首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
An important part of the Energy Balance Experiment (EBEX-2000) was the measurement of the net radiation and its components. Since the terrain, an irrigated cotton field, could not be considered homogeneous, radiation measurements were made at nine sites using a variety of radiation instruments, including pyranometers, pyrgeometers and net radiometers. At several of these sites multiple instruments were employed, which enabled us to compare instruments and assess accuracies. At all sites the outgoing longwave and shortwave radiation and the net radiation were measured, while the incoming radiation was supposed to be uniformly distributed over the field and was therefore measured at three sites only. Net radiation was calculated for all sites from the sum of its four components, and compared with the direct measurement of net radiometers. The main conclusions were: (a) the outgoing shortwave radiation showed differences of up to 30 W m−2 over the field; the differences were not clearly related to the irrigation events; (b) the outgoing longwave radiation showed differences of up to 50 W m−2; the differences increased during the periods of irrigation; (c) the net radiation showed differences of several tens of W m−2 across the field, rising to 50 W m−2 or more during the periods of irrigation; (d) the net radiation is preferably to be inferred from its four components, rather than measured directly, and (e) attention should be paid to the characteristics of pyranometers that measure the outgoing radiation, and thus are mounted upside down, while they are commonly calibrated in the upward position. The error in the net radiation at EBEX-2000 is estimated at max (25 W m−2, 5%) per site during the day and 10 W m−2 at night. The National Center for Atmospheric Research is supported by the National Science Foundation.  相似文献   

2.
The Summer Surface Energy Balance of the High Antarctic Plateau   总被引:1,自引:0,他引:1  
The summertime surface energy balance (SEB) at Kohnen station, situated on the high Antarctic plateau (75°00′ S, 0°04′ E, 2892m above sea level) is presented for the period of 8 January to 9 February 2002. Shortwave and longwave radiation fluxes were measured directly; the former was corrected for problems associated with the cosine response of the instrument. Sensible and latent heat fluxes were calculated using the bulk method, and eddy-correlation measurements and the modified Bowen ratio method were used to verify these calculated fluxes. The calculated sub-surface heat flux was checked by comparing calculated to measured snow temperatures. Uncertainties in the measurements and energy-balance calculations are discussed. The general meteorological conditions were not extraordinary during the period of the experiment, with a mean 2-m air temperature of −27.5°C, specific humidity of 0.52×10−3kg kg−1 and wind speed of 4.1ms−1. The experiment covered the transition period from Antarctic summer (positive net radiation) to winter (negative net radiation), and as a result the period mean net radiation, sensible heat, latent heat and sub-surface heat fluxes were small with values of −1.1, 0.0, −1.0 and 0.7 Wm−2, respectively. Daily mean net radiation peaked on cloudy days (16 Wm−2) and was negative on clear-sky days (minimum of −19 W m−2). Daily mean sensible heat flux ranged from −8 to +10 Wm−2, latent heat flux from −4 to 0 Wm−2 and sub-surface heat flux from −8 to +7 Wm−2.  相似文献   

3.
This paper describes and tests two models for estimating net radiation(or the radiation balance)on sloping surfacesof alpine environments.They are an empirical method based on the linear relationship between net radiation and globalsolar radiation and a flux-by-flux method involving the estimation of all the individual components of radiation budgetindependently.The results show that the empirical method is capable of predicting hourly net radiation on sloping sur-faces to within about±53 W m~(-2) under all sky conditions.During clear sky conditions,it could predict net radiation onslopes to within±58 W m~(-2) or 16% of the measured values.The flux-by-flux method,although it did not perform aswell as the empirical method,performed adequately and could give estimates of net radiation on slopes with root meansquare error of less than 74 W m~(-2)(20%)and a mean bias error of 27 W m~(-2)(7%).  相似文献   

