首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Khor Arbaat basin is the main source of potable water supply for the more than 750,000 inhabitants of Port Sudan, eastern Sudan. The variation in hydraulic conductivity and storage capacity is due to the heterogeneity of the sediments, which range from clay and silt to gravely sand and boulders. The water table rises during the summer and winter rainy seasons; it reaches its lowest level in the dry season. The storage capacity of the Khor Arbaat aquifer is estimated to be 21.75?×?106 m3. The annual recharge through the infiltration of flood water is about 1.93?×?106 m3. The groundwater recharge, calculated as underground inflow at the ‘upper gate’, is 1.33?×?105 m3/year. The total annual groundwater recharge is 2.06?×?106 m3. The annual discharge through underground outflow at the ‘lower gate’ (through which groundwater flows onto the coastal plain) is 3.29?×?105 m3/year. Groundwater discharge due to pumping from Khor Arbaat basin is 4.38?×?106 m3/year on average. The total annual groundwater discharge is about 4.7?×?106 m3. A deficit of 2.6?×?106 m3/year is calculated. Although the total annual discharge is twice the estimated annual recharge, additional groundwater flow from the fractured basement probably balances the annual groundwater budget since no decline is observed in the piezometric levels.  相似文献   

2.
We estimated CO2 and CH4 emissions from mangrove-associated waters of the Andaman Islands by sampling hourly over 24 h in two tidal mangrove creeks (Wright Myo; Kalighat) and during transects in contiguous shallow inshore waters, immediately following the northeast monsoons (dry season) and during the peak of the southwest monsoons (wet season) of 2005 and 2006. Tidal height correlated positively with dissolved O2 and negatively with pCO2, CH4, total alkalinity (TAlk) and dissolved inorganic carbon (DIC), and pCO2 and CH4 were always highly supersaturated (330–1,627 % CO2; 339–26,930 % CH4). These data are consistent with a tidal pumping response to hydrostatic pressure change. There were no seasonal trends in dissolved CH4 but pCO2 was around twice as high during the 2005 wet season than at other times, in both the tidal surveys and the inshore transects. Fourfold higher turbidity during the wet season is consistent with elevated net benthic and/or water column heterotrophy via enhanced organic matter inputs from adjacent mangrove forest and/or the flushing of CO2-enriched soil waters, which may explain these CO2 data. TAlk/DIC relationships in the tidally pumped waters were most consistent with a diagenetic origin of CO2 primarily via sulphate reduction, with additional inputs via aerobic respiration. A decrease with salinity for pCO2, CH4, TAlk and DIC during the inshore transects reflected offshore transport of tidally pumped waters. Estimated mean tidal creek emissions were ~23–173 mmol m?2 day?1 CO2 and ~0.11–0.47 mmol m?2 day?1 CH4. The CO2 emissions are typical of mangrove-associated waters globally, while the CH4 emissions fall at the low end of the published range. Scaling to the creek open water area (2,700 km2) gave total annual creek water emissions ~3.6–9.2?×?1010 mol CO2 and 3.7–34?×?107 mol CH4. We estimated emissions from contiguous inshore waters at ~1.5?×?1011 mol CO2?year?1 and 2.6?×?108 mol CH4?year?1, giving total emissions of ~1.9?×?1011 mol CO2?year?1 and ~3.0?×?108 mol CH4?year?1 from a total area of mangrove-influenced water of ~3?×?104 km2. Evaluating such emissions in a range of mangrove environments is important to resolving the greenhouse gas balance of mangrove ecosystems globally. Future such studies should be integral to wider quantitative process studies of the mangrove carbon balance.  相似文献   

