首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Linear infrastructure networks like roads play a vital role in the socio-economic development of hill towns centered on tourism. Stability of the slopes along the hill roads are therefore a major concern and slope failures lead to disruption of traffic and loss of property/life or both. This study analyses the stability of cut-slopes along the Kodaikkanal – Palani hill road in the Western Ghats, India using rock mass classification systems like rock mass rating (RMR), slope mass rating (SMR) and continuous slope mass rating (CSMR). These geomechanical classifications provide a preliminary assessment of rock quality based on rock strength, discontinuity properties, hydrogeological condition of the slopes and slope stability based on the inherent rock strength parameters, discontinuity orientation and method of excavation. The results showed that both rock quality and discontinuity orientation contribute to type of failure in rock slopes with RMR > 40. SMR results are conservative while CSMR classification is matches more closely to the failures obtained from the field survey. CSMR classification represents continuous slope stability conditions and hence are more suitable for development of spatial database. Cutting of roads, thereby, steepening slopes has a definite influence on the stability of slopes.  相似文献   

2.
改进的水电边坡岩体稳定性分级法   总被引:2,自引:1,他引:1       下载免费PDF全文
为克服现有基于边坡岩体分级SMR法的修正分级法存在的缺陷,采用较为合理的修正模型,结合36个水电工程边坡,提出了改进的水电边坡岩体分级M-CSMR法。该法使用边坡类型系数替代开挖修正得分,同时考虑了开挖、水流冲刷及掏蚀作用的影响;将坡高对边坡岩体稳定性的影响引入分级中,给出坡高分级及评分原则;对SMR法中各指标权值重新进行调整。与岩体分级RMR法、边坡岩体分级SMR法及水电边坡岩体分级CSMR法进行了比较,结果表明M-CSMR分级法与经验评分最为接近,预测结果最好,最大绝对误差、平均绝对误差及剩余标准差均最小,因此M-CSMR是一种更优的水电边坡岩体分级方法。  相似文献   

3.
The rock mass rating (RMR) and slope mass rating (SMR) has been carried out to classify the slope in terms of slope instability. To understand the RMR and SMR various geostructural, geomorphologic and hydrological parameters of the slopes were measured and analyzed. 32 rock slopes/rock cum debris slopes were identified in the study area. The present RMR and SMR study is an outcome of extensive field study along a stretch of about 10 km on road leading from Srinagar to Pauriarea along Alaknanda valley. The technique followed incorporates the relation between discontinuities and slope along with rock mass rating (RMR) and slope mass rating (SMR). The analysis of the 32 studied slopes shows that in the Gangadarshan area out of six rock slope facets, two falls in class II (stable) and four in class IV (unstable). It is significant to note that the slope facets coming under class IV are comprised of active landslide portions. While the slopes under class II show minor failure or old landslide debris.  相似文献   

4.
修正SMR法在红层软岩边坡中的应用   总被引:2,自引:1,他引:1  
邱恩喜  谢强  石岳  赵文 《岩土力学》2009,30(7):2109-2113
在前人大量研究的基础上,针对传统的SMR法(边坡岩体质量方法)没有考虑软弱互层对边坡岩体评价结果的影响的不足之处,增加了强度差异调整权值项。对西南地区80个红层软岩边坡的评价分析结果表明,采用岩性差异修正后的SMR法比直接使用SMR法更加符合野外实际情况,运用修正后的SMR法对红层软岩边坡评价更加合理。  相似文献   

5.
刘帝旭  曹平 《岩土力学》2015,36(Z1):408-412
综合灰色系统理论与传统的边坡岩体质量分级方法(SMR法),提出改进SMR法。传统的岩体质量分级方法中定量指标取值离散性很大,造成质量分级结果阶梯变化。灰色系统理论的灰度特征对解决这类小样本、离散性的问题有很好的适用性。首先对传统质量分级方法的评价指标进行灰类划分,确定各指标所占权重,再构建评价指标的三角白化权函数,并基于最大隶属度准则对边坡岩体进行质量分级。最后结合工程边坡实例,与一般工程RMR(岩体质量分级)与SMR法比较,改进SMR法的评价结果更加吻合工程现状,且质量分级稳定性高,表明其应用于边坡岩体质量分级是科学和准确的。  相似文献   

