首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Silica stromatolites occur in a number of modern hydrothermal environments, but their formation in caves is very rare. The silica stromatolitic speleothems of the Branca Opala cave (Terceira Island, Azores), however, provide an excellent opportunity for their study. These formations may be analogous to ancient silica stromatolites seen around the world. Petrographic, mineralogical and geochemical analyses were undertaken on the silica speleothems of the above cave, and on the silica‐tufa deposits outside it, with the aim of understanding their genesis. The possible hydrothermal origin of their silica is discussed. X‐ray diffraction analyses showed opal‐A to be the sole silica phase. Negligible ordering of this opal‐A showed ageing to be insignificant, as expected for recent silica deposits. Most of the silica speleothems examined were definable as sub‐aquatic opaline stromatolites that are not currently growing. Optical microscopy clearly revealed a lower microlaminated, an intermediate and an upper microlaminated zone within the stromatolites. Stromatolite types (I, II and III) were classified with respect to their internal structure and distribution throughout the cave. Scanning electron microscopy showed silicified bacterial filaments within the stromatolites, the silicified plant remains and the silica‐tufa deposits. Bacteria therefore played a major role in the precipitation of the opal‐A. Plasma emission/mass spectrometry showed major, minor and rare earth elements to be present in only small quantities. The rare earth elements were mainly hosted within volcanic grains. Rapid silica precipitation from highly super‐saturated water would explain the intense silicification of the plant remains found inside and outside the cave. The opaline stromatolites, the silica‐tufa deposits and the above‐mentioned intense general silicification suggest a local hydrothermal source for the silica. Indeed, these deposits strongly resemble plant‐rich silica sinter associated with low‐temperature hot spring deposits that include bacterial filaments. However, no geochemical signals that might indicate a hydrothermal origin could be found.  相似文献   

2.
The structural disparities that distinguish chalcedony from macrocrystalline quartz suggest that different crystallization mechanisms are operative during the growth of these two forms of silica. Although the paragenesis of chalcedony has provoked marked disagreement among researchers, a review of previous studies supports the idea that chalcedony can precipitate from slightly saturated aqueous solutions at relatively low temperatures (<100° C). These conditions for deposition suggest a model for chalcedony crystallization that involves the assembly of short-chain linear polymers via bridging silica monomers. This assembly occurs through a spiral growth mechanism activated by a screw dislocation withb=n/2 [110], wheren is an integer. The proposed model can account for a number of peculiarities that have been observed in chalcedony at the microstructural scale, such as: (1) the direction of fiber elongation along [110] rather than [001]; (2) the periodic twisting of chalcedony fibers about [110]; (3) the high density of Brazil twin composition planes; (4) the common intergrowth of moganite within chalcedony.  相似文献   

3.
玛瑙是一种隐晶质硅质岩石,主要由玉髓以及少量蛋白石、斜硅石和微晶石英等组成.其在世界各地分布广泛,质地坚硬细腻、色彩鲜艳多样、纹理交错、造型千姿百态,是一种平凡而美丽的宝石.本文结合国内外最新研究进展,对玛瑙矿物的结构、水含量和成因机制进行了综合评述.玛瑙以纹带构造为特征,其内部纹带花纹和化学组成呈韵律性变化,并在不同观察尺度表征出来.因此,玛瑙也被定义为条带状玉髓.然而,多数玛瑙实际上是由纤维状玉髓、同心环带状玉髓、水平条带状玉髓、微晶石英和自形石英晶体等组成,它们的相对含量与玛瑙的产地和形成过程密切相关.X射线衍射和电子背散射衍射(EBSD)测量数据揭示,玛瑙中的硅质矿物多发生定向生长,其中微晶石英a轴倾向于垂直韵律环带,c轴则近似平行韵律环带.傅立叶变换红外光谱(FTIR)测量表明,玛瑙含有少量分子水和羟基水,并且总水含量随着硅质矿物结晶度提高而降低.至今实验室仍然无法合成玛瑙,还不清楚玛瑙纹带构造的形成机制和过程.一种代表性假设认为,玛瑙中的纹带源于硅质热液沉淀作用或者硅胶原位结晶作用.但是,最近研究发现玛瑙纹带中共生矿物的结晶度、晶体取向和含水量具有系统差异,揭示其形成过程可能与成岩序列密切相关.将实验岩石学与定量显微结构观察以及多种矿物微区分析测试手段有机结合,深入研究玛瑙环带内部微量元素、水含量和晶体取向数据,获得其系统性变化特征及其内部联系,可以为玛瑙成因机制和形成过程研究提供重要数据支撑和关键性的约束条件.  相似文献   

