首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The possible scenarios of accretion of ancient ensimatic island arcs in the eastern and western frameworks of the Pacific Ocean are discussed. It is concluded that the accretion of ensimatic island arcs can occur at both the lithospheric and crustal (upper crustal) levels. In the case of lithospheric accretion, the subduction zone is jammed and the island-arc edifice is attached to the continent. During crustal-level accretion, the subduction of the lithosphere that underlies the island arc can develop further, thereby leading to the formation of a suprasubduction volcanic-plutonic belt at the continental margin.  相似文献   

2.
Based on the Zimbabwe craton, it is suggested that, during the Archaean, full decoupling between a strong upper crust and a strong upper mantle across a weak detachment zone at the Moho allowed the independent development of crustal and mantle geometries in response to lithospheric shortening. This is an effective way to explain the field observations made in the Zimbabwe craton, which suggest a late-Archaean interplay between lateral accretionary processes through low angle thrust stacking and underplating and deep seated lineament zones with a possible mantle origin. The lineament zones play an important role in the localisation of mineral deposits such as base metals, gold, and possibly diamonds. Thickening of the mantle lithosphere occurred independently from the crust, through early Archaean melt segregation and/or lithospheric underplating.  相似文献   

3.
The mechanism of the disruption, both lithospheric thinning and oceanization of the commonly accepted long‐term‐stable Archaean craton, is still an open question. The available models, all imply a bottom to top process. With the construction of a 1660‐km‐long transect across the eastern North China Craton (NCC), we demonstrate that both the P‐wave velocity and density in the lowermost crust beneath the central section are significantly higher than in the corresponding parts of the south and north sections on the transect. These features are interpreted as geophysical signature of lower crustal underplating, which supplies sufficiently high gravitational potential energy to trigger lateral flow of the lower crust. This magma underplating‐triggered bilateral lower crust flow may facilitate the lithospheric thinning by means of asthenosphere upwelling and decompression melting, which infill the gap produced by the lower crust flow. The underplating‐triggered lower crustal flow can provide an alternative mechanism to explain the NCC lithosphere disruption, which highlights the crustal feedback to Archaean lithosphere disruption, from top to bottom.  相似文献   

4.
The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle.As geological and geochemical data seem inconsistent with the existence of modernstyle ridges and arcs in the Archaean,a periodically-destabilized stagnant-lid crust system is proposed instead.Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle,perturbing Earth's heat generation/loss balance,eventually triggering mantle overturns.Archaean basalts were derived from fertile mantle in overturn upwelling zones(OUZOs),which were larger and longer-lived than post-Archaean plumes.Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods,allowing basal crustal cannibalism,garnetiferous crustal restite delamination,and coupled development of continental crust and sub-continental lithospheric mantle.Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB(mid-ocean ridge basalt)mantle.Only after the start of true subduction did sequestration of subducted slabs at the coremantle boundary lead to the development of the depleted MORB mantle source.During Archaean mantle overturns,pre-existing continents located above OUZOs would be strongly reworked;whereas OUZOdistal continents would drift in response to mantle currents.The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion,imbrication,subcretion and anatexis of unsubductable oceanic lithosphere.As Earth cooled and the background oceanic lithosphere became denser and stiffer,there would be an increasing probability that oceanic crustal segments could founder in an organized way,producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga.Plate tectonics today is constituted of:(1)a continental drift system that started in the Early Archaean,driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons;(2)a subduction-driven system that started near the end of the Archaean.  相似文献   

5.
大洋或弧后洋盆俯冲增生是大陆地壳增长的主导地质作用.重建大陆中消亡的洋地层岩石组合序列是当代大陆动力学和地学研究的重大前沿.洋壳消减杂岩带的厘定是洋板块地质构造重建乃至全球大地构造研究之纲,是理解区域大地构造形成演化及动力学的核心.俯冲增生杂岩带的基本特征:(1)俯冲增生杂岩带物质组成的共性是:以强烈构造变形洋底沉积的硅质岩-硅泥质岩-粉砂岩、凝灰岩;弧-沟浊积岩等为基质;以洋岛-海山灰岩-玄武岩及塌积砾岩,洋内弧残留岩块,超镁铁质蛇绿岩、绿片岩、蓝片岩等为岩块.(2)变形样式:同斜倒转冲断叠瓦构造、增生柱前缘重力滑动构造以及泥质岩的底辟构造;增生楔前缘变形和增生形式受控于大洋或弧后洋盆的规模和洋壳的俯冲速度,也取决于陆缘碎屑供给量及洋底沉积厚度和岩性.(3)宽度和厚度:厚常达几千米,宽达几十公里至数百公里,延长上千公里,是洋壳俯冲消亡过程洋盆地层系统及陆缘沉积物加积的结果.(4)形成机制:是大陆碰撞前大洋(或弧后洋盆)岩石圈俯冲消减的产物.结合带中的早期俯冲增生杂岩带往往卷入晚期的构造混杂作用.  相似文献   