6.
Rock slopes require geo-engineering evaluation to assess the instability of critical slopes leading to landslides particularly in Himalayan terrain where rocks are highly jointed, fractured and weathering prone. Interplay of discontinuities in the rocks coupled with other parameters is one of the prime causes of failure of slopes. Engineering rock mass classification, such as, rock mass rating (RMR) and slope mass rating (SMR) along with geological strength index (GSI) have widely been used for stability assessment of rock slopes above tunnel portals, and these classifications are employed here for assessment of stability of slopes of critical nature along Rampur-Powari highway in Himachal Pradesh. In the present study, out of 154 numbers of slopes, a total of 29 have been selected for assessment of their criticality by employing RMR, SMR and GSI.  相似文献   

7.
Lithological information, rock mass fracture data and discontinuity shear strength obtained through field investigations have been used to conduct kinematic and block theory analyses for the rock slopes that exist in the dam site to evaluate the stability of the slopes. The analyses were performed using mean discontinuity set orientations for each rock mass region under gravitational loading to calculate the maximum safe slope angles (MSSA) for different cut slope directions. Results show that final MSSAs obtained from kinematic analysis are less than or equal to that obtained from block theory analysis. The following conclusions have been made based on the block theory analysis results, which are closer to the reality: (1) The final MSSA range between 30° and 47°, 44° and 70°, 47° and 69° for cut slope dip directions of 20–30°, 105–210°, and 270–355°, respectively; (2) For cut slope dip directions of 20–30°, 200–210° and 275–315°, wide ranges of values have been obtained for the final MSSA reflecting the influence of variability of fracture orientations on MSSA; (3) Apart from the region R-d-1 for slope dip directions in the range 20–30°, rest of the regions at the dam site seem to be stable for slope angles less than 40°. Detailed comparisons are given between the kinematic and block theory analyses covering both the theoretical concepts and application results. Also a brief comparison is included between the laboratory and in situ discontinuity shear strength results.  相似文献   

8.
Little has been published on the three-dimensional (3D) simulation of the progressive failure of rock slopes, possibly because the process of failure involves a complex, nonlinear evolution from initiation, through propagation and crack. In addition, rock is typically anisotropic, which makes it difficult to identify and describe the slope constituents and failure processes accurately. Despite such difficulties, further study of the fracture process is just as important as analyzing stress fields in 3D rock slope failures. In this paper, the 3D realistic failure process analysis code using finite element programming, and an extended version of numerical centrifugal method, is used to simulate slopes failure with different dip angles. The numerical centrifugal analysis results in this paper are found that the critical failure surface develops along the weak structural surface when the slope dip angle β is below 30°; conversely, the failure surface is formed along the toe of circular sliding when β is above 30°. In addition, it is also found that whether or not including the irregularity of joint into modeling to analyze the 3D slope stability problem will lead to a significant difference in factors of safety, it can reach 8.41 % at the same slope angle. Furthermore, the acoustic emission analyzing reveals deformed location characters of rock slope during the failure processes. With such capabilities, the approach contributes significantly to the in-depth study of the mechanisms of rock slope instability process.  相似文献   

9.
公路边坡岩体分级中坡高修正系数的改进   总被引:2,自引:0,他引:2  
坡高与边坡稳定性有密切关系。CSMR分级体系在SMR的基础之上针对水电边坡工程引入了坡高修正系数 ,但在公路边坡分级实践中发现 ,该坡高修正系数仍有待于改进。对各类边坡可能失稳形式的力学分析 ,证明坡高修正系数 可近似表示为 =a+b/H 的形式。通过对 1 0 0余个边坡样本统计分析 ,得出两种不同岩层、坡面产状组合形式下坡高修正系数的数学表达式。经检验 ,改进后的CSMR体系能够满足公路边坡稳定性初步评价的要求。  相似文献   

10.
胡政  刘佑荣  王平易  田茂中 《岩土力学》2016,37(12):3491-3498
为研究锦屏某边坡岩体在开挖卸荷条件下的岩体宏观力学参数,对该区砂岩进行室内卸荷试验研究,结果表明:相对于加载试验,卸荷过程中岩样的强度及变形参数发生了劣化,低、高围压下岩石变形及破裂形式也有所不同。为此,在对SMR及CSMR修正的基础上,提出了考虑开挖方式、边坡形态及卸荷损伤的边坡卸荷岩体的评价体系USMR法。基于USMR法对研究区边坡开挖岩体宏观参数(变形模量Em、岩体抗压强度 、岩体抗拉强度 、岩体抗剪强度参数cm和 )进行了动态分析,并分别考虑了不同围压 及卸荷损伤De条件下岩体参数的劣化规律。分析表明:开挖卸荷过程中岩体宏观参数发生了不同程度的劣化,拉应力区、低应力区和高应力区岩体参数的劣化规律有所不同,拉应力区及低应力区岩体力学参数对开挖卸荷更加敏感。研究结果对边坡开挖卸荷岩体的稳定性分析与评价具有一定指导意义。  相似文献   

11.