4.
Chert spheroids are distinctive, early‐diagenetic features that occur in bedded siliceous deposits spanning the Phanerozoic. These features are distinct in structure and genesis from similar, concentrically banded ‘wood‐grain’ or ‘onion‐skin’ chert nodules from carbonate successions. In the Miocene Monterey Formation of California (USA), chert spheroids are irregular, concentrically banded nodules, which formed by a unique version of brittle differential compaction that results from the contrasting physical properties of chert and diatomite. During shortening, there is brittle fracture of diatomite around, and horizontally away from, the convex surface of strain‐resistant chert nodules. Unlike most older siliceous deposits, the Monterey Formation still preserves all stages of silica diagenesis, thus retaining textural, mineralogical and geochemical features key to unravelling the origin of chert spheroids and other enigmatic chert structures. Chert spheroids found in opal‐A diatomite form individual nodules composed of alternating bands of impure opal‐CT chert and pure opal‐CT or chalcedony. With increased burial diagenesis, surrounding diatomite transforms to bedded porcelanite or chert, and spheroids no longer form discrete nodules, yet still display characteristic concentric bands of pure and impure microcrystalline quartz and chalcedony. Petrographic observations show that the purer silica bands are composed of void‐filling cement that precipitated in curved dilational fractures, and do not reflect geochemical growth‐banding in the manner of Liesegang phenomena invoked to explain concentrically banded chert nodules in limestone. Chertification of bedded siliceous sediment can occur more shallowly (< 100 m) and rapidly (< 1 Myr) than the bulk silica phase transitions forming porcelanite or siliceous shale in the Monterey Formation and other hemipelagic/pelagic siliceous deposits. Early diagenesis is indicated by physical properties, deformational style and oxygen‐isotopic composition of chert spheroids. Early‐formed cherts formed by pore‐filling impregnation of the purest primary diatomaceous beds, along permeable fractures and in calcareous–siliceous strata.  相似文献   

5.
The Ediacaran–Cambrian transition was one of the most critical intervals in Earth history. During this interval, widespread chert was precipitated, commonly as a stratal wedge in carbonates, along the southern margin of the Yangtze Platform, South China. The chert wedge passes into a full chert succession further basinward to the south‐east. Four lithotypes of chert are identified across the marginal zone in western Hunan: mounded, vein, brecciated and bedded chert. The mounded chert is characterized by irregular to digitiform internal fabrics, generally with abundant original vesicles and/or channels that mostly are lined by botryoidal chalcedony cements with minor quartz and barite crystals. The host chert (or matrix) of these mounds is dominated by amorphous cryptocrystalline silica, commonly disseminated with pyrite. The vein chert, with minor quartz locally, generally cross‐cuts the overlying dolostone and chert horizons and terminates under the mounded and/or bedded chert bodies. The brecciated chert commonly occurs as splayed ‘intrusions’ or funnel‐shaped wedges and cross‐cuts the topmost dolostones. The bedded chert, the most common type, generally is thin to medium‐bedded and laminated locally; it is composed of amorphous silica with minor amounts of black lumps. Microthermometry of fluid inclusions from vein and void‐lining minerals (mainly quartz and barite) revealed homogenization temperatures from 120 to 180°C for the trapped primary fluids. Compositionally, these chert deposits generally are pure, with SiO2 > 92 wt%, and only minor Fe2O3 and Al2O3 contents, most of which show positive Europium anomalies in rare earth element patterns, especially for the mounded chert. All these data suggest that the marginal zone chert deposits resulted from a low‐temperature, silica‐rich hydrothermal system, in which the mounded chert was precipitated around the releasing vents, i.e. as silica chimneys. The vein and splayed brecciated chert, however, was formed along the syndepositional fault/fracture conduits that linked downward, while the bedded chert was precipitated in the quieter water column from the fallout of hydrothermal plumes onto the sea floor. These petrological and geochemical data provide compelling evidence and a new clue to the understanding of the extensive silica precipitation; rapid tectono‐depositional and oceanic changes during the Ediacaran–Cambrian transition in South China.  相似文献   