4.
Transpiration of a 7 m-high Stika spruce forest was investigated using measurements of net radiation, sensible heat and ground heat fluxes in an energy balance to give latent heat flux, and hence canopy resistance from the Penman-Monteith equation. Sensible heat flux was measured by the eddy-correlation method using a Fluxatron circuit. During six consecutive days of measurement in July/August, canopy resistance typically followed a decreasing trend from high values (≈150 s m−1) at dawn to around 40 s m−1 at midday and then returning steadily to >100 s m−1 at sunset. Transpiration was 3 mm day−1 on average over the period studied and changes in the rate within the day were significantly correlated with changes in net radiation. Comparisons are drawn with published data from other forest sites and the conclusion is reached that it is imprudent to generalise about transpiration rates and canopy resistances of different species at different sites from results gathered at one or two places.  相似文献   

5.
Ensembles of simulations of the twentieth- and twentyfirst-century climate, performed with 20 coupled models for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment, provide the basis for an evaluation of the Arctic (70°–90°N) surface energy budget. While the various observational sources used for validation contain differences among themselves, some model biases and across-model differences emerge. For all energy budget components in the twentieth-century simulations (the 20C3M simulation), the across-model variance and the differences from observational estimates are largest in the marginal ice zone (Barents, Kara, Chukchi Seas). Both downward and upward longwave radiation at the surface are underestimated in winter by many models, and the ensenmble mean annual net surface energy loss by longwave radiation is 35 W/m2, which is less than for the NCEP and ERA40 reanalyses but in line with some of the satellite estimates. Incoming solar radiation is overestimated by the models in spring and underestimated in summer and autumn. The ensemble mean annual net surface energy gain by shortwave radiation is 39 W/m2, which is slightly less than for the observational based estimates, In the twentyfirst-century simulations driven by the SRES A2 scenario, increased concentrations of greenhouse gasses increase (average for 2080–2100 minus average for 1980–2000 averages) the annual average ensemble mean downward longwave radiation by 30.1 W/m2. This was partly counteracted by a 10.7 W/m2 reduction in downward shortwave radiation. Enhanced sea ice melt and increased surface temperatures increase the annual surface upward longwave radiation by 27.1 W/m2 and reduce the upward shortwave radiation by 13.2 W/m2, giving an annual net (shortwave plus longwave) surface radiation increase of 5.8 W/m2 , with the maximum changes in summer. The increase in net surface radiation is largely offset by an increased energy loss of 4.4 W/m2 by the turbulent fluxes.  相似文献   

6.
Comprehensive diagnostic comparisons and evaluations have been carried out with the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and European Centre for Medium Range Weather Forecasts (ECMWF) reanalyses of the vertically integrated atmospheric energy budgets. For 1979 to 1993 the focus is on the monthly means of the divergence of the atmospheric energy transports. For February 1985 to April 1989, when there are reliable top-of-the-atmosphere (TOA) radiation data from the Earth Radiation Budget Experiment (ERBE), the implied monthly mean surface fluxes are derived and compared with those from the assimilating models and from the Comprehensive Ocean Atmosphere Data Set (COADS), both locally and zonally integrated, to deduce the implied ocean meridional heat transports. While broadscale aspects and some details of both the divergence of atmospheric energy and the surface flux climatological means are reproducible, especially in the zonal means, differences are also readily apparent. Systematic differences are typically ∼20 W m−2. The evaluation highlights the poor results over land. Land imbalances indicate local errors in the divergence of the atmospheric energy transports for monthly means on scales of 500 km (T31) of 30 W m−2 in both reanalyses and ∼50 W m−2 in areas of high topography and over Antarctica for NCEP/NCAR. Over the oceans in the extratropics, the monthly mean anomaly time series of the vertically integrated total energy divergence from the two reanalyses correspond reasonably well, with correlations exceeding 0.7. A common monthly mean climate signal of about 40 W m−2 is inferred along with local errors of 25 to 30 W m−2 in most extratropical regions. Except for large scales, there is no useful common signal in the tropics, and reproducibility is especially poor in regions of active convection and where stratocumulus prevails. Although time series of monthly anomalies of surface bulk fluxes from the two models and COADS agree very well over the northern extratropical oceans, the total fields all contain large systematic biases which make them unsuitable for determining ocean heat transports. TOA biases in absorbed shortwave, outgoing longwave and net radiation from both reanalysis models are substantial (>20 W m−2 in the tropics) and indicate that clouds are a primary source of problems in the model fluxes, both at the surface and the TOA. Time series of monthly COADS surface fluxes are shown to be unreliable south of about 20N where there are fewer than 25 observations per 5 square per month. Only the derived surface fluxes give reasonable implied meridional ocean heat transports. Received: 21 March 2000 / Accepted: 21 June 2000  相似文献   