In this paper, an approach is presented to analyze the stability risk of rock slopes based on a new rating system. Three factors are used to estimate the risk level of rock slopes: (1) failure probability, (2) element at risk rating, and (3) vulnerability rating. Element at risk and vulnerability ratings are both given a range from 0 to 10, and the probability of failure is varied between 0 and 1, so the risk rating ranges between 0 and 100. This risk rating can be used to determine both the quantitative and qualitative risk levels of slopes at the same time. The method is tested on the western sector of the slopes facing Songun copper plant phase III, Iran, to clarify its procedures and assess its validity. Deterministic kinematic analyses showed that the slope has a potential for circular failure. Risk assessments revealed that the risk levels of the slope in both static and pseudo-static conditions are “very low” and “high,” respectively.

  相似文献   

12.
Summary The critical excavation depth of a jointed rock slope is an important problem in rock engineering. This paper studies the critical excavation depth for two idealized jointed rock slopes by employing a face-to-face discrete element method (DEM). The DEM is based on the discontinuity analysis which can consider anisotropic and discontinuous deformations due to joints and their orientations. It uses four lump-points at each surface of rock blocks to describe their interactions. The relationship between the critical excavation depth D s and the natural slope angle α, the joint inclination angle θ as well as the strength parameters of the joints c r r is analyzed, and the critical excavation depth obtained with this DEM and the limit equilibrium method (LEM) is compared. Furthermore, effects of joints on the failure modes are compared between DEM simulations and experimental observations. It is found that the DEM predicts a lower critical excavation depth than the LEM if the joint structures in the rock mass are not ignored.  相似文献   

13.
乌鲁木齐-尉犁高速公路是连接天山南北的重要通道,翻越天山公路沿线将产生大量的工程边坡,如何快速、准确地评价高寒地区现有边坡的稳定性,以及后续建设过程中对边坡稳定性的影响,直接关系到线位选择、工程量及投资估算量。基于岩体基本质量,选取边坡岩体结构面与边坡临空面组合因素、水文条件作为主要影响因素对现有边坡岩体质量进行修正,构建了现状的边坡岩体质量评价体系(TBQ)。在此基础上,考虑了大温差及水文条件造成的冻融风化作用、地震影响以及开挖方式等因素,构建了边坡岩体稳定性的预测评价体系(TFBQ),对于完善高寒地区边坡质量评价体系具有重要的研究意义。通过运用该体系对项目区边坡进行了稳定性评价及预测适用性分析,取得了较好效果。  相似文献   

14.
This work focuses on developing multidisciplinary researches concerning weathering profiles related to landscape evolution of the Capo Vaticano promontory on the Calabria Tyrrhenian side (southern Italy). In this area, the tectonic uplift, occurred at least since Pleistocene, together with the Mediterranean climatic conditions, is the main cause of deep weathering and denudation processes. The latter occurred on the outcropping rocks of the crystalline-metamorphic basement, made up of weathered granitoids, in turn belonging to the Monte Poro granitoid complex (intermediate to felsic plutonic rocks covered by Cenozoic sedimentary successions). Field observations coupled to borehole explorations, geophysical surveys, and minero-petrographical analyses allowed the characterization of the granitoid outcrops typical of the studied area in terms of kind and degree of slope instability. This characterization was based on suitable correlations verified between several factors as weathering degree, elastic properties of rocks, and discontinuity features. Weathering profiles are mainly composed by rock masses varying from completely weathered rock with corestones of highly weathered rock (classes IV–V) to slightly weathered rocks (class II). The weathered rocks are involved in several landslide typologies such as debris flow (frequency 48.5%), translational slide (frequency 33.3%), and minor rock fall and rotational slide (frequency 9%). The achieved data allowed the establishment of a general correlation between weathering degree and type of slope instability. Debris flow-type instabilities are predominant on the steeper slopes, involving very poor rock masses ascribed to the shallowest portions of the weathering class IV. Translational slides are less widespread than the previous ones and often involve a mixture of soil and highly weathered rocks. Rotational slides are more frequently close to the top of the slopes, where the thicknesses of more weathered rocks increase, and involve mainly rock masses belonging to the weathering classes IV and V. Rock falls mostly occur on the vertical escarpments of the road cuts and are controlled by the characteristics of the main discontinuities. The assessment of rock mass rating and slope mass rating, based on the application of the discontinuity data, allowed respectively an evaluation of the quality of rock masses and of the susceptibility of rock slopes to failure. The comparison between the last one and the real stability conditions along the cut slopes shows a good correspondence. Finally, the geological strength index system was also applied for the estimation of rock mass properties. The achieved results give a worthy support for a better understanding of the relationship between the distribution of landslides and the geological features related to different weathering degrees. Therefore, they can provide a reliable tool to evaluate the potential stability conditions of the rock slopes in the studied area and a general reference framework for the study of weathering processes in other regions with similar geological features.  相似文献   