3.
The River Gash Basin is filled by the Quaternary alluvial deposits, unconformably overlying the basement rocks. The alluvial deposits are composed mainly of unconsolidated layers of gravel, sand, silt, and clays. The aquifer is unconfined and is laterally bounded by the impermeable Neogene clays. The methods used in this study include the carry out of pumping tests and the analysis of well inventory data in addition to the river discharge rates and other meteorological data. The average annual discharge of the River Gash is estimated to be 1,056?×?106 m3 at El Gera gage station (upstream) and 587?×?106 m3 at Salam-Alikum gage station (downstream). The annual loss mounts up to 40% of the total discharge. The water loss is attributed to infiltration and evapotranspiration. The present study proofs that the hydraulic conductivity ranges from 36 to 105 m/day, whereas the transmissivity ranges from 328 to 1,677 m2/day. The monitoring of groundwater level measurements indicates that the water table rises during the rainy season by 9 m in the upstream and 6 m in the midstream areas. The storage capacity of the upper and middle parts of the River Gash Basin is calculated as 502?×?106 m3. The groundwater input reach 386.11?×?106 m3/year, while the groundwater output is calculated as 365.98?×?106 m3/year. The estimated difference between the input and output water quantities in the upper and middle parts of the River Gash Basin demonstrates a positive groundwater budget by about 20?×?106 m3/year  相似文献   

4.
Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1–6.2×10?5 m/s. Discharge was estimated at 1.28×10?3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7×10?5–2.0×10?3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3×10?9–2.0×10?4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system.  相似文献   

5.
In this study, palm shell activated carbon modified with task-specific ionic liquid was used as a novel electrode component for the potentiometric determination of cadmium ions in water samples. The proposed potentiometric sensor has good operating characteristics, including relatively high selectivity towards the Cd (II) ion, a Nernstian response to Cd (II) ions in a working concentration range of 1.0 × 10?9–1.0 × 10?2 M, with a reasonable detection limit of 1 × 10?10 M and a slope of 30.90 ± 1.0 mV/decade. No significant changes in electrode potential were observed when the pH was varied over the range of 4–9. A direct technique based on the use of ion-selective electrode potentiometry has been developed in our laboratory for the study of reaction kinetics and kinetic methods of analysis by continuous monitoring of the rate of production or consumption of an ion. The apparent adsorption rate constant was estimated assuming pseudo-second-order kinetics. Additionally, the proposed electrode has been successfully used for the determination of the cadmium content in real samples without a significant interaction from other cationic or anionic species.  相似文献   

6.
Erosion potential method (EPM) and Modified Pacific Southwest Interagency Committee (MPSIAC) are two empirical models for estimating soil erosion and sediment delivery. These models use a relatively simple formulation, but they are still applied in various areas with different environmental conditions. However, evaluation of their efficiency is challenging. Accordingly, the main purpose of this study is investigating the performance of EPM and MPSIAC in estimating soil erosion and sediment yield using sediment rating curve (SRC) methods. Talar watershed in Iran was selected as the study area and suspended sediment load (SSL) of two Shirgah–Talar and Valikbon stations were used to assess the output of the models. Remote sensing and geographic information system were utilized in implementing the models. The estimated sediment yield values by the models were evaluated using the results of least square error regression and quantile regression (QR) SRC methods. Then, sediment yield values were obtained from 20-year discharge data (1992–2011). Despite the high uncertainty of QR results, the annual sediment delivery values of the models were achieved in an acceptable range. The most likely (with a probability of 0.5) average annual SSL values were between 713?×?103 and 840?×?103 ton for Shirgah–Talar station. Those values for Valikbon station were between 3142?×?101 and 3702?×?101. Moreover, the estimated average sediment yield in Shirgah–Talar station using MPSIAC and EPM were 591392 and 514054 ton/year, respectively. Those values for Valikbon station were 51881 and 27449 ton/year. Then, the results proved the better performance of MPSIAC in estimating SSL in the study area compared with EPM.  相似文献   