6.
The origin of the Antarctic continent can be traced to a relatively small late Archaean cratonic nucleus centred on the Terre Adélie regions of East Antarctica and the Gawler Craton region of South Australia. From the late Archaean to the present, the evolution of the proto-Antarctic continent was remarkably dynamic with quasi-continuous growth driven by accretionary or collisional events, episodically punctuated by periods of crustal extension and rifting. The evolution of the continent can be broken into seven main steps: (1) late Palaeoproterozoic to middle Mesoproterozoic accretion and collision added crust first to the Antarctic nucleus's eastern margin, then to its western margin. These events resulted in the incorporation of the Antarctic nucleus within a single large continent that included all of Proterozoic Australia, a more cryptic Curnamona–Beardsmore Craton and most probably Laurentia. (2) Rifting in the middle to late Mesoproterozoic separated a block of continental crust of unknown dimensions to form an ocean-facing margin, the western edge of which was defined by the ancestral Darling Fault in Western Australia and its unnamed continuation in Antarctica. (3) Inversion of this margin followed shortly and led to the Grenville aged collision and juxtaposition of proto-Antarctica with the Crohn Craton, a continental block of inferred Archaean and Palaeoproterozoic age that now underlies much of central East Antarctica. The Pinjarra Orogen, exposed along the coast of Western Australia, defines the orogenic belt marking this collision. In Antarctica the continuation of this belt has been imaged in sub-ice geophysical datasets and can be inferred from sparse outcrop data and via the widespread dispersal of syn-tectonic zircons. (4) Tectonic quiescence from the latest Mesoproterozoic to the Cryogenian was the forerunner to Ediacaran rifting that separated Laurentia and the majority of the Curnamona–Beardsmore craton from the amalgam of East Antarctica and Australia. The result was the formation of the ancestral Pacific Ocean. (5) The rifting of Laurentia was mirrored by convergence along the opposing margin of the continent. Convergence ultimately sutured material with Indian and African affinities during a series of Ediacaran and Cambrian events related to the formation of Gondwana. These events added much of the crust that today defines the East Antarctic coastline between longitudes 30°W and 100°E. (6) The amalgamation of Gondwana marked a shift in the locus of subduction from between the pre-Gondwana cratons to Gondwana's previously passive Pacific margin. The result was the establishment of the accretionary Terra Australis and Gondwanide orogenies. These were to last from the late Cambrian to the Cretaceous, and together accreted vast sequences of Gondwana derived sediment as well as fragments of older and allochthonous or para-allochthonous continental crust to Gondwana's Pacific margin. (7) The final phases of accretion overlapped with the initiation of extension and somewhat later rifting within Gondwana. Extension started in the late Carboniferous, although continental separation did not begin until the middle Jurassic. Gondwana then fragmented sequentially with Africa–South America, India, Australia and the finally the blocks of New Zealand separating between the middle Jurassic and the late Cretaceous. The late Cretaceous separation of Antarctica and Australia split the original Antarctic nucleus, terminating more than 2.4 billion years of shared evolution. The slightly younger separation of New Zealand formed the modern Antarctic continent.  相似文献   