7.
Summary  Turbulent fluxes of CO2 were continuously measured by eddy correlation for three months in 1997 over a gramineous fen in a high-arctic environment at Zackenberg (74°28′12″N, 20°34′23″W) in NE-Greenland. The measurements started on 1 June, when there was still a 1–2 m cover of dry snow, and ended 26 August at a time that corresponds to late autumn at this high-arctic site. During the 20-day period with snow cover, fluxes of CO2 to the atmosphere were small, typically 0.005 mg CO2 m−2 s−1 (0.41 g CO2 m−2 d−1), wheres during the thawed period, the fluxes displayed a clear diurnal variation. During the snow-free period, before the onset of vegetation growth, fluxes of CO2 to the atmosphere were typically 0.1 mg CO2 m−2 s−1 in the afternoon, and daily sums reached values up to almost 9 g CO2 m−2 d−1. After 4 July, downward fluxes of CO2 increased, and on sunny days in the middle of the growing season, the net ecosystem exchange rates attained typical values of about −0.23 mg m−2 s−1 at midday and max values of daily sums of −12 g CO2 m−2 d−1. Throughout the measured period the fen ecosystem acted as a net-sink of 130 g CO2 m−2. Modelling the ecosystem respiration during the season corresponded well with eddy correlation and chamber measurements. On the basis of the eddy correlation data and the predicted respiration effluxes, an estimate of the annual CO2 balance the calender year 1997 was calculated to be a net-sink of 20 g CO2 m−2 yr−1. Received October 6, 1999 Revised May 2, 2000  相似文献   

8.
Summary  We compared two one-dimensional simulation models for heat and water fluxes in the soil-snow-atmosphere system with respect to their mathematical formulations of the surface heat exchange and the snow pack evolution. They were chosen as examples of a simple one-layer snow model and a more detailed multiple-layer snow model (SNTHERM). The snow models were combined with the same one-dimensional model for the heat and water balance of the underlying soil (CoupModel). Data from an arable field in central Sweden (Marsta), covering two years (1997–1999) of soil temperature, snow depth and eddy-correlation measurements were successfully compared with the models. Conditions with a snow pack deeper or shallower than 10 cm and bare soil resulted in similar discrepancies. The simulated net radiation and sensible heat flux were in good agreement with that measured during snow-covered periods, except for situations with snowmelt when the downward sensible heat flux was overestimated by 10–20 Wm−2. The results showed that the uncertainties in parameter values were more important than the model formulation and that both models were useful in evaluating the limitations and uncertainties of the measurements. Received November 1, 1999 Revised April 20, 2000  相似文献   