7.
The radioactivity due to 238U and 234U in three aquifer systems occurring within the Paraná sedimentary basin, South America, has been investigated. Uranium is much less dissolved from fractured igneous rocks than from the porous sedimentary rocks as indicated by the U-mobility coefficients between 7.6 × 10?6 and 1.2 × 10?3 g cm?3. These values are also compatible with the U preference ratios relative to Na, K, Ca, Mg and SiO2, which showed that U is never preferentially mobilized in the liquid phase during the flow occurring in cracks, fissures, fractures and faults of the igneous basaltic rocks. Experimental dissolution of diabase grains on a time-scale laboratory has demonstrated that the U dissolution appeared to be a two-stage process characterized by linear and second-order kinetics. The U dissolution rate was 8 × 10?16 mol m?2 s?1 that is within the range of 4 × 10?16–3 × 10?14 mol m?2 s?1 estimated for other rock types. The 234U/238U activity ratio of dissolved U in solutions was higher than unity, a typical result expected during the water–rock interactions when preferential 234U-leach from the rock surfaces takes place. Some U-isotopes data allowed estimating 320 ka for the groundwater residence time in a sector of a transect in São Paulo State. A modeling has been also realized considering all U-isotopes data obtained in Bauru (35 samples), Serra Geral (16 samples) and Guarani (29 samples) aquifers. The results indicated that the Bauru aquifer waters may result from the admixture of waters from Guarani (1.5 %) and Serra Geral (98.5 %) aquifers.  相似文献   

8.
An extreme rainfall event on August 9, 2009, which was close to setting a world record for 48-h accumulated rainfall, induced the Xiaolin deep-seated landslide, which was located in southwestern Taiwan and had volume of 27.6?×?106?m3, and caused the formation of a landslide dam. The landslide dam burst in a very short time, and little information remained afterward. We reconstructed the process of formation and failure of the Xiaolin landslide dam and also inferred the area of the impoundment and topographic changes. A 5?×?5-m digital elevation model, the recorded water stage of the Qishan River, and data from field investigation were used for analysis. The spectral magnitude of the seismic signals induced by the Xiaolin landslide and flooding due to failure of the landslide dam were analyzed to estimate the timing of the dam breach and the peak discharge of the subsequent flood. The Xiaolin landslide dam failure resulted from overtopping. We verified the longevity of the Xiaolin landslide dam at about 2 h relying on seismic signals and water level records. In addition, the inundated area, volume of the impoundment behind the Xiaolin landslide dam, and peak discharge of the flood were estimated at 92.3 ha, 19.5?×?106?m3, and 17?×?103?m3/s, respectively. The mean velocity of the flood-recession wave front due to the dam blockage was estimated at 28 km/h, and the peak flooding velocity after failure of the dam was estimated at 23 km/h. The Xiaolin landslide provides an invaluable opportunity for understanding the mechanism of deep-seated landslides and flooding processes following a landslide dam failure.  相似文献   

9.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

10.
A workflow is described to estimate specific storage (S s) and hydraulic conductivity (K) from a profile of vibrating wire piezometers embedded into a regional aquitard in Australia. The loading efficiency, compressibility and S s were estimated from pore pressure response to atmospheric pressure changes, and K was estimated from the earliest part of the measurement record following grouting. Results indicate that S s and K were, respectively, 8.8?×?10?6 to 1.2?×?10?5 m?1 and 2?×?10?12 m s?1 for a claystone/siltstone, and 4.3?×?10?6 to 9.6?×?10?6 m?1 and 1?×?10?12 to 5?×?10?12 m s?1 for a thick mudstone. K estimates from the pore pressure response are within one order of magnitude when compared to direct measurement in a laboratory and inverse modelled flux rates determined from natural tracer profiles. Further analysis of the evolution and longevity of the properties of borehole grout (e.g. thermal and chemical effects) may help refine the estimation of formation hydraulic properties using this workflow. However, the convergence of K values illustrates the benefit of multiple lines of evidence to support aquitard characterization. An additional benefit of in situ pore pressure measurement is the generation of long-term data to constrain groundwater flow models, which provides a link between laboratory scale data and the formation scale.  相似文献   

