首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we study the use of virtual element method (VEM) for geomechanics. Our emphasis is on applications to reservoir simulations. The physical processes behind the formation of the reservoirs, such as sedimentation, erosion, and faulting, lead to complex geometrical structures. A minimal representation, with respect to the physical parameters of the system, then naturally leads to general polyhedral grids. Numerical methods which can directly handle this representation will be highly favorable, in particular in the setting of advanced work-flows. The virtual element method is a promising candidate to solve the linear elasticity equations on such models. In this paper, we investigate some of the limits of the VEM method when used on reservoir models. First, we demonstrate that care must be taken to make the method robust for highly elongated cells, which is common in these applications, and show the importance of calculating forces in terms of traction on the boundary of the elements for elongated distorted cells. Second, we study the effect of triangulations on the surfaces of curved faces, which also naturally occur in subsurface models. We also demonstrate how a more stable stabilization term for reservoir application can be derived.  相似文献   

2.
The bonded discrete element model (DEM) is a numerical tool that is becoming widely used when studying fracturing, fragmentation, and failure of solids in various disciplines. However, its abilities to solve elastic problems are usually overlooked. In this work, the main features of the 2D bonded DEM which influence Poisson's ratio and Young's modulus, and accuracy when solving elastic boundary value problems, are investigated. Outputs of numerical simulations using the 2D bonded DEM, the finite element method, a hyper elasticity analysis, and the distinct lattice spring model (DLSM) are compared in the investigation. It is shown that a shear interaction (local) factor and a geometric (global) factor are two essential elements for the 2D bonded DEM to reproduce a full range of Poisson's ratios. It is also found that the 2D bonded DEM might be unable to reproduce the correct displacements for elastic boundary value problems when the represented Poisson's ratio is close to 0.5 or the long-range interaction is considered. In addition, an analytical relationship between the shear stiffness ratio and the Poisson's ratio, derived from a hyper elasticity analysis and applicable to discontinuum-based models, provides good agreement with outputs from the 2D bonded DEM and DLSM. Finally, it is shown that the selection of elastic parameters used the 2D bonded DEM has a significant effect on fracturing and fragment patterns of solids.  相似文献   

3.
张青波  李世海  冯春  王杰 《岩土力学》2013,34(8):2385-2392
针对边坡工程中岩土体连续-非连续渐进破坏的特点,提出一种新的变形体离散元方法(DEM)。与传统有限单元法(FEM)不同,弹簧元法(SEM)通过构建一组广义弹簧系统描述单元的力学行为。弹簧元法中的一个广义弹簧可以具有多个方向的刚度系数,确定广义弹簧系统的构造形式及其各刚度系数表达式是弹簧元法的核心。以三角形单元为例,介绍平面弹簧元的基本理论。对任何二维正交广义弹簧系统,通过定义广义弹簧变形与单元应变之间的关系,直接对比单元的应变能与弹簧系统的弹性势能即可得到广义弹簧刚度系数的表达形式。定义泊松刚度系数和纯剪刚度系数两个系统参数,描述正交广义弹簧之间的联系。对任意泊松比的材料,该方法都可准确地描述泊松效应的影响,计算结果与传统有限元法一致。该方法不需要求得有限元单元刚度矩阵的具体形式,具有直接方便、物理意义明确的优点,应用该方法给出任意4节点单元弹簧系统的构造形式及其各刚度系数的表达式。基于SEM的可变形块体离散元法,用弹簧元中的广义弹簧求解块体变形,用离散元中的接触弹簧计算块体间作用力,在单元节点的控制方程中实现弹簧元-离散元耦合计算,通过接触弹簧的状态实现材料由连续到非连续的破坏过程。在基于连续介质离散元法(CDEM)程序的基础上实现弹簧元-离散元耦合程序,应用耦合程序计算均质土坡在重力作用下的弹塑性变形和基覆边坡在重力作用下的破坏,初步证明该方法用于边坡变形渐进破坏分析的可行性。  相似文献   

4.
Micro–macro relations for discrete element method (DEM) media are derived using both classical and micropolar elasticity theories. The DEM media are classified into two main categories: dense packing, and loose packing. For both categories, relations for Young modulus (E), Poisson's ratio (ν) to represent static behaviors, and wave velocities (P‐wave and S‐wave) to represent dynamic behaviors are derived using the internal DEM parameters (kn, ks) and compared with values obtained from static and dynamic numerical tests. Whereas the dynamic behaviors for the two categories and the static behaviors for the dense packing match the analytical relations, the static behavior for the loose packing does not. Micropolar elasticity theory is also used to study the behaviors of the DEM media, where it is shown that if element rotation is included, DEM media behave according to linear elasticity theory. However, if element rotation is constrained, asymmetrical stresses arise in the DEM media, and a new expression is derived for the S‐wave, which allows it, under certain conditions, to travel faster than the P‐wave. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
将基于圆化多边形离散单元法与有限元方法结合,提出一种可变形圆化多边形离散单元法。此法对块体离散元进行圆化处理,可较好地表征不规则块体外形,又保留了颗粒离散元计算高效的优势。在求解接触力时,消除了角点处法向奇异等问题,同时增强计算的稳定性和简化接触判断。同时对切向接触力计算模型进行修正,使得接触力计算效率得到提高。此法突破了圆化多边形刚体假设的限制,可以精确计算任意形状不规则离散单元之间的相互作用,对单元的运动和变形进行模拟。通过超静定梁冲击试验、不规则块体单轴压缩试验和料斗流动“卡阻”试验3个数值模拟算例,论证此法可以有效地捕捉单元的碰撞、分离和变形等空间运动和自身特性以及其细观力学表征。  相似文献   

