首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an analysis of Hagen-Poiseulle flow through plane random anisotropic networks of interconnected channels. Macroscopic permeability tensor of the network is expressed in terms of statistico-geometrical characteristics like the degree of anisotropy in channel orientations, average co-ordination number of the network and first two moments of channel length distribution. Analytical results are illustrated and verified using numerical analysis of flow in a simulated random network. The emphasis of the paper is on the effects of anisotropy on distributions of flow rates in channels. It is shown that, due to anisotropy the maximum flow rate generally occurs in channels that are not aligned along the direction of the macroscopic pressure gradient.  相似文献   

2.
This paper presents a detailed statistical analysis of Hagen-Poiseuille flow in plane random isotropic networks of interconnected channels. The emphasis is on statistico-geometrical features of networks that affect macroscopic permeability. It is shown that permeability of a network depends on its average co-ordination number, the first two moments of the channel length distribution and other explicitly identifiable geometrical features. Distributions of flow rates in channels and average flow rates are established by minimization of the rate of energy dissipation. Theoretical developments are interpreted in the context of classical statistical mechanics. Analytical results are illustrated and verified using numerical analysis of flow in a simulated random network.  相似文献   

3.
The physical basis of the linkage between magnitude and timing of channel flow hydrographs and drainage network morphometry is reviewed. Small Hortonian and structurally Hortonian networks are analysed using numerical runoff simulation. For Hortonian networks the variability of the geometry of individual channels and subcatchments within each Strahler order has generally little effect upon the overall character of the hydrograph in channels of higher order. If the network is also structurally Hortonian, the analysis of the simultaneous formation, travel, and concentration of the hydrographs in all channels of the network can be simplified to a sequence of one representative hydrograph per channel order. This approach is used in this study. Three major runoff processes control the flow hydrograph characteristics: the overland flow process which determines the water supply to the drainage network; the channel flow process which translates the hydrograph in space and time; and the drainage network process which concentrates and magnifies the flow at the junctions of the drainage network. Functional relations for the hydrograph peak, timing, and flow velocity are presented. For a given uniform rainfall and infiltration rate, the peak of the channel flow hydrograph is shown to increase geometrically with channel order, and its magnitude is directly related to the bifurcation ratio. The travel time of the peak also increases geometrically with channel order, and it is directly related to the channel length ratio over velocity ratio. The flow velocity of the peak changes in a downstream direction as a function of the bifurcation and slope ratio. It was also found that for negligible channel storage the channel flow and drainage network processes do not contribute significantly to the observed nonlinear response of a watershed to precipitation.  相似文献   