11.
Dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) optical properties were analyzed along two estuarine river transects during the wet and dry seasons to better understand DOM dynamics and quantify mangrove inputs. A tidal study was performed to assess the impacts of tidal pumping on DOM transport. DOM in the estuaries showed non-conservative mixing indicative of mangrove-derived inputs. Similarly, fluorescence data suggest that some terrestrial humic-like components showed non-conservative behavior. An Everglades freshwater-derived fluorescent component, which is associated with soil inputs from the Northern Everglades, behaved conservatively. During the dry season, a protein-like component behaved conservatively until the mid-salinity range when non-conservative behavior due to degradation and/or loss was observed. The tidal study data suggests mangrove porewater inputs to the rivers following low tide. The differences in quantity of DOM exported by the Shark and Harney Rivers imply that geomorphology and tidal hydrology may be a dominant factor controlling the amount of DOM exported from the mangrove ecotone, where up to 21 % of the DOC is mangrove-derived. Additionally, nutrient concentrations and other temporal factors may control DOM export from the mangroves, particularly for the microbially derived fluorescent components, contributing to the seasonal differences. The wet and dry season fluxes of mangrove DOM from the Shark River is estimated as 0.27?×?109 mg C d?1 and 0.075?×?109 mg C d?1, respectively, and the Harney River is estimated as 1.9?×?109 mg C d?1 and 0.20?×?109 mg C d?1.  相似文献   

12.
A simple spectrophotometric method for determination of hydrogen sulfide in wastewater and hot spring samples was developed. The method is based on the reaction between hydrogen sulfide and sodium 1,2-naphthoquinone-4-sulfonate (NQS). The effect of various experimental factors on the reaction between hydrogen sulfide and NQS was investigated and optimized using central composite design. The optimal values of the factors were 5.00 × 10?4 mol L?1 for concentration of NQS and 1.00 × 10?2 mol L?1 for concentration of hydrochloric acid. The wavelength of the maximum absorption of the reaction product was 320 nm. Constructed calibration curve for hydrogen sulfide determination was linear in the range of 0.5–20.0 mg L?1 with the detection limit of 0.16 mg L?1. The method was free from interferences. Percent relative errors below 2 % were obtained for determination of hydrogen sulfide in environmental samples.  相似文献   

13.
A novel ionic liquid carbon paste electrode has been developed using sol–gel/Au nanoparticle (SGAN) involving (NS)2 compound of N,N′-di-(cyclopentadienecarbaldehyde)-1, 2-di (o-aminophenylthio) ethane (CCAE) as an appropriate neutral ion-carrier for ultrahigh-sensitive potentiometric determination of Ag(I). Colloidal gold nanoparticles (AuNPs) also well dispersed self-assembly into the 3-(mercaptopropyl)-trimethoxysilane (MPTS)-derived sol–gel network through Au–S covalent bond engendering continuous and super-conductive nanoporous three-dimensional array. The room-temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIM.PF6), was applied as a super-conductive pasting agent (binder). The SGAN/CCAE/IL-CPE exhibited a significantly enhanced sensitivity and preferential selectivity toward Ag(I) over a wide concentration range of 2.4 × 10?9 to 2.2 × 10?2 mol L?1 (R 2 = 0.9996) with a lower limit of detection of 7.9 × 10?10 M and a Nernstian slope of 58.5 (±0.3) mV decade?1. The electrode has a short response time of ~5 s and long-time durability of about 2 months without any considerable divergence in potentials. Moreover, the potentiometric examinations could be carried out within the wide pH range of 3.5–9.5. Eventually, the practical utility of the proposed Ag(I)-sensor was evaluated by volumetric titration of AgNO3 solution by sodium chloride and recovery of silver content in some real samples using flame atomic absorption spectroscopy as a confident reference.  相似文献   

14.
One of the most important challenges in global climate change research is balancing the carbon budget within the global carbon cycle. Carbon burial in sediments at the land–ocean interface has been difficult to quantify and model because it represents non-steady-state boundary conditions that are also affected by human activities. In this study, we document carbon burial rates in the Yangtze River (1.6–4.9 × 1012 gC year?1) and Hudson River (1.8–3.6 × 1010 gC year?1) estuaries and integrate our results with carbon burial rates determined by others in the world’s 25 largest river-estuarine systems (6–11 × 1013 gC year?1). Our results indicate that carbon burial in estuaries, bays, coves, lagoons, mud flats, marshes, mangroves, and other highly productive or protected low-energy areas at the land–ocean interface along the entirety of the world’s coastlines may serve as an unrecognized sink within the global carbon budget.  相似文献   