6.
The structure of the microcrystalline silica varieties chalcedony, flint, moganite, opal-C and -CT is characterized by X-ray powder diffractometry and transmission electron microscopy (TEM). The role of impurities is investigated by infrared spectroscopy and chemical analysis. Microcrystalline opal, chalcedony and flint have a disordered intergrowth structure composed of cristobalite and tridymite domains in opal, and quartz and moganite domains in chalcedony and flint. Each constituent phase has different cell dimensions and symmetry. The main impurity is water which is enriched at the intergrowth interfaces. Density and refractive indices of microcrystalline silica depend on the water content.  相似文献   

7.
《Sedimentology》2018,65(3):745-774
This paper explores little investigated diagenesis of spicule‐dominated sediments, based on Permian spiculites and cool‐water carbonates of the Tempelfjorden Group in central Spitsbergen. Field observations, petrography, stable isotope geochemistry, and mineralogical and chemical analyses reveal that the strata have been subjected to multistage diagenesis as the result of silica phase transitions at medium burial depths and deep‐burial overprinting. The growth of silica concretions occurred during the opal‐A/opal‐CT conversion and was controlled by the content and distribution of clay and spicules in the sediment, resulting in a variety of megascopic silica fabrics. Opal‐CT was subsequently dissolved, and all silica is now in a stable quartz stage. Petrographically, the rocks are characterized by a variety of chalcedony and quartz cements which perfectly preserve precursor textures. Most cements precipitated from silica‐oversaturated fluids, and their shapes reflect the silica saturation state and geometry of the pore space. Some microquartz and cryptoquartz also formed by a solid–solid inversion (recrystallization) of chalcedony. The cements have δ 18O values between +30‰ and +20‰ Standard Mean Ocean Water and display a systematic depletion in 18O from the first to the last crystallized, interpreted to reflect a gradual increase in temperature during burial. The precipitation of quartz cements started in the Middle Triassic when the strata passed the 19°C isotherm at burial depths of ca 600 m, and was completed in the mid‐Cretaceous, 2·3 km beneath the sea floor at temperatures of 75°C. Late diagenetic overprinting of the chert includes fracturing, brecciation and cementation with carbonate cements having δ 18O values between +2‰ and −30‰ Pee Dee Belemnite and δ 13C values between +4‰ and −14‰ Pee Dee Belemnite; they are linked to hot solutions introduced during Cretaceous volcanism or Palaeogene tectonism. This study illustrates the diagenetic pathway during burial of spicule‐rich sediments in a closed system and thereby provides a baseline for studies of more complexly altered chert deposits.  相似文献   

8.
尹作为  赵雁 《地球科学》2000,25(3):302-305
欧泊的结晶状态和色斑问题一直以来是人们探讨的重要问题.对于区分天然欧泊与人工合成欧泊的重要鉴别特征“丝绢状”和“蜂巢状”色斑的成因问题, 研究甚少.通过宝石学常规测试、扫描电镜、X -射线粉晶衍射等测试手段, 进行测试和分析, 结果表明: 欧泊是由非晶态→雏晶→亚显微隐晶态→隐晶态的这种连续渐变的状态构成, 各状态之间并无截然的界限, 并且可以是这些不同状态的集合体; 提出了欧泊与玉髓之间的宝石学界定标准, 还揭示了两种色斑形成的不同机制: “丝绢”是由天然欧泊内部的显微构造裂隙对光产生散射而形成的, 而“蜂巢”是由合成欧泊自身结构中SiO2球体排布与球体本身透光性决定的.对这两种色斑成因的揭示, 为欧泊鉴定提供了理论依据.   相似文献   

9.
Agates are natural hierarchicalal structural assemblies composed largely of silica minerals: chalcedony, quartz, and quartzine. Microstructural heterogeneities, most typical of those of agate-forming minerals, are characterized by variations in periods of helicoidal twisting of chalcedony and by micrometric rhythmic alternation of zones with a low refractive index within the matrix of normal chalcedony, quartz, and quartzine. A study of the degree of crystallization of chalcedony using the Barsanova-Yakovleva method showed that neither helicoidal twisting nor refractive index zoning brought about any significant disturbance in the chalcedony structure. Helicoidal twisting is a result of the stresses caused by substitution of Si4+ for Al3+ asymmetric with respect to chalcedony crystal. It is suggested that layering by the refractive index developed due to accumulation of small portions of gel consisting of high silica polymers at the front of crystal growth.  相似文献   