4.
Most of the largest rivers on Earth have multiple active channels connected at bifurcations and confluences. At present a method to describe a channel network pattern and changes in the network beyond the simplistic braiding index is unavailable. Our objectives are to test a network approach to understand the character, stability and evolution of a multi‐channel river pattern under natural discharge conditions. We developed a semi‐automatic method to derive a chain‐like directional network from images that represent the multi‐channel river and to connect individual network elements through time. The Jamuna River was taken as an example with a series of Landsat TM and ETM+ images taken at irregular intervals between 1999 and 2004. We quantified the overall importance of individual channels in the entire network using a centrality property. Centrality showed that three reaches can be distinguished along the Jamuna with a different network character: the middle reach has dominantly one important channel, while upstream and downstream there are about two important channels. Temporally, relatively few channels changed dramatically in both low‐flow and high‐flow periods despite the increase of braiding index during a flood. Based on the centrality we calculated a weighted braiding index that represents the number of important channels in the network, which is about two in the Jamuna River and which is larger immediately after floods. We conclude that the network measure centrality provides a novel characterization of river channel networks, highlighting properties and tendencies that have morphological significance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The origin and growth of blind tidal channels is generally considered to be an erosional process. This paper describes a contrasting depositional model for blind tidal channel origin and development in the Skagit River delta, Washington, USA. Chronological sequences of historical maps and photos spanning the last century show that as sediments accumulated at the river mouth, vegetation colonization created marsh islands that splintered the river into distributaries. The marsh islands coalesced when intervening distributary channels gradually narrowed and finally closed at the upstream end to form a blind tidal channel, or at mid‐length to form two blind tidal channels. Channel closure was probably often mediated through gradient reduction associated with marsh progradation and channel lengthening, coupled with large woody debris blockages. Blind tidal channel evolution from distributaries was common in the Skagit marshes from 1889 to the present, and it can account for the origin of very small modern blind tidal channels. The smallest observed distributary‐derived modern blind tidal channels have mean widths of 0·3 m, at the resolution limit of the modern orthophotographs. While channel initiation and persistence are similar processes in erosional systems, they are different processes in this depositional model. Once a channel is obstructed and isolated from distributary flow, only tidal flow remains and channel persistence becomes a function of tidal prism and tidal or wind/wave erosion. In rapidly prograding systems like the Skagit, blind tidal channel networks are probably inherited from the antecedent distributary network. Examination of large‐scale channel network geometry of such systems should therefore consider distributaries and blind tidal channels part of a common channel network and not entirely distinct elements of the system. Finally, managers of tidal habitat restoration projects generally assume an erosional model of tidal channel development. However, under circumstances conducive to progradation, depositional channel development may prevail instead. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
The coupling relationships between hillslope and channel network are fundamental for the understanding of mountainous landscapes' evolution. Here, we applied dendrogeomorphic methods to identify the hillslope–channel relationship and the sediment transfer dynamics within an alpine catchment, at the highest possible resolution. The Schimbrig catchment is located in the central Swiss Alps and can be divided into two distinct geomorphic sectors. To the east, the Schimbrig earth flow is the largest sediment source of the basin, while to the west, the Rossloch channel network is affected by numerous shallow landslides responsible for the supply of sediment from hillslopes to channels. To understand the connectivity between hillslopes and channels and between sources and sink, trees were sampled along the main Rossloch stream, on the Schimbrig earth flow and on the Rossloch depositional area. Geomorphic observations and dendrogeomophic results indicate different mechanisms of sediment production, transfer and deposition between upper and lower segments of the channel network. In the source areas (upper part of the Rossloch channel system), sediment is delivered to the channel network through slow movements of the ground, typical of earth flow, shallow landslides and soil creep. Contrariwise, in the depositional area (lower part of the channel network), the mechanisms of sediment transfer are mainly due to torrential activity, floods and debris flows. Tree analysis allowed the reconstruction of periods of high activity during the last century for the entire catchment. The collected dataset presents a very high temporal resolution but we encountered some limitations in establishing the source‐to‐sink connectivity at the catchment‐wide scale. Despite these uncertainties, for decennial timescales the results suggest a direct coupling between hillslopes and neighbouring channels in the Rossloch channel network, and a de‐coupling between sediment sources and sink farther downstream, with connections possible only during extraordinary events. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
An important problem in hydrologic science is understanding how river flow is influenced by rainfall properties and drainage basin characteristics. In this paper we consider one approach, the use of mass exponents, in examining the relation of river flow to rainfall and the channel network, which provides the primary conduit for transport of water to the outlet in a large basin. Mass exponents, which characterize the power-law behavior of moments as a function of scale, are ideally suited for defining scaling behavior of processes that exhibit a high degree of variability or intermittency. The main result in this paper is an expression relating the mass exponent of flow resulting from an instantaneous burst of rainfall to the mass exponents of spatial rainfall and that of the network width function. Spatial rainfall is modeled as a random multiplicative cascade and the channel network as a recursive replacement tree; these fractal models reproduce certain types of self-similar behavior seen in actual rainfall and networks. It is shown that under these modeling assumptions the scaling behavior of flow mirrors that of rainfall if rainfall is highly variable in space, and on the other hand flow mirrors the structure of the network if rainfall is not so highly variable.  相似文献   