7.
Arc–continent collision is a key process of continental growth through accretion of newly grown magmatic arc crust to older continental margin. We present 2D petrological–thermo-mechanical models of arc–continent collision and investigate geodynamic regimes of this process. The model includes spontaneous slab bending, dehydration of subducted crust, aqueous fluid transport, partial melting of the crustal and mantle rocks and magmatic crustal growth stemming from melt extraction processes. Results point to two end-member types of subsequent arc–continent collisional orogens: (I) orogens with remnants of accretion prism, detached fragments of the overriding plate and magmatic rocks formed from molten subducted sediments; and (II) orogens mainly consisting of the closed back-arc basin suture, detached fragments of the overriding plate with leftovers of the accretion prism and quasi insignificant amount of sediment-derived magmatic rocks. Transitional orogens between these two endmembers include both the suture of the collapsed back-arc basin and variable amounts of magmatic production. The orogenic variability mainly reflects the age of the subducting oceanic plate. Older, therefore colder and denser oceanic plates trigger subduction retreat, which in turn triggers necking of the overriding plate and opening of a backarc basin in which new oceanic lithosphere is formed from voluminous decompression melting of the rising hot asthenosphere. In this case, subducted sediments are not heated enough to melt and generate magmatic plumes. On the other hand, young and less dense slabs do not retreat, which hampers opening of a backarc basin in the overriding plate while subducted sediments may reach their melting temperature and develop trans-lithospheric plumes. We have also investigated the influences of convergence rate and volcanic/plutonic rocks' ratio in newly forming lithosphere. The predicted gross-scale orogenic structures find similarities with some natural orogens, in particular with deeply eroded orogens such as the Variscides in the Bohemian Massif.  相似文献   

8.
中国边缘海域及其邻区的岩石层结构与构造分析   总被引:3,自引:0,他引:3  
利用中国边缘海域近年的地震层析成像结果,根据速度异常和各向异性分析东海、黄海和南海北部的岩石层结构和构造,讨论中朝块体和扬子块体在黄海内部的拼合边界(黄海东部断裂带)、东海陆架盆地上地幔异常与岩石层形成演化、南海北部地壳底部高速层的成因及地幔活动等问题。分析表明,黄海东部与朝鲜半岛之间存在一个深部构造界限(大致对应于黄海东部断裂带),分界两侧Pn波速度各向异性存在明显差异,反映不同构造应力和断裂剪切运动作用下的岩石层地幔变形特征。东海陆架下方的低速异常揭示了张裂盆地形成时期的地幔活动痕迹,表明中、新生代期间发生过地幔上涌并造成岩石层减薄,菲律宾海板块向西俯冲引发的地幔活动对东海陆架岩石层的形成、演化产生明显的影响。南海北部岩石层厚度较大并且温度相对偏低,地幔异常仅限于局部地区,估计南海北部大陆边缘的地壳底部高速层形成于张裂发生之前,或者是地壳形成时期壳幔分异时的产物。南海中央海盆的扩张不仅导致地壳拉张,软流层物质上涌,而且也造成岩石层地幔减薄甚至缺失。  相似文献   

9.
Numerical experiments reproduce the fundamental architecture of magma-poor rifted margins such as the Iberian or Alpine margins if the lithosphere has a weak mid-crustal channel on top of strong lower crust and a horizontal thermal weakness in the rift center. During model extension, the upper crust undergoes distributed collapse into the rift center where the thermally weakened portion of the model tears. Among the features reproduced by the modeling, we observe: (1) an array of tilted upper-crustal blocks resting directly on exhumed mantle at the distal margin, (2) consistently oceanward-dipping normal faults, (3) a mid-crustal high strain zone at the base of the crustal blocks (S-reflector), (4) new ocean floor up against a low angle normal fault at the tip of the continent, (5) shear zones consistent with continentward-dipping reflectors in the mantle lithosphere, (6) the mismatch frequently observed between stretching values inferred from surface extension and bulk crustal thinning at distal margins (upper plate paradox). Rifting in the experiment is symmetric at a lithospheric scale and the above features develop on both sides of the rift center. We discuss three controversial points in more detail: (1) weak versus strong lower crust, (2) the deformation pattern in the mantle, and (3) the significance of detachment faults during continental breakup. We argue that the transition from wide rifting towards narrow rifting with a pronounced polarity towards the rift center is associated with the advective growth of a thermal perturbation in the mantle lithosphere.  相似文献   