9.
Summary  Net ecosystem CO2 exchange was measured over a mountain birch forest in northern Finland throughout the growing season. The maximal net CO2 uptake rate of about − 0.5 mg(CO2) m−2 s−1 was observed at the end of July. The highest nocturnal respiration rates in early August were 0.2 mg(CO2) m−2 s−1. The daily CO2 balances during the time of maximal photosynthesis were about −15 g(CO2) m−2 d−1. The mountain birch forest acted as a net sink of CO2 from 30 June to 28 August. During that period the net CO2 balance was −448 g(CO2)m−2. The interannual representativeness of the observed balances was studied using a simplified daily balance model, with daily mean global radiation and air temperature as the input parameters. The year-to-year variation in the phenological development was parameterised as a function of the cumulative effective temperature sum. The daily balance model was used for estimating the variability in the seasonal CO2 balances due to the timing of spring and meteorological factors. The sink term of CO2 in 1996 was lower than the 15-year mean, mainly due to the relatively late emergence of the leaves. Received October 11, 1999 Revised April 25, 2000  相似文献   

10.
The characteristics of net radiation (Rn)(0.3--10 μm) in Lhasa and Haibei in the Tibetan Plateau were analyzed based on long-term in-situ measurements of surface radiation data. The monthly average of daily Rn reached a minimum during the winter period followed by an increase until May and then a decline until January. This variation is consistent with solar activity. The annual mean daily total Rn values were 0.92 MJ m-2 d-1 and 0.66 MJ m-2d-1 in Lhasa and Haibei, respectively. A relationship between Rn and broadband solar radiation (Rs) was demonstrated by a good linear correlation at the two sites. Rn can be an accurate estimate from Rs. The estimated Rn values were similar to the observed values, and the relative deviations between the estimates and measurements of Rn were 2.8% and 3.8% in Lhasa and Haibei, respectively. The application of the Rn estimating model to other locations showed that it could provide acceptable estimated Rn values from the Rs data. Furthermore, we analyzed the influence of clouds on Rn by different clear index (Ks), defined as the ratio of Rs to the extraterrestrial solar irradiance on a horizontal surface. The results indicate that more accurate results are associated with increased cloudy conditions. The influence of the albedo was also considered, but its inclusion in the model resulted in only a slight improvement. Because surface albedo is not usually measured, an expression based solely on global solar radiation could be of more extensive use.  相似文献   

11.
Summary Vertical profile of surface radiative fluxes in an area of heterogeneous terrain in south-west Germany is presented. Main data sets utilized for the study were recorded during the REgio KLIma Projekt (REKLIP). Supporting observational data were provided by the German weather service and German geophysical consultant service. Elevation of the study sites ranged from 212 m a.s.l. to 1489 m a.s.l. From May to September, monthly mean albedo was generally low at the study sites, ranging from 19% to 24%. For the other months, monthly mean albedo lie between 22% and 25% at the lowland site but extended between 27% and 71% at the highly elevated mountain site. Following the altitudinal increase in surface albedo, net radiative flux and radiation efficiency declined with elevation at an annual mean of 1.15 Wm−2/100 m and 0.008/100 m respectively. Absorbed shortwave radiation and effective terrestrial radiation showed mean decline of 1.54 Wm−2/100 m and 0.34 Wm−2/100 m, respectively, with the mean sky-to-earth radiation deficit amounting to about 52 Wm−2 for the lowland site and 73 Wm−2 for the highest elevated site. Some empirical models which express shortwave and longwave radiative fluxes in terms of meteorological variables have been validated for the lowland and mountain sites. Monthly mean daily total estimates of solar radiation obtained from ?ngst?m-Prescott relation were quite consistent with observed values. Parameterisation of downward atmospheric radiation under all sky condition was achieved by extending Brutsaert clear sky atmospheric model. Relationship between outgoing longwave radiation and screen temperature at the study sites was best described by an exponential function unlike the linear relationship proposed by Monteith and Unsworth. Net radiative flux for the lowland and mountain sites has been expressed in terms of absorbed shortwave radiation, cloud amount and screen temperature. Received March 5, 2001 Revised October 29, 2001  相似文献   