8.
The etymology and historic usage of such terms as ‘anabranch’, ‘anastamose’ and ‘braided’ within river science are reviewed. Despite several decades of modern research to define river channel typologies inclusive of single channels and multiple channel networks, typologies remain ill‐conditioned and consequently ill‐defined. Conventionally employed quantitative planform characteristics of river networks possibly cannot be used alone to define channel types, yet the planform remains a central part of all modern classification schemes, supplemented by sedimentological and other qualitative channel characteristics. Planform characteristics largely have been defined using non‐standardized metrics describing individual network components, such as link lengths, braiding intensity and bifurcation angles, which often fail to separate visually‐different networks of channels. We find that existing typologies remain pragmatically utilitarian rather than fundamentally physics‐based and too often fail to discriminate between two distinctive and important processes integral to new channel initiation and flow‐splitting: (i) in‐channel bar accretion, and (ii) channel avulsion and floodplain excision. It is suggested that, first, if channel planform is to remain central to river typologies, then more rigorous quantitative approaches to the analysis of extended integral channel networks at extended reach scales (rather than network components) are required to correctly determine whether ‘visually‐different’ channel patterns can be discriminated consistently; and, second, if such visually‐different styles do in fact differ in their governing processes of formation and maintenance. A significant question is why do so many seemingly equilibrium network geometries possess a large number of anabranches in excess of predictions from theoretical considerations? The key research frontier with respect to initiating and maintaining multichannel networks remains the understanding and discrimination of accretionary‐bar flow splitting versus avulsive processes. Existing and new knowledge on flow splitting processes needs to be better integrated into channel typologies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Understanding the feedbacks between water, sediment, and vegetation in deltas is an important part of understanding deltas as ecomorphodynamic systems. We conducted a set of laboratory experiments using alfalfa (Medicago sativa) as a proxy for delta vegetation to investigate: (1) the effects of plants on delta growth and channel network formation; and (2) the timescales controlling delta evolution in the presence of plants. Experiments were conducted with fluctuating discharge (i.e. flood and base flow periods) and variable seeding densities. We found that when deltas were small, channels had no memory across flood cycles, as floods could completely fill the incised channel network. When deltas were large, the larger channel volume could remain underfilled to keep channel memory. Plant patches also helped to increase the number of channels and make a more distributive network. Patchiness increased over time to continually aid in bifurcation, but as vegetation cover and patch sizes increased, patches began to merge. Larger patches blocked the flow to enhance topset deposition and channel filling, even for the case of large deltas with a high channel volume. We conclude that both plant patchiness and delta size affect the development of the channel network, and we hypothesize that their influences are manifested through two competing timescales. The first timescale, Tv, defines the time when the delta is large enough for channels to have memory (i.e. remain underfilled), and the second, Tp, defines the time when vegetation patches merge, amplifying deposition and blocking channels. When run time is between these two timescales, the delta can develop a persistent distributary network of channels aided by bifurcation around plant patches, but once Tp is reached, the channel network can again be destroyed by vegetation. © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
The general nature of bulk flow within bedrock single‐channel reaches has been considered by several studies recently. However, the flow structure of a bedrock‐constrained, large river with a multiple channel network has not been investigated previously. The multiple channel network of the Siphandone wetlands in Laos, a section of the Mekong River, was modelled using a steady one‐dimensional hydraulic model. The river network is characterized by a spatially‐varying channel‐form leading to significant changes in the bulk flow properties between and along the channels. The challenge to model the bulk flow in such a remote region was the lack of ideal boundary conditions. The flow models considered both low flow, high inbank and overbank flows and were calibrated using SPOT satellite sensor imagery and limited field data concerning water levels. The application of the model highlighted flow characteristics of a large multi‐channel network and also further indicated the field data that would be required to properly characterize the flow field empirically. Important results included the observation that adjacent channels within the network had different water surface slopes for the same moments in time; thus calibration data for modelling similar systems needs to account for these significant local differences. Further, the in‐channel hydraulic roughness coefficient strongly varied from one cross‐section to the next (Manning's ‘n’ range: 0·01 to 0·10). These differences were amplified during low flow but persisted in muted form during high discharges. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
时频峰值滤波算法是一种新颖的基于时频分析的信号增强算法,能够有效地消除随机噪声,恢复有效波信息.本文将这种时频分析算法用于消除地震勘探资料中的随机噪声,对淹没于随机噪声下的40道共炮点记录进行时频峰值滤波,恢复出来的共炮点记录可以清楚地表现原始记录同相轴的位置.经过对40道中任选两道(即第21道和第7道)滤波前后的子波形态Wigner\|Ville分布、傅立叶振幅谱等的比较,可知仅在谷值和峰值点误差较大,子波带宽相对误差小于25%.仿真试验表明信噪比可达-7dB,说明该方法可以有效地消减地震资料中的随机噪声.  相似文献   