10.
Whole-rock Sm–Nd isotope systematics of 79 Archean granitoids from the eastern Kaapvaal craton, southern Africa, are used to delineate lithospheric boundaries and to constrain the timescale of crustal growth, assembly and geochemical differentiation c. 3.66–2.70 Ga. Offsets in εNd values for 3.2–3.3 Ga granitoids across the Barberton greenstone belt (BGB) are consistent with existing models for c. 3.23 Ga accretion of newly formed lithosphere north of the BGB onto pre-existing c. 3.66 Ga lithosphere south of the BGB along a doubly verging subduction margin. The Nd isotopic signature of c. 3.3–3.2 Ga magmatic rocks show that significant crustal growth occurred during subduction–accretion. After c. 3.2 Ga, however, the Nd signature of intrusive rocks c. 3.1 and 2.7 Ga is dominated by intracrustal recycling rather than by new additions from the mantle, signalling cratonic stability.  相似文献   

11.
刘俊来  季雷  倪金龙  陈小宇 《地质学报》2022,96(10):3360-3380
早白垩世时期华北克拉通的演化为探索大陆再造提供了典型案例,强烈地壳伸展、岩石圈减薄及克拉通破坏的机理及动力学长期以来一直是争议的焦点。早白垩世岩石圈伸展形成了包括辽南和五莲变质核杂岩在内的地壳伸展构造组合,同时伴随着巨量壳- 幔岩浆活动性,这些构造- 岩浆活动是克拉通岩石圈壳- 幔耦合拆离与解耦拆离作用的结果,可以用克拉通岩石圈壳- 幔拆离模型(parallel extension tectonics)解释。与此同时,具有相似特点(时间、几何学、运动学和动力学)的构造- 岩浆活动遍布包含东北亚、中国华北和华南及俄罗斯远东地区等在内的整个欧亚大陆东部地区,反映在统一构造环境中发展和演化的本质,而华北克拉通成为早白垩世欧亚大陆东部地区岩石圈伸展的典型案例。广布的早白垩世伸展构造东侧紧邻古太平洋板块俯冲作用形成的陆缘增生杂岩带,构成独特的古太平洋型活动大陆边缘。这种大陆边缘保留和记录了与现今西太平洋型和安第斯型活动大陆边缘全然不一致的构造特点,包含增生杂岩(海沟增生楔处)与面状伸展构造域两个构造要素,但缺乏典型的大规模岩浆弧的存在。地幔分层对流对于古太平洋- 欧亚大陆间洋陆相互作用、大陆岩石圈伸展、克拉通岩石圈减薄与破坏提供了重要动力来源,而板块边缘力起着重要的辅助作用。  相似文献   

12.
The geometry and evolution of pre-existing basement in accretionary belts bordering supercontinents are often unclear. Integrative interpretation of long-wavelength potential field satellite data can image deep crust structure, improving our understanding of lithospheric processes that formed these margins bottom-up. Here, we present a multidisciplinary interpretation of the lithospheric architecture of the central southern Amazon Craton, a fragment of an accretionary belt at the southwestern Columbia supercontinent margin. Satellite-borne gravity and magnetic data, airborne magnetic data, passive seismic (Vp/Vs ratio, crustal thickness) and seismic tomography data reveals that basement terranes from the interior of the craton extend into the accretionary margin of Columbia. We demonstrate a vertically heterogeneous structure with an underlying strongly reworked pre-Columbia tectonic wedge that sustained prolonged modification during the supercontinent assembly as corroborated by Nd isotope and geochronology data. Nd isotope data suggest that the protracted orogenic wedge was influenced by subduction angle shifts over time, including addition of substantial juvenile material during slab retreat events. This interplay promoted Craton growth at the supercontinent margin while keeping a subtle record of the pre-existing framework. Our findings point to the possible misrepresentation of basement extension and geometry of supercontinent margins elsewhere.  相似文献   

13.
中国东部中—新生代,下部岩石圈存在壳与幔、岩石圈与软流圈两个相互作用带,它们是重要的岩浆源区,在层圈相互作用中,热和物质的交换及其动力学过程是引起中、新生代岩石圈内部层圈间的厚度调整、岩石圈不均匀减薄以及区域构造-岩浆-成矿作用的重要机理。大陆内部的壳-幔作用有3种类型:地幔来源的底侵熔体与下地壳的作用;下地壳拆沉进入弱化(weakening)了的岩石圈地幔二者发生的作用以及陆-陆碰撞深俯冲带的壳-幔相互作用。它们形成的火山岩组合有一定的差别,但源区都含有地壳组分。岩石圈-软流圈的作用带也是重要的岩浆源区,源区是以软流圈地幔为主,基本不含地壳组分。东部岩石圈的减薄时间大体与出现大规模软流圈来源的玄武岩喷发的时间一致,也与上述两类层圈作用转换的时间一致,大约在100Ma以后。  相似文献   

