can be deployed at various depths, the authors address the question of what depth is optimal. This question is considered principally from the point of view of optimum propagation conditions, employing two deep-water scenarios representing summer and winter conditions in the western Mediterranean. Two simple rules-of-thumb are derived from these results: first, if the source depth is known, then the best receiver depth is either the source depth or the conjugate depth (where the sound speed is the same as that at the source). Second, if the source depth is unknown, then a receiver depth where the ocean sound speed is as low as possible is optimal. These two rules are qualified with a few disclaimers. In the first place they are derived under the assumption of a range-invariant environment. In addition, a definition of optimality requires numerous assumptions that may not always be appropriate. Both these guidelines and their domain of applicability are discussed  相似文献   

11.
In this note we investigated the effects of a thin visco-elastic mud layer on wave propagation. Within the framework of linear water-wave theory, analytical solutions are obtained for damping rate, dispersion relation between wave frequency and wave number, and velocity components in the water column and mud layer. The wave attenuation rate reaches a maximum value when the mud layer thickness is about the same as the mud boundary layer thickness. Heavier mud has a weaker effect on the wave damping. However, the wave attenuation rate does not always decrease as the elastic shear modulus increases. In the range of small values for elastic shear modulus, the wave attenuation can be amplified quite significantly. The current solutions are compared with experimental data with different wave conditions and mud properties. In general, good agreements are observed.  相似文献   

12.
Acoustic propagation in shallow water is examined. Multipath propagation and extensive boundary interactions, which along with a host of other phenomena produce a highly variable and often unpredictable acoustic field, are discussed. The responsible mechanisms, and hence the acoustic effects, cover a wide range of temporal and spatial scales and are classified as either deterministic or random, although the two types often act in concert. Because of extensive interactions with the sound field, the bottom can severely degrade waterborne propagation, although the sea bottom (and subbottom) can provide a seismic path that not only is relatively stable, but exists even under environmental conditions that preclude an effective waterborne path. Propagation in the bottom is particularly significant at very low frequencies. These various aspects of shallow-water acoustics are illustrated using the results of experiments conducted in diverse geographic areas  相似文献   

13.
海洋混合层结构对表面声道中声传播特性的影响分析   总被引:1,自引:0,他引:1  
利用WOA05气候态数据集和北黄海调查数据,应用BELLHOP高斯束射线模型分析了我国近海及西太平洋典型海区的混合层结构对表面声道中声传播特性的影响,结果表明:我国近海的混合层结构有显著的区域性和季节性变化;深海中主要表现为混合层深度变化,这种变化直接影响表面声道的空间分布,声波在混合层中的表面声道中传播与在混合层外的影区中传播产生的能量场差异较大;浅海中混合层深度与声速梯度的空间变化都很明显,声速梯度的增大和混合层的加深都能使更多声线以反转的形式传播,使表面声道声场增强。两组海上实验数据表明,在真实海洋中混合层可在短时间内出现生消变化或在局部海域出现非均匀分布。在浅海温跃层环境下,海-气边界特定的物理过程能够使混合层发生间歇性的变化,当表面声道出现时近表层声场明显增强。  相似文献   

14.
超短基线定位解算中的距离观测值是指换能器与水下应答器之间的直线距离,而海水声速的不均匀分布导致声波在海水中的实际传播路径为连续弯曲的曲线,需要结合实测声速剖面进行声线修正。根据声速在分层介质中的传播特性,本文提出了一种基于二次多项式拟合的声线跟踪算法,采用线性插值方法对声速剖面数据进行合理加密并按等深度进行分层,设定每层声速梯度是不断变化的,用二次多项式拟合声速,基于运动学原理建立了完整的数学解算模型。仿真结果表明,该方法修正后的水下目标分布具有明显的收敛性,且优于等梯度声线跟踪算法和等效声速剖面法,显著提高了超短基线水声定位系统的定位精度。  相似文献   

15.
通过数值模拟计算发现,对于分层有吸收海底,在层厚已知的条件下,除最下面的介质以外.有可能利用垂直入射的脉冲声波遥测各层的密度、声速与吸收系数。此法的要点是,根据入射波和层参数的假设值算得反射信号,与实际反射信号比较;然后改变参数再作计算,直到误差最小为止.此时对应的层参数即为介质参数值实际的估计值。指出根据这种方法有可能实现以自适应方法遥测分层海底的介质参数。  相似文献   

16.
Owing to the interactions among the complex terrain, bottom materials, and the complicate hydrodynamics, typhoon waves show special characteristics as big waves appeared at the high water level(HWL) and small waves emerged at low and middle water levels(LWL and MWL) in radial sand ridges(RSR). It is assumed that the mud damping, sandy bed friction and wave breaking effects have a great influence on the typhoon wave propagation in this area. Under the low wave energy, a mud layer will form and transport into the shallow area, thus the mud damping effects dominate at the LWL and the MWL. And high Collins coefficient(c around 1) can be applied to computing the damping effects at the LWL and the MWL. But under the high wave energy, the bottom sediment will be stirred and suspended, and then the damping effects disappear at the HWL. Thus the varying Collins coefficient with the water level method(VCWL) is implemented into the SWAN to model the typhoon wave process in the Lanshayang Channel(LSYC) of the RSR, the observed wave data under "Winnie"("9711") typhoon was used as validation. The results show that the typhoon wave in the RSR area is able to be simulated by the VCWL method concisely, and a constant wave breaking coefficient(γ) equaling 0.78 is better for the RSR where wide tidal flats and gentle bed slopes exist.  相似文献   