12.
Artificial open channels being costlier infrastructure, their design should ensure reliability along with optimality in project cost. This paper presents reliability analysis of composite channels, considering uncertainty associated with various design parameters such as friction factors, longitudinal slope, channel width, side slope, and flow depth. This study also considers uncertainties of watershed characteristics, rainfall intensity and drainage area to quantify the uncertainty of runoff. For uncertainty modeling, the advanced first order second moment method and Monte Carlo simulation are used and it is found that the results by both approaches show good agreement. Then, a reliability index that can be used to design a composite channel to convey design discharge for a specified risk or probability of failure is presented, and its sensitivity with different channel design parameters are analyzed. To validate the effectiveness of the present approach, the reliability values and safety factors for variable system loading scenario are obtained under static and dynamic environment. The sensitivity analysis shows that flow depth and bed width are the most influencing parameters that affect the safety factor and reliability.  相似文献   

13.
One of the key issues associated with the hypothesis of catastrophic subglacial drainage of the Livingstone Lake event is whether flows of such large magnitudes are physically feasible. To explore this issue, a one‐dimensional hydraulic network flow model was developed to investigate the range of peak discharges and associated flow parameters that may have been carried by a tunnel channel network in south‐east Alberta, Canada. This tunnel channel network has been interpreted elsewhere to carry large discharges associated with subglacial meltwater flows because of the convex longitudinal profiles of individual channels. This computational modelling effort draws upon established and verified engineering principles and methods in its application to the hydraulics of this problem. Consequently, it represents a unique and independent approach to investigating the subglacial meltwater hypothesis. Based on the modelling results, it was determined that energy losses resulting from friction limit the maximum peak discharge that can be transported through the tunnel channel network to 107 m3 s−1, which is in reasonable agreement with previous estimates of flood discharges for proposed megafloods. Results show that flow through channels with convex longitudinal profiles occurs when hydraulic head exceeds 910 m (Lost River) and 950 m (Sage Creek) , respectively. These are considerably below the maximum head capable of driving flow through the system of 1360 m, beyond which ice is decoupled from the bed across the pre‐glacial drainage divide. Therefore, it is concluded that these model results support the hypothesis of catastrophic subglacial drainage during the Livingstone Lake event. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Turbulent flow in a meandering channel is computed with two Computational Fluid Dynamics (CFD) codes solving the Navier–Stokes equations by employing different turbulence closure approaches. The first CFD code solves the steady Reynolds-Averaged Navier–Stokes equations (RANS) using an isotropic turbulence closure. The second code is based on the concept of Large Eddy Simulation (LES). LES resolves the large-scale turbulence structures in the flow and is known to outperform RANS models in flows in which large-scale structures dominate the statistics. The results obtained from the two codes are compared with experimental data from a physical model study. Both, LES and RANS simulation, predict the primary helical flow pattern in the meander as well as the occurrence of an outer-bank secondary cell. Computed primary as well as secondary flow velocities are in reasonably good agreement with experimental data. Evidence is given that the outer-bank secondary cell in a meander bend is the residual of the main secondary cell of the previous bend. However, the RANS code, regardless of the turbulence model employed, overpredicts the size and strength of the outer-bank secondary cell. Furthermore, only LES is able to uphold the outer-bank second secondary cell beyond the bend apex until the exit of the bend as turbulence anisotropy contributes to its persistence. The presence of multiple secondary cells has important consequences for the distribution of shear stresses along the wetted perimeter of the channel, and thereby the sediment transport in meandering channels. Consequently, even though LES is expected to compute the bed-shear stresses along the wetted perimeter of the channel with a higher degree of accuracy than the RANS model, comparisons between LES and RANS computed wall shear stresses agree well. These findings are useful for practitioners who need to rely on RANS model predictions of the flow in meandering channels at field scale.  相似文献   