14.
增生型造山带形成于活动大陆边缘,以宽阔且延伸稳定的增生杂岩为代表,在大洋板块向大陆板块发生缓慢而复杂的俯冲、碰撞过程中,大洋板块、火山岛弧、海山、大陆碎块等沿逐渐后退的海沟拼贴,仰冲板块前端发生刮削作用、底垫作用和构造剥蚀等作用,使得洋壳物质在海沟内壁增生,具体表现为增生杂岩的形成、垂向和侧向的生长,最终实现陆壳的横向生长。陆陆碰撞期间,加入俯冲通道的被动陆缘也将遭受类似的构造作用,从而形成规模较大的陆缘增生杂岩。因此,造山带增生杂岩的物质组成与结构、形成机制和演化过程对解剖洋陆转换过程中的复杂地球动力学过程具有极为关键的作用。西藏南羌塘增生杂岩是近年来通过走廊性地质填图以及多学科交叉工作得到的研究认识。然而,该增生杂岩的物质组成和结构等关键内容还未得到系统的研究,严重阻碍了对其形成机制和演化过程的理解。因此,本文以时空演化为主线,解剖杂岩物质组成和结构,结合俯冲期和同碰撞期大地构造单元,洞察南羌塘增生杂岩的形成演化过程。本次研究显示:(1)南羌塘增生杂岩具有俯冲杂岩在下、褶皱-冲断带在上的双层结构,二者间为大规模的拆离断层系统;(2)俯冲杂岩内不只含有洋板块地层单元,还含有大量的南羌塘被动陆缘物质;(3)褶皱-冲断带虽主要由被动陆缘物质变形改造而来,也含有属于洋板块地层系统的海山和洋内岛弧等物质。结合同俯冲期弧前盆地和楔顶盆地、同碰撞期晚三叠世岩浆的时空分布,高压变质岩的形成与折返时限,南羌塘增生杂岩内的双层结构应主要是陆陆碰撞过程中被动陆缘俯冲的结果,少量形成于大洋俯冲期间的俯冲反向过程中。本文提出的陆缘俯冲导致南羌塘增生杂岩双层结构的研究认识,对理解南羌塘地壳结构、中生代盆地基底形成演化具有较为重要的意义。  相似文献   

15.
A large database of structural, geochronological and petrological data combined with a Bouguer anomaly map is used to develop a two‐stage exhumation model of deep‐seated rocks in the eastern sector of the Variscan belt. An early sub‐vertical fabric developed in the orogenic lower and middle crust during intracrustal folding followed by the vertical extrusion of the lower crustal rocks. These events were responsible for exhumation of the orogenic lower crust from depths equivalent to 18?20 kbar to depths equivalent to 8?10 kbar, and for coeval burial of upper crustal rocks to depths equivalent to 8–9 kbar. Following the folding and vertical extrusion event, sub‐horizontal fabrics developed at medium to low pressure in the orogenic lower and middle crust during vertical shortening. Fabrics that record the early vertical extrusion originated between 350 and 340 Ma, during building of an orogenic root in response to SE‐directed Saxothuringian continental subduction. Fabrics that record the later sub‐horizontal exhumation event relate to an eastern promontory of the Brunia continent indenting into the rheologically weaker rocks of the orogenic root. Indentation initiated thrusting or flow of the orogenic crust over the Brunia continent in a north‐directed sub‐horizontal channel. This sub‐horizontal flow operated between 330 and 325 Ma, and was responsible for a heterogeneous mixing of blocks and boudins of lower and middle crustal rocks and for their progressive thermal re‐equilibration. The erosion depth as well as the degree of reworking decreases from south to north, pointing to an outflow of lower crustal material to the surface, which was subsequently eroded and deposited in a foreland basin. Indentation by the Brunia continental promontory was highly noncoaxial with respect to the SE‐oriented Saxothuringian continental subduction in the Early Visean, suggesting a major switch of plate configuration during the Middle to Late Visean.  相似文献   