12.
During slightly unstable but still very close to neutral conditions new results from two previous investigations have shown a significant increase of sensible and latent heat fluxes over the sea. The vertical heat transport during these conditions is dominated by detached eddies originating at the top of the boundary layer, bringing relatively cold and dry air to the surface. This effect can be described in numerical models by either enhanced heat transfer coefficients for sensible and latent heat (Stanton and Dalton numbers respectively) or with an additional roughness length, added to the original roughness lengths for heat and humidity. Such new expressions are developed using turbulence measurements from the Baltic Sea valid for wind speeds up to 14 m s−1. The effect of including the increased heat fluxes is investigated using two different numerical models: a regional three-dimensional climate model covering northern Europe, and a process-oriented ocean model for the Baltic Sea. During periods of several days, the latent heat flux can be increased by as much as 100 W m−2. The increase in sensible heat flux is significantly smaller since the process is only of importance in the very near-neutral regime where the sensible heat flux is very small. The long-term average effect over the Baltic Sea is of the order of several W m−2.  相似文献   

13.
A coupled regional climate and aerosol-chemistry model, RIEMS 2.0 (Regional Integrated Environmental Model System for Asia), in which anthropogenic sulfate, black carbon, and organic carbon were assumed to be externally mixed (EM), internally mixed (IM) or partially internally mixed (IEM), was used to simulate the impacts of these anthropogenic aerosols on East Asian climate for the entire year of 2006. The distributions of aerosol mass concentration, radiative forcing and hence the surface air temperature and precipitation variations under three mixing assumptions of aerosols were analyzed. The results indicated that the mass concentration of sulfate was sensitive to mixing assumptions, but carbonaceous aerosols were much less sensitive to the mixing types. Modeled results were compared with observations in a variety of sites in East Asia. It was found that the simulated concentrations of sulfate and carbonaceous aerosols were in accord with the observations in terms of magnitude. The simulated aerosol concentrations in IM case were closest to observation results. The regional average column burdens of sulfate, black carbon, and organic carbon, if internally mixed, were 11.49, 0.47, and 2.17 mg m−2, respectively. The radiative forcing of anthropogenic aerosols at the top of the atmosphere increased from −1.27 (EM) to −1.97 W m−2 (IM) while the normalized radiative forcing (NRF) decreased from −0.145 (EM) to −0.139 W mg−1 (IM). The radiative forcing and NRF were −1.82 W m−2 and −0.141 W mg−1 for IEM, respectively. The surface air temperature changes over the domain due to the anthropogenic sulfate and carbonaceous aerosols were −0.067, −0.078, and −0.072 K, with maxima of −0.47, −0.50, and −0.49 K, for EM, IM, and IEM, respectively. Meanwhile, the annual precipitation variations were −8.0 (EM), −20.6 (IM), and −21.9 mm (IEM), with maxima of 148, 122, and 102 mm, respectively, indicating that the climate effects were stronger if the sulfate and carbonaceous aerosols were internally mixed.  相似文献   

14.
A coupled atmosphere-ocean model developed at the Institute for Space Studies at NASA Goddard Space Flight Center (Russell et al., 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat flux Q to air / sea temperature difference △T by a relaxation coefficient k. The model was initiated from the National Centers for Environmental Prediction (NCEP) atmospheric observations for 1 December 1977, and from the National Ocean Data Center (NODC) global climatological mean December temperature and salinity fields at 1° ×1° resolution. The time step is 7.5 minutes. We integrated the model for 450 days and obtained a complete model-generated global data set of daily mean downward net surface flux Q, surface air temperature TA,and sea surface temperature To. Then, we calculated the cross-correlation coefficients (CCC) between Q and △T. The ensemble mean CCC fields show (a) no correlation between Q and △T in the equatorial regions, and (b) evident correlation (CCC≥ 0.7) between Q and △T in the middle and high latitudes.Additionally, we did the variance analysis and found that when k= 120 W m-2K-1, the two standard deviations, σQ and σk△T, are quite close in the middle and high latitudes. These results agree quite well with a previous research (Chu et al., 1998) on analyzing the NCEP re-analyzed surface data, except that a smaller value of k (80 W m-2K-1) was found in the previous study.  相似文献   