15.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   

16.
The objective of this work was to study sorption–desorption and/or precipitation–dissolution processes of Hg(II) compounds considering an eventual contact of soils with Hg-bearing wastes. In addition, this study contributes new data about Hg(II) chemistry in alkaline systems. Saline and alkaline soils with low organic matter (<1 %) and high clay content (60–70 %) were obtained near a chlor-alkali plant. Batch techniques were used to perform the experiments using 0.1 M NaNO3 solutions. Total Hg(II) concentrations ranged from 6.2 × 10?8 to 6.3 × 10?3 M. Sorption of Hg(II) was evaluated at two concentration ranges: (a) 6.2 × 10?8 to 1.1 × 10?4 M, and (b) 6.4 × 10?4 to 6.3 × 10?3 M. At low Hg(II) concentrations, adsorption occurred with a maximum sorption capacity ranging from 4 to 5 mmol/kg. At high Hg(II) concentrations, sorption–precipitation reactions occurred and maximum sorption capacity ranged from 17 to 31 mmol/kg. The distribution of Hg(II) hydrolysis products showed that Hg(OH)2 was the predominant species under soil conditions. According to sorption experiments, X-ray diffraction and chemical speciation modelling, the presence of Hg(OH)2 in the interlayer of the interstratified clay minerals can be proposed. Hg(OH)2 was partially desorbed by repeated equilibrations in 0.1 M NaNO3 solution. Desorption ranged from 0.1 to 0.9 mmol/kg for soils treated with 5.8 × 10?5 M Hg(II), whereas 2.1–3.8 mmol/kg was desorbed from soils treated with 6.3 × 10?3 M Hg(II). Formation of soluble Hg(II) complexes was limited by low organic matter content, whereas neutral Hg(OH)2 was retained by adsorption on clay mineral surfaces.  相似文献   

17.
Strain rate during testing, uniaxial or triaxial, has important influence on the measured mechanical properties of rocks. Uniaxial compression tests were performed at nine pre-specified static-to-quasistatic strain rates (ranging from 1 × 10?5 to 1 × 10?1 s?1) on coarse crystal marble. The aim is to gain deep insight into the influence of strain rate on characteristic stresses, deformation properties and conversion of strain energy of such rock. It is found that the strain rate of 5 × 10?3 s?1 is the threshold to delineate the failure modes the tested coarse marble behaves in. At a strain rate less than this threshold, single-plane shear and conjugate X-shaped shear are the main failure modes, while beyond this threshold, extensile and splitting failures are dominant. The stress for crack initiation, the critical stress for dilation, the peak stress, and Young’s modulus are all found to increase with strain rate, with an exception that the above stresses and modulus appear relatively low compared to the strain rate in the range of between 1 × 10?4 and 5 × 10?3 s?1. The pre-peak absorbed strain energy, damage strain energy and elastic strain energy are found to increase with strain rate. In addition, the elastic strain energy stored before peak point favors brittle failure of the specimen, as the more stored elastic energy in the specimen, the stronger the fragmenting.  相似文献   

18.
Constraining magnitudes of mechanical and thermo-mechanical parameters of rocks and shear zones are the important goals in structural geology and tectonics (Talbot in J Struct Geol 21:949–957, 1999). Such parameters aid dynamic scaling of analogue tectonic models (Ramberg in Gravity, deformation and the Earth’s crust in theory, experiments and geological applications, 2nd edn. Academic Press, London, 1981), which are useful to unravel tectonics in further details (Schultz-Ela and Walsh in J Struct Geol 24:247–275, 2002). The channel flow extrusion of the Higher Himalayan Shear Zone (HHSZ, = Higher Himalaya) can be explained by a top-to-S/SW simple shear (i.e. the D2 deformation) in combination with a pressure gradient induced flow against gravity. Presuming its Newtonian incompressible rheology with parallel inclined boundaries, the viscosity (μ) of this shear zone along a part of the Himalayan chain through India, Nepal and Bhutan is estimated to vary widely between ~1016 and 1023 Pa s, and its Prandtl number (P r ) within ~1021–1028. The estimates utilized ranges of known thickness (6–58 km) of the HHSZ, that of its top subzone of ductile shear of normal shear sense (STDSU: 0.35–9.4 km), total rate of slip of its two boundaries (0.7–131 mm year?1), pressure gradient (0.02–6 kb km?1), density (2.2–3.1 g cm?3) and thermal diffusivity (0.5 × 10?6–2.1 × 10?6 m s?2) along the orogenic trend. Considering most of the parameters specifically for the Sutlej section (India), the calculated viscosity (μ) and the Prandtl number (P r ) of the HHSZ are deduced to be μ: ~1017–1023 Pa s and P r  ~ 1022–1028. The upper limits of the estimated viscosity ranges are broadly in conformity with a strong Tibetan mid-crust from where a part of the HHSZ rocks extruded. On the other hand, their complete ranges match with those for its constituent main rock types and partly with those for the superstructure and the infrastructure. The estimated mechanical and thermo-mechanical parameters of the HHSZ will help to build dynamically scaled analogue models for the Himalayan deformation of the D2–phase.  相似文献   