16.
东北亚中生代洋陆过渡带的研究及启示   总被引:3,自引:2,他引:1  
邵济安  唐克东 《岩石学报》2015,31(10):3147-3154
从中生代起,亚洲大陆作为一个统一的大陆岩石圈板块,开始了大陆边缘的组建和改造。本文采用构造地层-地体观点,依据生物地层学和碰撞造山带的不同特征,将东北亚洋陆过渡带从西到东分成了7个带:(1)受郯庐断裂系改造的华北克拉通东缘带;(2)以近陆缘物质为主的增生带I;(3)以异源混杂堆积为主的增生带II;(4)新西伯利亚-楚科奇-阿拉斯加陆缘增生带III;(5)陆缘火山-深成岩带;(6)科里亚克增生带IV;(7)堪察加-萨哈林-东北日本增生带V。其中自早白垩世末至古新世初形成的楚科奇海-东锡霍特阿林的火山-深成岩带作为太平洋板块开始正向俯冲并导致弧岩浆活动的重要标志。此前晚三叠世至早白垩世末,在转换大陆边缘活动背景下,大量低纬度的外来地体以左旋平移断裂作用向北迁移并斜拼贴在陆缘。时空格局的分带性和阶段性清晰地展示了东北亚大陆边缘洋陆演化的关系。作者基于上述研究,并结合其他学科近期研究成果,对中国东部中生代岩浆作用与太平洋板块俯冲作用的关系进行了讨论,认为中国东部晚侏罗世-早白垩世大规模岩浆活动的高峰期正值东北亚洋陆过渡带转换大陆边缘活动和地体拼贴增生的阶段。然而太平洋板块正向俯冲主要发生在早白垩世末-晚白垩世,此时我国东部的大规模岩浆活动业已结束。因此难以将中国东部的岩浆活动与太平洋板块的正向俯冲作用相联系。以年轻陆壳组成的大兴安岭为例,作者提出晚侏罗世-早白垩世不同深度的两种地质作用同时控制着中国东部岩浆活动的源区特征和侵位的空间:即深部软流圈底辟上涌与中-上部地壳受到的洋陆之间的剪切走滑作用形成的变形。  相似文献   

17.
Non‐volcanic continental passive margins have traditionally been considered to be tectonically and magmatically inactive once continental breakup has occurred and seafloor spreading has commenced. We use ambient‐noise tomography to constrain Rayleigh‐wave phase‐velocity maps beneath the eastern Gulf of Aden (eastern Yemen and southern Oman). In the crust, we image low velocities beneath the Jiza‐Qamar (Yemen) and Ashawq‐Salalah (Oman) basins, likely caused by the presence of partial melt associated with magmatic plumbing systems beneath the rifted margin. Our results provide strong evidence that magma intrusion persists after breakup, modifying the composition and thermal structure of the continental margin. The coincidence between zones of crustal intrusion and steep gradients in lithospheric thinning, as well as with transform faults, suggests that magmatism post‐breakup may be driven by small‐scale convection and enhanced by edge‐driven flow at the juxtaposition of lithosphere of varying thickness and thermal age.  相似文献   

18.
《Precambrian Research》2006,144(1-2):92-125
This paper presents a plate tectonic model for the evolution of the Australian continent between ca. 1800 and 1100 Ma. Between ca. 1800 and 1600 Ma episodic orogenesis occurred along the southern margin of the continent above a north-dipping subduction system. During this interval multiple orogenic events occurred. The West Australian Craton collided with the North Australian Craton (ca. 1790–1770 Ma), the Archaean nucleus of the Gawler Craton amalgamated with the North Australian Craton (ca. 1740–1690 Ma), and numerous smaller terranes accreted along the western Gawler Craton and the southern Arunta Inlier (ca. 1690–1640 Ma). The pattern of accretion suggests southward migration of the plate margin, which occurred due to a combination of slab rollback and back stepping of a subduction system behind the accreted continental blocks. Coeval with subduction a series of continental back-arc basins formed in the interior of the North Australian Craton and parts of the South Australian Craton, which were attached to the North Australian Craton prior to 1500 Ma. Extension of the North Australian Craton led to the opening of an oceanic basin along the eastern margin of the continent at ca. 1660 Ma. Continuing divergence was accommodated by oceanic spreading whereas the continental basins thermally subsided resulting in the development of sag-phase basins throughout the North Australian Craton. This oceanic basin was subsequently consumed during convergence, which ultimately led to development of a ca. 1600–1500 Ma orogenic belt along the eastern margin of Proterozoic Australia. Between ca. 1470 and 1100 Ma, the South Australian Craton, consisting of the Curnamona Province and the Gawler Craton rifted from the North Australian Craton and was re-attached in its present configuration during episodic ca. 1330–1100 Ma orogenesis, which is preserved in the Albany-Fraser Belt and the Musgrave Block.  相似文献   