15.
Previous measurements of urban energy balances generally have been limited to densely built, central city sites and older suburban locations with mature tree canopies that are higher than the height of the buildings. In contrast, few data are available for the extensive, open vegetated types typical of low-density residential areas that have been newly converted from rural land use. We made direct measurements of surface energy fluxes using the eddy-covariance technique at Greenwood, a recently developed exurban neighbourhood near Kansas City, Missouri, USA, during an intensive field campaign in August 2004. Energy partitioning was dominated by the latent heat flux under both cloudy and near clear-sky conditions. The mean daytime Bowen ratio (β) values were 0.46, 0.48, and 0.47 respectively for the cloudy, near clear-sky and all-sky conditions. Net radiation (R n ) increased rapidly from dawn (−34 and −58W m−2) during the night to reach a maximum (423 and 630W m−2) after midday for cloudy and near clear-sky conditions respectively. Mean daytime values were 253 and 370W m−2, respectively for the cloudy and near clear-sky conditions, while mean daily values were 114 for cloudy and 171W m−2 for near clear-sky conditions, respectively. Midday surface albedo values were 0.25 and 0.24 for the cloudy and near clear-sky conditions, respectively. The site exhibited an angular dependence on the solar elevation angle, in contrast to previous observations over urban and suburban areas, but similar to vegetated surfaces. The latent heat flux (Q E ), sensible heat flux (Q H ), and the residual heat storage ΔQ s terms accounted for between 46–58%, 21–23%, and 18–31% of R n , respectively, for all-sky conditions and time averages. The observed albedo, R n , and Q E values are higher than the values that have been reported for suburban areas with high summer evapotranspiration rates in North America. These results suggest that the rapidly growing residential areas at the exurban fringe of large metropolitan areas have a surface energy balance that is more similar to the rural areas from which they were developed than it is to the older suburbs and city centres that make up the urban fabric to which they are being joined.  相似文献   

16.
The formation of dew, deposition of frost and accumulation of snow mainly on the upper domes of a non-ventilated net radiometer seriously affect the measurement of available energy (net radiation). Net radiometers measure radiation, and energy balances and are widely used for estimation of evapotranspiration throughout the world. To study the effects of dew, frost, and snow on a non-ventilated net radiometer, a radiation station was set up which uses 2 CM21 Kipp & Zonen pyranometers (one inverted), 2 CG1 Kipp & Zonen pyrgeometers (one inverted), along with a Q7.1 net radiometer (Radiation & Energy Balance Systems, Inc.; REBS) in a semi-arid mountainous valley in Logan, Utah, U.S.A. The pyranometers and pyrgeometers were ventilated using 4 CV2 Kipp & Zonen ventilation systems. The net radiometer was not ventilated. The ventilation of pyranometers and pyrgeometers prevents dew and frost deposition and snow accumulation which otherwise would disturb measurements. All sensors were installed at about 3.0 m above the ground, which was covered with natural vegetation during the growing season (May–September). The incoming and outgoing solar or shortwave radiation, the incoming (atmospheric) and outgoing (terrestrial) longwave radiation, and the net radiation have been continuously measured by pyranometers, pyrgeometers and a net radiometer, respectively, since 1995. These parameters have been measured every 2 s and averaged into 20 min. To evaluate the effects of dew, frost, and snow, three days were chosen: 26 April 2004 with early morning dew, 6 January 2005 with an early morning frost, and the snowy day of 24 February 2005. Dew formation, frost deposition, and snow accumulation occurred mainly on the upper dome of the non-ventilated Q7.1 net radiometer on the related days, while the ventilated Kipp & Zonen system was free of dew, frost and snow. Net radiation measured by the non-ventilated net radiometer Rn,unvent. during dew and frost periods of the above-mentioned days was greater than ventilated ones Rn,vent. (− 0.2 MJ m− 2 vs. − 0.8 MJ m− 2 during almost 4 h on 26 April 2004, and − 0.2 MJ m− 2 vs. − 0.7 MJ m− 2 during almost 6.5 h on 6 January 2005). The reason for higher reading by the non-ventilated net radiometer during dew and frost periods was due to emission of additional longwave radiation from water and ice crystals formed mainly on the upper dome of the Q7.1 net radiometer. In contrast, during the snowy day of 24 February 2005, the Rn,unvent. was less than Rn,vent. (− 4.00 MJ m− 2 vs. 0.77 MJ m− 2, mainly from sunrise to sunset). The extremely low Rn,unvent. measured by the non-ventilated net radiometer on 24 February 2005 is due to blocking of the incoming solar radiation (mainly diffuse radiation) by the snow-covered upper dome.  相似文献   