15.
After horton     
The divergent and yet related problems of post-Hortonian studies of drainage density and channel network geometry are viewed against the difficulties of defining first-order channels and basins. It is proposed that the junction of an unbranched perennial (or blue-line) channel with another perennial channel be taken as the starting point for definitions and that the entire contour-crenulation network tributary to that point be considered the first-order stream. It is shown that the concept of network diameter may be used to describe the networks so delimited and that it appears to provide a useful starting point for interregional comparisons. Finally, an analysis of Blyth and Rodda's (1973) data on channel lengths and discharge indicates that network diameter may be as closely related to discharge as is channel length itself.  相似文献   

16.
In an effort to further our understanding of multiple channel systems, this paper presents data on the flood response of channels in one of the last wooded, semi-natural anastomosing systems in Europe. The Gearagh, Ireland, is characterized by hundreds of small islands separated by interconnected channels of low slope. These include channels that cross islands at right angles to the main flow and blind anabranching channels. Islands are relatively stable and wooded, with evidence of division by channel erosion and growth by in-channel sedimentation. Four active zone cross-profiles were surveyed, each containing between seven and 13 channels. Velocities were measured in several channels before and during two separate floods. From these observations channels have been categorised into three types: fast (shallow and trapezoidal); slow (deep and more irregular); and flood channels. During the floods, interchannel flows were caused by variations in water surface elevations due to backing-up behind debris dams, and it is suggested that this is the origin of the anomalous cross-island channels and one cause of island division. Another potential cause of island division, blind anabranching channels, is the result of concentrated bank scour between root masses. Biotic components such as debris dams, tree root masses and tree-throw pits play a key role in the partitioning of flow, and cause variations in channel velocities and the overbank velocity distribution. The implications of these observations for channel pattern maintenance are briefly discussed.  相似文献   

17.
Most downstream hydraulic geometry exponents have been found to be very close to the classic values reported by Leopold and Maddock (1953). These have been viewed as the simplified cases to general trends because the hydraulic geometry of alluvial channels is actually the product of ‘multivariate controls’ (Richards, 1982). This paper is an attempt to develop a soundly based foundation for the explanation of the physical mechanisms of these controls. A quantitative relationship between channel shape and boundary shear distribution developed from experimental flume results is found to be applicable in some instances to alluvial channels, particularly to stable canals. On the basis of this relationship, it is shown that downstream hydraulic geometry is determined not only by flow discharge, but also by channel slope, channel average roughness and sediment composition of the channel boundary. This is strongly supported by our analysis of 529 observations from both stable canals and natural rivers in the U.S.A. and the U.K. The difference between regime relations in canals and the hydraulic geometry of rivers appears to be caused mainly by channel slope and average roughness, which can be regarded as constants only in stable canals. The close relationship between discharge and channel average roughness observed in canals is not repeated in natural channels, partly because of the variety of flow values used to define the channel-forming discharge. Furthermore, it is indicated that the effects of the sediment composition of the channel boundary on hydraulic geometry are significant and need further investigation.  相似文献   