19.
文章评述了增生造山作用的研究历史和进展,认为增生造山作用贯穿地球历史,是大陆增生的重要方式。用大陆边缘多岛弧盆系构造理解造山带的形成演化,提出巨型造山系的形成与长期发育的大洋岩石圈俯冲制约的两侧或一侧的多岛弧盆系密切相关。在多岛弧盆系演化过程中的弧 弧和弧 陆碰撞,弧前和弧后洋盆的消减冲杂岩的增生,洋底高原、洋岛/海山、外来地块(体)拼贴等一系列碰撞和增生造山作用形成大陆边缘增生造山系。大洋岩石圈最终消亡形成对接消减带,大洋岩石圈两侧的多岛弧盆系转化的造山系对接形成造山系的联合体。拼接完成后往往要继续发生大陆之间的陆 陆碰撞造山作用、陆内汇聚(伸展)作用,后者叠加在增生造山系上,使造山过程更加复杂。对接消减带是认识造山系形成演化的关键。大洋两侧多岛弧盆系经历的各种造山过程可以从广义上理解为一个增生造山过程。多岛弧盆系研究对于划分造山带细结构非常重要,是理解造山系物质组成、结构和构造的基础,并制约了造山后陆内构造演化。大陆碰撞前大洋两侧多岛弧盆系及陆缘系统更完整地记录了威尔逊旋回,记录的信息更加丰富。根据多岛弧盆系的思路对特提斯大洋演化提出新的模式,认为西藏冈底斯带自石炭纪以来受到特提斯大洋俯冲制约,三叠纪发生向洋增生造山作用,特提斯大洋于早白垩世末最终消亡。  相似文献   

20.
A.L. Jaques  P.R. Milligan 《Lithos》2004,77(1-4):783-802
The distribution of kimberlite, lamproite and related alkaline volcanism in Australia can be broadly related to the structure of the Australian continent and lithosphere. Diamondiferous kimberlites and lamproites, with the apparent exception of the weakly diamondiferous Orrorro kimberlites in the Adelaide Fold Belt, lie within the large Precambrian shield where seismic tomographic models and heat flow data indicate the presence of relatively cold, high seismic wave speed lithosphere (tectosphere) typically some 200 km thick or more beneath the Archaean cratons and up to 300 km in parts of central Australia. Many of the diamondiferous intrusions appear to lie at the margins rather than in the centre of the lithosphere domains. The highest concentration of diamondiferous intrusions (kimberlites and lamproites) is on and around the Kimberley Craton where seismic data indicate crustal thicknesses of 35–40 km and a lithosphere up to 275 km thick that is distinct from Proterozoic northern Australia.

Many, but clearly not all, of the intrusions show evidence of regional and local structural controls. Some are spatially associated with known crustal structures, especially regional faults. Others are aligned, either singly or in clusters, along or near discontinuities and/or gradients evident in regional scale potential field data, especially the total horizontal gradients of gravity data continued upward tens to hundreds of kilometres. Many of these features are not evident in the original datasets as their signatures are masked by shorter wavelength (near surface) anomalies. In some cases, the kimberlites and associated rocks lie within crustal blocks and domains defined by discontinuities in the potential field data rather than at domain boundaries.

Our overview suggests that analysis of potential field data, especially horizontal gradients in upwardly continued potential field data, at all scales can assist definition of crustal and, potentially, lithospheric structures that may influence the distribution of diamond pipes. However, more definitive mapping of Australia's diamond prospective regions requires the integration of data on crustal structures, especially trans-lithospheric faults, and geodynamic settings with high resolution tomographic models and other geophysical, petrologic, and isotopic information on the nature of the lithosphere beneath the Australian continent.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号