15.
In the present study, cut slope stability assessment along ghat road section of Kolli hills was carried out by using various geotechnical parameters of rock and soil slope sections and structural kinematics of major discontinuities is presented. The rock slope (RS) stability assessment was carried out using Rock Mass Rating basic (RMRbasic) and Slope Mass Rating (SMR) classification systems. The type of failure and their Factor of Safety (FOS) for individual RS was calculated using Hoek and Bray method. In the case of soil slopes (SS), the FOS was calculated using Circular Failure Chart (CFC) and Limit Equilibrium (LE) methods. The input data for the slope stability analyses were collected through extensive field work followed by stereonet plotting and laboratory test. There are six rock slope sections, and five soil slope sections were taken into consideration for the cut slope stability analyses. The area depicts class II (RS-1, 2, & 6) and class III (RS-3, 4, & 5) of RMR classes. The SMR result depicts for RS-1, RS-2, and RS-6 are 64.40, 60.02, and 60.70, respectively, and falls in class II stable condition. The SMR values of RS-3 and RS-5 were 44.33 and 57, respectively, and come under the class III partially stable condition. The RS-4 with SMR value of 17.33 falls under the class I completely unstable condition. The FOS of planar failure case indicates that RS-3 (FOS = 0.22) is more unstable, while all other sections are having greater than 1 FOS. The calculated FOS values using CFC method reveals that the FOS is very close to 1 for all the SS sections that fall under completely saturated condition which indicates that these slope sections may fail during heavy rainfall. In LE method, the sections SS-3 and SS-4 are unsafe under partially and completely saturated (natural slope) condition. In average slope condition, all the SS sections are unsafe under partially or completely saturated conditions. The facets 2, 3, 4, and 5 required mitigation measures, to improve the stability of slopes. Site-specific mitigation measures were suggested for partially or completely unstable rock and soil cut slopes.  相似文献   

16.
The slopes of western Lesser Himalaya (at Sangaldhan Block of Udhampur near Ramban, Jammu and Kashmir India) are being severely affected by tectonic and erosional activities. These activities result in deposit of a thick cover of rock fragments and overburden just above the hard rock. The thickness of overburden cover has directly affected the stability of slope in the study area, though the traditional stability estimation techniques, rock mass rating and slope mass rating, rate this area as moderately stable which does not represent the real stability condition. In this research work, the geotechnical and geophysical surveys have been carried out to reckon the slope stability conditions more accurately as compared to traditional slope stability estimation techniques. A new rating, new slope mass rating, is developed, which gives a better picture of the stability of slopes. It incorporates a new parameter of overburden thickness profile, along with slope angle and other associated factors on the slopes of the mountainous terrains. The vertical electrical sounding surveys were conducted for the demarcation of rock–overburden interface and for determining the overburden cover. This new classification depicts an increase of 12.84 % in unstable slope areas giving a better assessment and factual picture of slope stability in our study area. This study also enumerates the importance of geophysical applications in slope stability studies. The research work is applicable in mountainous terrains such as Himalaya, and the major component of the application is the orientation of overburden or the profile of thickness in relation with slope of surface.  相似文献   