10.
Sedimentary beds of jasper (red hematitic chert) in the Ordovician Løkken ophiolite of Norway are closely associated with volcanogenic massive sulphide (VMS) deposits. The jaspers occur in the immediate hangingwall and laterally peripheral to the large Løkken (25–30 Mt) and small Høydal (0.1 Mt) VMS deposits, and are exposed discontinuously for several kilometres along strike. Massive or laminated types predominate; jasper-sulphide debris-flow deposits are also abundant near VMS deposits. The jaspers contain hematite-rich laminae showing soft-sediment deformation structures and microtextural evidence that record the presence of a colloidal precursor and an origin as gels. Early textures include: (1) straight or curved chains of hematitic filaments 3–10 µm in diameter and 20–100 µm long; (2) branching networks of 15–25 µm-thick, tubular structures surrounded by cryptocrystalline hematite and filled with quartz and euhedral hematite; (3) small (up to 10 µm) spherules composed of cryptocrystalline hematite and silica; and (4) up to 50 µm silica spherules with hematitic cores. The small filaments seem to have been deposited in varying proportions in the primary laminae, possibly together with hematitic and siliceous microspheroids. Diagenetic changes are represented by polygonal syneresis cracks, and the presence of cryptocrystalline (originally opaline) silica, chalcedony, quartz, carbonate and cryptocrystalline hematite and/or goethite forming botryoidal masses and spheroids <10 µm to 5 mm in diameter. Coarser euhedral grains of quartz, carbonate, and hematite are integral parts of these textures. Bleached, silica-rich jaspers preserve only small relics of fine-grained hematite-rich domains, and locally contain sparse pockets composed of coarse euhedral hematite±epidote. The jaspers are interpreted to record colloidal fallout from one or more hydrothermal plumes, followed by maturation (ageing) of an Si-Fe-oxyhydroxide gel, on and beneath the Ordovician sea floor. Small hematitic filaments in the jaspers reflect bacteria-catalysed oxidation of Fe 2+ within the plume. The larger tubular filaments resulted from either microbial activity or inorganic self-organized mineral growth of Fe-oxyhydroxide within the Si-Fe-oxyhydroxide gel after deposition on the sea floor, prior to more advanced maturation of the gel as represented by the spheroidal and botryoidal silica-hematite textures. Bleaching and hematite±epidote growth are interpreted to reflect heat and fluids generated during deposition of basaltic sheet flows on top of the gels.  相似文献   

11.
西藏羊八井地热田水热蚀变   总被引:5,自引:1,他引:5       下载免费PDF全文
朱梅湘  徐勇 《地质科学》1989,(2):162-175
本文对羊八井地热田钻扎ZK-201、ZK-301和ZK-308的岩心进行了较系统的蚀变矿物学、岩石学和流体包体研究。划分出6个蚀变矿物共生组合及蚀变分带,讨论了蚀变过程中岩石化学变化的特点,并推测了蚀变的温度和酸碱度条件。研究表明,热田曾处于极度的活动状态,最高温度达220-240℃,由于冷水的入侵,热田在目前钻探所及范围已冷却了50-70℃。蚀变矿物分布模式表明,目前热田流体主通道位于北部,热田进一步的开发应以寻找北部深部高温流体为主。  相似文献   

12.
为探究油气运移与铀成矿的关系,笔者以松辽盆地钱家店砂岩型铀矿床为研究对象,系统开展了含矿砂岩薄片鉴定、电子探针研究以及流体包裹体岩相学和显微测温研究.结果表明:①研究区强矿化段砂岩硅质胶结物含量较多,为隐晶质玉髓胶结物;成岩演化序列为,泥晶方解石、自生黏土膜,石英加大边、石英加大边外围黏土膜、颗粒间压实的隐晶质玉髓胶结...  相似文献   

13.
广东海南岛石碌铁矿石英的研究及其意义   总被引:3,自引:0,他引:3  
本文在显微镜研究基础上,综合运用扫描电镜、光谱分析、X射线分析、差热分析和红外光谱等手段,对铁矿中石英进行矿物标型特征的研究。论证了这种石英的绝大多数有蛋白石→玉髓→石英的形成过程。同时,成矿时也很可能有一些火山成因石英斑晶或晶屑掺杂其中,而陆源碎屑石英少见。还发现了铁矿中玉髓的似生物结构。因而为石碌铁矿海相火山(胶体)沉积变质成因说提供了新的科学依据。  相似文献   