17.
Summary Strong stable layers are a common occurrence during western Colorado's winter. Analysis of radiosonde observations indicate wintertime boundary layer heights are near 500 m. The terrain in this region consists of mountains that rise approximately 1500–2000 m above the ground to the east, providing an effective blocking barrier. An experiment is described to observe upwelling and downwelling, longwave and shortwave radiative fluxes at two sites in western Colorado during January and February 1992, for combinations of clear, cloudy, snow covered, and bare ground periods. Analysis of the observations and the surface energy budget for typical Bowen ratios provides a better understanding of the role of radiation in maintaining and destroying stable layers.During the day, the surface received a net gain of energy from radiation, while at night there was a net loss. Over snow, the 24-hour net radiative flux was small and either positive or negative. Over bare soil, the 24-hour net radiative flux was positive but still small. There is little difference in the net radiative flux between clear and cloudy days; the reduction of the incident solar flux by clouds is nearly compensated by the hindering of the longwave cooling. The cumulative effects of the 24-hour net radiative flux were negative over snow early in the experiment. The 24-hour values shifted to near zero as the snow albedo decreased and were positive for bare ground.If the daytime net radiative flux is partitioned into sensible and latent heat flux using typical Bowen ratios, the daytime sensible heat available for destroying boundary layers is small for the low solar angles of the winter season. With a Bowen ratio of 0.5, the daytime sensible heat flux available is only 0.3 to 1.2 MJ m–2 over a snow surface and 1.4 to 2.3 MJ m–2 over soil. These heat fluxes will not build a deep enough boundary layer to break a typical wintertime inversion. The 24-hour sensible heat flux was negative at both sites for the entire experiment with this Bowen ratio.The radiation observations and the use of typical Bowen ratios lead to the conclusion that the net radiation will sustain or strengthen a stable atmosphere in the winter season in western Colorado. Analysis of the radiosonde observations confirm this result as the boundary layer depths were less than 500 m early in the experiment and grew to only 700 m later in the experiment.With 12 Figures  相似文献   