17.
水下岩质边坡稳定性的模型试验研究   总被引:1,自引:0,他引:1  
姜海西  沈明荣  程石  肖汝诚 《岩土力学》2009,30(7):1993-1999
随着三峡水利建设工程的进行,许多原本位于水面以上且已趋于稳定的人工或自然岩质边坡将被淹没,导致边坡稳定性降低,而水的压力、冲击、渗流和侵蚀等综合作用,给下岩质边坡的稳定性带来大量的不确定性。基于已有的水下土质边坡稳定性试验和水下岩质边坡有限元分析,进行水下岩质边坡模型试验研究,探讨在水位升降水过程中和波浪作用下水下岩质边坡的稳定性和破坏机制。将结构面为30°和50°的两种岩质边坡模型布置在人工水槽中,采用波流系统进行水位升降水波浪冲击试验,量测岩质边坡的应力变化。通过分析边坡各测点应力变化,得出了一些有意义的结论:(1)把边坡前部岩体划分成3个区域,每个区域内应力变化规律相同;(2)水下岩质边坡坡脚处应力集中最大,破坏始于坡脚,并由此产生的塑性区沿结构面逐渐同坡顶发展,这与一般边坡从坡顶逐渐向下发展的开裂破坏形式完全不同;(3)波浪对水下岩质边坡结构面的影响,将随其倾角的变小而减弱。  相似文献   

18.
Stability of slopes in a fire-prone mine in Jharia Coalfield, India   总被引:2,自引:0,他引:2  
Stability of slope in an opencast mine is always associated with safety and economics. The steeper slope is always preferred from economic point of view but prone to failure, whereas flatter slopes are uneconomical. A proper understanding of slope which will be a steep enough to be stable is required for safety, economy, and stability of men and machineries. The Rajapur opencast mine is one of the important mines in terms of good quality coal but has problems of water seepage, fire, and weak overburden materials. The existing coal mine has three working seams which are mostly thick and occur at shallow depths of about 50–60 m. Overall slope angle of the working faces as well as final pit is very steep which leads to failures. In the present paper, an attempt has been made to characterize the materials of the mine for simulation of existing slopes. The rock samples from the coal measures were collected to determine the petrophysical characteristics of various rock units. All the pertinent geological parameters from the exposed face were also collected during field visit to assess the slope mass rating (SMR). A two-dimensional finite difference tool was employed to simulate the existing slope geometry as well as relevant parameters of the rock units. The numerical simulation indicates various vulnerable points which are prone to failure as well as displacements at various points along the slope. The results of simulations are corroborated with the SMR value. The results are well matching with the field condition.  相似文献   

19.
杜朋召  刘建  韩志强  徐华 《岩土力学》2013,34(Z1):393-405
用数值方法对岩质高边坡进行稳定性分析时,描述岩体结构对的精细程度会影响分析结果,但常见的有限单元法程序仍难以对复杂节理岩体进行精细建模。为解决这一问题,将结构面网络模拟与离散单元法相结合,在UDEC软件中,利用FISH语言编写网络模拟程序,依据结构面统计资料和结构面分级,实现对复杂岩体结构的精细描述。以某大型水电工程边坡为例,在对岩体结构进行精细描述的基础上,采用离散元强度折减法对边坡进行稳定性分析。通过与极限平衡法和一般离散元结果的对比,表明基于复杂岩体结构精细描述确定的边坡潜在滑动面和安全系数是合理的,为复杂岩质边坡破坏模式和稳定性的分析提供了新的途径。  相似文献   

20.
《Engineering Geology》2007,89(1-2):129-143
The objective of this paper is to present a new rock mass classification system which can be appropriate for rock slope stability assessment. In this paper an evaluation model based on combining the Analytic Hierarchy Process (AHP) and the Fuzzy Delphi method (FDM) was presented for assessing slope rock mass quality estimates. This research treats the slope rock mass classification as a group decision problem, and applies the fuzzy logic theory as the criterion to calculate the weighting factors. In addition, several rock slopes of the Southern Cross-Island Highway in Taiwan were selected as the case study examples. After determining the slope rock mass quality estimates for each cases, the Linear Discriminant Analysis (LDA) model was used to classify those that are stable or not, and the discriminant functions which can determine failure probability of rock slopes were carried out by the LDA procedure. Afterward, the results may be compared with slope unstable hazards occurring actually, and then the relation and difference between them were discussed. Results show that the proposed method can be used to assess the stability of rock slopes according to the rock mass classification procedure and the failure probability in the early stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号