14.
A petrographic investigation revealed polyphase quartz cementation in the Finefrau Sandstone (Upper Carboniferous, Western Germany) and the Solling Sandstone (Lower Triassic, Central Germany). Three different cements could be distinguished in each sandstone based on their cathodoluminescence and trace element composition. The first quartz generation is suggested to have been formed during eogenesis due to dissolution and replacement of feldspar. The mesogenetic paragenesis comprises two generations of quartz and illite, which are accompanied by albite in the Solling Sandstone. Sharp luminescence zoning in quartz overgrowths points to distinct episodes of cementation in both sandstones. Significant amounts of Al, Li and H and traces of Ge and B have been detected in the quartz overgrowths. The Al‐content of the quartz cements in the Finefrau Sandstones exceeds that in the quartz cements in the Solling Sandstone by a factor of five. It is suggested that this compositional variation reflects the conditions in the pore‐water, such as temperature and pH. The Al‐concentration is generally correlated to the Li‐content with the exception of the latest quartz generation in the Finefrau Sandstones which is also most enriched in trace elements. The ratio of Li/Al varies between 0·11 and 0·25 in the two sandstones. The Li/H‐ratio, which ranges from 0·12 to 0·3, is controlled by the activity ratio of Li and H in the pore fluid. Clay minerals are the most important source for Li and high salinities favour the mobilization of Li during diagenesis. Thus, a relatively low salinity and low pH are responsible for the low Li/H‐ratio in the Finefrau Sandstone, while high salinity and neutral to alkaline pH results in a high Li/H‐ratio for the Solling Sandstone. The Ge‐contents are generally near the average of detrital quartz and indicate that pressure dissolution is a major source for quartz cementation. Different chemical compositions of distinct quartz generations indicate changes in the physico‐chemical conditions and point to mobilization of silica from different sources (for example, pressure solution and clay mineral transformations).  相似文献   

15.
A late‐Tertiary age, as well as the commonly accepted mid‐Tertiary age, is proved for widespread silcretes in S.A. This is demonstrated by stratigraphic relationships with palynologically dated sequences, and evidence of erosion of silcretes. The age limits are Early Eocene to Early Miocene and Medial Miocene to Early Pleistocene, probably Late Pliocene. The late‐Tertiary silcrete dominates the duricrusted landscape flanking the north of the Willouran and Flinders Ranges, and forms patches throughout the Tarkarooloo Lobe (Lake Frome area). Silica type varies according to the material cemented; chalcedony and opal are more common in finer grained, less permeable, clayey clastics, and micro‐ to crypto‐crystalline quartz ('grey billy’ or ‘terrazzo') in porous permeable arenites and regoliths.

‘Grey billy’ silcretes with pedogenic features resembling massive nodular calcretes were probably formed close to phreatic surfaces or in the soil zone, and result from deposition of silica and titania from surface waters near ground level. They can be used to mark unconformities. Those without such features were formed at depths of several to tens of metres in the phreatic zone, beyond the effects of a fluctuating groundwater table.

The varying composition of groundwaters and fluctuations of the phreatic surface probably occurred as the result of climatic changes from wet to arid to wet, causing alternate solution and redeposition of silica. Silcrete was essentially a late Mesozoic‐Cainozoic phenomenon, this being a time of general uplift of the Australian continent during intervals of climatic fluctuation. However, the time spans of Australian silcretes are not sufficiently known to make correlations with major climatic events, which are on a finer time‐scale.  相似文献   

16.
Activity coefficient for aqueous silica in saline waters and brines from the Paris Basin was calculated using Pitzer's specific interaction model. Quartz and chalcedony are the only reported authigenic silica minerals in the Dogger aquifer of the Paris Basin (France). However, the measured silica concentrations fall between those of these two phases. The silica concentrations measured in Dogger fluids seem to be controlled by a microcrystalline quartz phase with a grain size computed to be about 20 nm. Studies have shown that pressure can preserve small grain size for a long time at the geological scale. The effective mechanism of pressure action is probably linked to the fact that pressure simultaneously favours dissolution at the grain-contact inducing a quartz supersaturation and prohibits the increase in size of reprecipitated microcrystalline quartz grains. This hypothesis is supported by other studies reported in the literature. The proposed model, which incorporates silica mineralogy and a precise calculation of aqueous silica activity, allows us to explain measured silica concentrations in the deep sedimentary solutions of the Dogger aquifers. In the Keuper brines, silica solubility can in most cases be explained by an equilibrium with either chalcedony or quartz. Another application of the present work is shown by an example, where we examined the importance of precisely evaluating the activity coefficient in basin characterisation, as the goal of reservoir characterisation is to describe the spatial distribution of petrophysical parameters such as porosity, permeability, and saturations.  相似文献   