17.
To prevent grounding of ships and collisions between ships in shallow coastal waters, an underwater data collection and communication network (ACME) using underwater sounds to encode and transmit data is currently under development. Marine mammals might be affected by ACME sounds since they may use sound of a similar frequency (around 12 kHz) for communication, orientation, and prey location. If marine mammals tend to avoid the vicinity of the acoustic transmitters, they may be kept away from ecologically important areas by ACME sounds. One marine mammal species that may be affected in the North Sea is the harbour seal (Phoca vitulina). No information is available on the effects of ACME-like sounds on harbour seals, so this study was carried out as part of an environmental impact assessment program. Nine captive harbour seals were subjected to four sound types, three of which may be used in the underwater acoustic data communication network. The effect of each sound was judged by comparing the animals' location in a pool during test periods to that during baseline periods, during which no sound was produced. Each of the four sounds could be made into a deterrent by increasing its amplitude. The seals reacted by swimming away from the sound source. The sound pressure level (SPL) at the acoustic discomfort threshold was established for each of the four sounds. The acoustic discomfort threshold is defined as the boundary between the areas that the animals generally occupied during the transmission of the sounds and the areas that they generally did not enter during transmission. The SPLs at the acoustic discomfort thresholds were similar for each of the sounds (107 dB re 1 microPa). Based on this discomfort threshold SPL, discomfort zones at sea for several source levels (130-180 dB re 1 microPa) of the sounds were calculated, using a guideline sound propagation model for shallow water. The discomfort zone is defined as the area around a sound source that harbour seals are expected to avoid. The definition of the discomfort zone is based on behavioural discomfort, and does not necessarily coincide with the physical discomfort zone. Based on these results, source levels can be selected that have an acceptable effect on harbour seals in particular areas. The discomfort zone of a communication sound depends on the sound, the source level, and the propagation characteristics of the area in which the sound system is operational. The source level of the communication system should be adapted to each area (taking into account the width of a sea arm, the local sound propagation, and the importance of an area to the affected species). The discomfort zone should not coincide with ecologically important areas (for instance resting, breeding, suckling, and feeding areas), or routes between these areas.  相似文献   

18.
高爽  杨光兵  熊学军 《海岸工程》2022,41(2):144-152
声散射是重要的声学现象,海洋水体产生的高频声散射信号既可用于开展多种目的的声学海洋学研究,也可能对水下声学设备产生干扰,而海洋水体背景声散射具有显著的时空变异特征,因此针对特定海区开展声散射时变观测具有重要意义。本文利用在南海北部布放的锚系系统所搭载的声学多普勒流速剖面仪,获取了覆盖4个季节的累计约80 d的声散射数据,数据包括75 kHz和300 kHz两个频段,观测水深几乎覆盖了从海面到约600 m水深的整个水体。结果表明,水体在垂向上分布着上散射层和深散射层2个主要散射层。上散射层分布深度在冬夏较浅,位于约100 m以浅,在春秋较深,位于约200 m以浅;深散射层分布深度同样为冬季最浅,位于约300 m以深,但夏季则最深,位于约400 m以深。因此,两散射层的距离在夏季最远,在春秋最近。2个散射层的声散射强度(Sv)同样具有明显的季节变化,上散射层散射强度夏秋较强而春冬较弱,深散射层则正好相反。  相似文献   

19.
为研究小尺度海底沉积物样品的声衰减特性,作者提出了用声学探针测量海底沉积物声波幅值的新方法,对沉积物样品扰动小,两个测量点的距离可小于波长,为海底沉积物微观声衰减测量提供了新手段。作者用小于波长的间隔逐点测量了沉积物的压缩波幅值,数据分析表明沿沉积物柱状样全长的声衰减满足指数衰减模型。目前主要用同轴差距衰减测量法获得海底沉积物声衰减数据,但该方法不能辨识声衰减模型,因此不同海区的测量结果难以建立联系。对此作者又提出用声吸收系数反演的幅值比与声衰减系数反演的R值(两种幅值比的比值)作评价依据,分析了垂直轴差距衰减测量法获得的南海海底沉积物声衰减测量数据,发现部分沉积物样品声衰减的R值远大于1,其声衰减不满足指数衰减模型。在声衰减满足指数衰减模型的条件下,用Hamilton的声衰减和频率经验公式预报的南海沉积物声衰减比与作者用声学探针测量海底沉积物所得的声衰减比对比,通过对R值分析得出Hamilton的声衰减和频率经验公式可以预报南海沉积物声衰减比的范围。作者提出的声学探针测量海底沉积物声衰减的方法的优点是既能获得声衰减数据又能辨识声衰减模型,不同海区测量的沉积物声衰减比可用R值建立联系。  相似文献   

20.
Experimental investigation of the combustive sound source   总被引:3,自引:0,他引:3  
In this paper, we describe a unique low frequency underwater sound source called the combustive sound source (CSS). In this device, a combustible gas mixture is captured in a combustion chamber and ignited with a spark. The ensuing combustion produces expanding gases which in turn produce high intensity, low frequency acoustic pulses. With high-speed motion pictures of the CSS event, we relate the motion of the bubble to the acoustic waveform. We also compare the measured first bubble period in the CSS pressure signature with the predictions of the Rayleigh-Willis equation, including the dependence of the radiated acoustic waveform on the volume and depth of the bubble. Measurements of the first bubble period agree with Rayleigh-Willis theory in trend, but not in absolute value. In addition, we discuss the variation of the acoustic output with the fuel/oxygen mixture. Finally, several other factors that affect the acoustic output of CSS are discussed. These include the shape of the CSS combustion chamber, the type of oxidizer and fuel, and the ignition source  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号