19.
Compacted soil–bentonite liners, consisting of a sandy soil mixed with bentonite as backfill, are used extensively as engineered barriers for contaminant containment. This paper studies the valorization of local materials containing calcareous sand, tuff obtained from Laghouat region (in the South Algeria), to associate with bentonite in order to improve their hydraulic characteristics for use as landfill liner material. Firstly, a geotechnical characterization of mixtures chooses from a fixed percentage to 10% bentonite and different percentages of calcareous sand and tuff so that they are complementary to 90% by not 10%. Thereafter, the determination of saturated hydraulic conductivity at falling-head permeability (Kv) and oedometer (Kid, indirect Measure) tests of all compacted mixtures at Optimum Normal Proctor have been carried out using both permeates by tap water and a landfill leachate in order to simulate long-term conditions. The results showed that the saturated hydraulic conductivity of tap water is relatively lower than the one saturated by leachate in the falling-head test, unlike the oedometer test. The B10CS20T70 mixture has satisfied the hydraulic conductivity criterion of bottom barriers (i.e. water permeated: kv20° = 1.97 × 10?9 and kid from 7 × 10?9 to 1.83 × 10?10 < 10?9m/s; leachate permeated: kv20° = 2.91 × 10?9 and kid from 7 × 10?9 at 1.44 × 10?10 < 10?9 m/s). Finally, a comparison between direct measurements of the saturated hydraulic conductivity by triaxial (Kd) test and oedometer test (Kid) in the range of effective stress applied 100–800 kPa led to propose equations of correlations between these two methods. In conclusion, adopted formulation B10CS20T70 perfectly meets the regulatory requirements in force and constitutes an economic product based on available local materials for engineers barriers.  相似文献   

20.
The dehydration kinetics of serpentine was investigated using in situ high-temperature infrared microspectroscopy. The analyzed antigorite samples at room temperature show relatively sharp bands at around 3,655–3,660 cm?1 (band 1), 3,570–3,595 cm?1 (band 2), and 3,450–3,510 cm?1 (band 3). Band 1 corresponds to the Mg–OH bond, and bands 2 and 3 correspond to OH associated with the substitution of Al for Si. Isothermal kinetic heating experiments at temperatures ranging from 625 to 700 °C showed a systematic decrease of the OH band absorbance with heating duration. The one-dimensional diffusion was found to provide the best fit to the experimental data, and diffusion coefficients were determined with activation energies of 219 ± 37 kJ mol?1 for the total water band area, 245 ± 46 kJ mol?1 for band 1, 243 ± 57 kJ mol?1 for band 2, and 256 ± 53 kJ mol?1 for band 3. The results indicate that the dehydration process is controlled by one-dimensional diffusion through the tetrahedral geometry of serpentine. Fluid production rates during antigorite dehydration were calculated from kinetic data and range from 3 × 10?4 to 3 × 10?5  $ {\text{m}}_{\text{fluid}}^{ 3} \,{\text{m}}_{\text{rock}}^{ - 3} \,{\text{s}}^{ - 1} $ . The rates are high enough to provoke hydraulic rupture, since the relaxation rates of rocks are much lower than these values. The results suggest that the rapid dehydration of antigorite can trigger an intermediate-depth earthquake associated with a subducting slab.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号