18.
Summary One of the great unknowns in climate research is the contribution of aerosols to climate forcing and climate perturbation. In this study, retrievals from AERONET are used to estimate the direct clear-sky aerosol top-of-atmosphere and surface radiative forcing effects for 12 multi-site observing stations in Europe. The radiative transfer code sdisort in the libRadtran environment is applied to accomplish these estimations. Most of the calculations in this study rely on observations which have been made for the years 1999, 2000, and 2001. Some stations do have observations dating back to the year of 1995. The calculations rely on a pre-compiled aerosol optical properties database for Europe. Aerosol radiative forcing effects are calculated with monthly mean aerosol optical properties retrievals and calculations are presented for three different surface albedo scenarios. Two of the surface albedo scenarios are generic by nature bare soil and green vegetation and the third relies on the ISCCP (International Satellite Cloud Climatology Project) data product. The ISCCP database has also been used to obtain clear-sky weighting fractions over AERONET stations. The AERONET stations cover the area 0° to 30° E and 42° to 52° N. AERONET retrievals are column integrated and this study does not make any seperation between the contribution of natural and anthropogenic components. For the 12 AERONET stations, median clear-sky top-of-atmosphere aerosol radiative forcing effect values for different surface albedo scenarios are calculated to be in the range of −4 to −2 W/m2. High median radiative forcing effect values of about −6 W/m2 were found to occur mainly in the summer months while lower values of about −1 W/m2 occur in the winter months. The aerosol surface forcing also increases in summer months and can reach values of −8 W/m2. Individual stations often have much higher values by a factor of 2. The median top-of-atmosphere aerosol radiative forcing effect efficiency is estimated to be about −25 W/m2 and their respective surface efficiency is around −35 W/m2. The fractional absorption coefficient is estimated to be 1.7, but deviates significantly from station to station. In addition, it is found that the well known peak of the aerosol radiative forcing effect at a solar zenith angle of about 75° is in fact the average of the peaks occurring at shorter and longer wavelengths. According to estimations for Central Europe, based on mean aerosol optical properties retrievals from 12 stations, the critical threshold of the aerosol single scattering albedo, between cooling and heating in the presence of an aerosol layer, is close between 0.6 and 0.76.  相似文献   

19.
Summary ?Microclimatological data obtained during a field experiment in the nongrowing winter period were used to study the microclimatologically stable night conditions of a 200 × 150 m miscanthus (Miscanthus cv. giganteus) stand and compared to open field conditions. The microclimatological pattern within the miscanthus canopy was characterized by long-wave radiative cooling of the plant stand and by an established temperature inversion within the canopy at calm nights. The results show that there are significant differences in air temperature and energy balance components between the open field and the miscanthus field during calm and clear nights. In general, net radiation difference during the cold and calm nights was relatively constant and about 20 W m−2 less negative in miscanthus (because of lower surface temperatures) than at the open field. Air temperature differences also remained fairly constant and were up to 3 °C lower than at the open field (at the height of 1 m). Through thermal inversion cold air accumulated in the lower parts of the canopy as shown by the vertical air temperature profiles. They showed a greater amplitude within the diurnal cycle in the miscanthus stand than in the open field. Through the onset of wind, temperature profiles changed rapidly and differences diminished. Vertical katabatic air drainage into the canopy layers was estimated indirectly by using the energy balance approach. It was calculated from the significant energy balance closure gap and showed a mean air exchange rate of up to 22 m3 m−2 h−1, related to a stand volume of 1 m2 area and 4 m height, during the mostly calm and clear nights, depending on the canopy net radiation and turbulent heat exchange forced by slight wind spells. Quantitative uncertainties in calculated cold air drainage which are introduced by the measurement method and certain assumptions in the calculations, were considered in a sensitivity analysis. In spite of these uncertainties evidence of katabatic cold air flow is given. Received July 29, 1999; revised June 11, 2001; accepted March 14, 2002  相似文献   

20.
On Shear-Driven Ventilation of Snow   总被引:1,自引:1,他引:0  
A series of experiments have been made in a wind tunnel to investigate the ventilation of snow by shear. We argue that the zero-plane displacement can be used as a convenient indicator of ventilation, and that this can be obtained from measurements of mean velocity profiles in conditions of zero pressure gradient. Measurements made over a natural snow surface show a zero-plane displacement depth of less than 5 mm, but practical considerations preclude extensive use of snow for these measurements. Instead, the influence of permeability is investigated using reticulated foams in place of snow. We demonstrate that the foam and snow have similar structure and flow-relevant properties. Although the surface of the foam is flat, the roughness lengths increase by two orders of magnitude as the permeability increases from 6 × 10−9 to 160 × 10−9 m2. The zero-plane displacement for the least permeable foams is effectively zero, but more than 15 mm for the most permeable foams. Our data compare well to the few studies available in the literature. By analogy to conditions over snow surfaces, we suggest that shear-driven ventilation of snow is therefore limited to the upper few millimetres of snow surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号