17.
An unusual suite of silicified rocks was excavated during a recent harbour-deepening project in Tampa Bay, Florida. These rocks, which we have termed “box-work geodes”, are composed of convoluted, intersecting silica walls enclosing cavities which are either voids or filled with relatively pure monoclinic palygorskite. The “box-work geodes” are interpreted as having formed in shallow lagoonal environments, similar to the Coorong Lagoon of South Australia. Synaeresis of syngenetic palygorskite was followed by opal deposition and case hardening of the material. Subsequent chemical deposition of chalcedony, megacrystalline quartz, barite, and calcite on the void facing walls indicates an open chemical system.

The existence of opal saturated lagoons, as inferred from the “box-work geodes”, suggests that much of the replacement chert, porcelanite, and silicified fossils in the Tertiary deposits of peninsular Florida formed in the shallow subsurface. Subsequent weathering of carbonates and clays not encapsulated in the box works has resulted in formation of a green montmorillonite residual clay bed.  相似文献   


18.
The parent material of Sydney laterites   总被引:1,自引:0,他引:1  
The petrography of laterites in the Sydney district shows that source rocks range from shales—in which quartz grains are not common and average about 0.03 mm in diameter—to sandstones, with generally abundant quartz grains which may average up to 0.5 mm in diameter. Ferricretes or iron‐cemented duricrusts occur in rocks with coarser quartz grains, such as the Tertiary river gravels of the Maroota area. The porosity and permeability of these rocks have considerably influenced the nature and profiles of the laterites. Two possible sources of sesquioxides in the laterites appear to be the Wianamatta Shale and, perhaps more importantly, basic igneous rocks.  相似文献   

19.
Three‐dimensional seismic data from the Gjallar Ridge were used together with X‐ray diffraction data, scientific boreholes and wireline logs to analyse the seismic structure of a silica diagenetic transformation zone. The following features were identified: (i) an interval some 150 to 300 m thick that contains anomalously high‐amplitude reflections; (ii) a strong reflection event at the top of this interval which cross‐cuts stratigraphy, interpreted as the transformation boundary between opal‐A‐rich and opal‐CT‐rich sediment; (iii) amplitude variations on stratigraphic reflections within the interval, attributed to variations in the proportions of opal‐A and opal‐CT; and (iv) a second, deeper, cross‐cutting reflection event within the interval, interpreted as the transformation boundary between opal‐CT‐rich and quartz‐rich sediment. The base of the interval containing the anomalously high‐amplitude reflections is interpreted as a stratigraphic reflection demarcating the base of the silica‐rich strata. On a stratigraphic reflection within the interval of high amplitudes, roughly circular regions of anomalously high amplitude with diameters of 0·8 to 2·5 km are separated by lower amplitude regions. This pattern is similar to the cells previously identified at the opal‐A to opal‐CT transformation boundary and probably results from more complete transformation of opal‐A to opal‐CT. All of these observations provide the first recognition from seismic data that silica diagenetic transformations are not always narrow boundaries represented by single cross‐cutting seismic reflection events, as implied previously, but can be heterogeneous and hundreds of metres in thickness, as observed at outcrop.  相似文献   

20.
ABSTRACT A cave in granitic rocks was studied in Mezesse, South Cameroon. Coralloid speleothems, draperies and dissolution traces on the cave walls attest to its truly karstic nature. The speleothems consist of microlayers of opal and taranakite (K,NH4)Al3(PO4)3(OH).9H2O. They indicate a significant mobilization of silica, Al and K from granite during the formation of the cave. Identification of silicified bacteria in the speleothems layers suggests a possible role of these micro-organisms in silica deposition. The presence of taranakite and of silicified organic remains within the speleothems lead to a better understanding of the genesis of the cave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号