18.
The long‐term evolution of channel longitudinal profiles within drainage basins is partly determined by the relative balance of hillslope sediment supply to channels and the evacuation of channel sediment. However, the lack of theoretical understanding of the physical processes of hillslope–channel coupling makes it challenging to determine whether hillslope sediment supply or channel sediment evacuation dominates over different timescales and how this balance affects bed elevation locally along the longitudinal profile. In this paper, we develop a framework for inferring the relative dominance of hillslope sediment supply to the channel versus channel sediment evacuation, over a range of temporal and spatial scales. The framework combines distinct local flow distributions on hillslopes and in the channel with surface grain‐size distributions. We use these to compute local hydraulic stresses at various hillslope‐channel coupling locations within the Walnut Gulch Experimental Watershed (WGEW) in southeast Arizona, USA. These stresses are then assessed as a local net balance of geomorphic work between hillslopes and channel for a range of flow conditions generalizing decadal historical records. Our analysis reveals that, although the magnitude of hydraulic stress in the channel is consistently higher than that on hillslopes, the product of stress magnitude and frequency results in a close balance between hillslope supply and channel evacuation for the most frequent flows. Only at less frequent, high‐magnitude flows do channel hydraulic stresses exceed those on hillslopes, and channel evacuation dominates the net balance. This result suggests that WGEW exists mostly (~50% of the time) in an equilibrium condition of sediment balance between hillslopes and channels, which helps to explain the observed straight longitudinal profile. We illustrate how this balance can be upset by climate changes that differentially affect relative flow regimes on slopes and in channels. Such changes can push the long profile into a convex or concave condition. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

19.
Anastomosing rivers have multiple interconnected channels that enclose flood basins. Various theories potentially explain this pattern, including an increased discharge conveyance and sediment transport capacity of multiple channels, deltaic branching, avulsion forced by base‐level rise, or a tendency to avulse due to upstream sediment overloading. The former two imply a stable anabranching channel pattern, whereas the latter two imply disequilibrium and evolution towards a single‐channel pattern in the absence of avulsion. Our objective is to test these hypotheses on morphodynamic scenario modelling and data of a well‐documented case study: the upper Columbia River. Proportions of channel and floodplain sediments along the river valley were derived from surface mapping. Initial and boundary conditions for the modelling were derived from field data. A 1D network model was built based on gradually varied flow equations, sediment transport prediction, mass conservation, transverse slope and spiral meander flow effects at the bifurcations. The number of channels and crevasse splays decreases in a downstream direction. Also, measured sediment transport is higher at the upstream boundary than downstream. These observations concur with bed sediment overloading from upstream, which can have caused channel aggradation above the surrounding floodplain and subsequent avulsion. The modelling also indicates that avulsion was likely caused by upstream overloading. In the model, multi‐channel systems inevitably evolve towards single‐channel systems within centuries. The reasons are that symmetric channel bifurcations are inherently unstable, while confluenced channels have relatively less friction than two parallel channels, so that more discharge is conveyed through the path with more confluences and less friction. Furthermore, the present longitudinal profile curvature of the valley could only be reproduced in the model by temporary overfeeding. We conclude that this anastomosing pattern is the result of time‐varying sediment overloading and is not an equilibrium pattern feature, and suggest this is valid for many anastomosing rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
裂隙土等效连续介质的渗透张量及表征单元体积   总被引:1,自引:0,他引:1  
裂隙土的渗透特性是裂隙土边坡稳定性分析中重要的参数。文中通过分别考虑随机裂隙网络和土体本身的渗透性,推导裂隙土的渗透系数,并用张量的形式表示渗透系数的各向异性。同时建立了确定裂隙土表征单元体积的准则,为应用等效连续介质模型提供了基础。结果表明裂隙土的渗透系数大于裂隙网络和土体的渗透系数,其渗透方向取决于裂隙网络的渗透方向。算例中裂隙土的表征单元体积大约是裂隙长度平均值的5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号