6.
The paper presents Cauchy stress tensor computation over parallel grids of message passing interface (MPI) parallel three-dimensional (3D) discrete element method (DEM) simulations of granular materials, considering spherical and nonspherical particles. The stress tensor computation is studied for quasi-static and dynamic conditions, and its resulting symmetry or asymmetry is discussed within the context of classical continuum mechanics (CCM), granular materials mechanics (GMM), and micropolar continuum mechanics (MCM). The average Cauchy stress tensor computation follows Bagi's and Nicot's formulations and is verified within MPI parallel 3D DEM simulations involving dynamically adaptive compute grids. These grids allow calculation of temporal and spatial distributions of stress across granular materials under static and dynamic conditions. The vertical stress component in gravitationally deposited particle assemblies exhibits nonuniform spatial distributions under static equilibrium, and its zone of maximum value changes during the process of gravitational pluviation and collapse. These phenomena reveal a microstructural effect on stress distribution within granular materials that is attributed to their discrete particulate nature (particle size, shape, gradation, boundary conditions, etc).  相似文献   

7.
The improved element partition method (IEPM) is a newly developed fracture simulation approach. IEPM allows a fracture to run across an element without introducing extra degrees of freedom. It can also simulate any number of fractures in a prescribed mesh without remeshing. In this study, the IEPM is extended to hydraulic fracture simulation. First, the seepage and volumetric storage matrix of a cracked element are derived using virtual nodes (the intersection points of a crack with element edges). Subsequently, the fully coupled hydromechanical equation is derived for this cracked element. To eliminate the extra degrees of freedom (virtual nodal quantities), the water pressure and displacement of the virtual nodes are associated with their adjacent nodes through least squares interpolation. Finally, the fully coupled equation in terms of nodal quantities is obtained. The verification cases validate the method. By using this method, the field-scale hydraulic fracturing process is well simulated. The proposed approach is simple and efficient for field-scale hydraulic fracture simulation.  相似文献   

8.
In this paper, we study newly developed methods for linear elasticity on polyhedral meshes. Our emphasis is on applications of the methods to geological models. Models of subsurface, and in particular sedimentary rocks, naturally lead to general polyhedral meshes. Numerical methods which can directly handle such representation are highly desirable. Many of the numerical challenges in simulation of subsurface applications come from the lack of robustness and accuracy of numerical methods in the case of highly distorted grids. In this paper, we investigate and compare the Multi-Point Stress Approximation (MPSA) and the Virtual Element Method (VEM) with regard to grid features that are frequently seen in geological models and likely to lead to a lack of accuracy of the methods. In particular, we look at how the methods perform near the incompressible limit. This work shows that both methods are promising for flexible modeling of subsurface mechanics.  相似文献   

9.
The discrete element method (DEM) is crucial in investigating and modeling the elementary behavior of granular materials under varying loading conditions, especially those that cannot be adequately investigated via conventional laboratory testing. However, the application of the DEM in simulations that involve complex loading paths under undrained conditions is scarce, primarily owing to the inability to maintain a constant-volume condition. This paper presents a unified discrete element approach that can apply arbitrary loading paths while satisfying the equivalent undrained condition. The proposed method comprises two parts: (1) a novel strategy that determines the virtual pore pressure under complex undrained loading conditions, and (2) an advanced undrained servomechanism that can simultaneously control each stress component independently. Numerical algorithms corresponding to three new undrained loading paths, that is, true triaxial test, rotational shear, and traffic loading path that have never been simulated using DEM are successfully implemented in a unified manner. Macroscale simulation results under these loading paths are qualitatively in good agreement with their experimental counterparts, thereby confirming the practicality and robustness of the proposed approach. Furthermore, in-depth discussions on the DEM results from these three new loading paths are presented from microscopic perspective.  相似文献   

10.
With the increasing demand for discrete element simulations with larger number of particles and more realistic particle geometries, the need for efficient contact detection algorithms is more evident. To date, the class of common plane (CP) methods is among the most effective and widely used contact detection algorithms in discrete element simulations of polygonal and polyhedral particles. This paper introduces a new approach to obtain the CP by employing a newly introduced concept of ‘shortest link’. Among all the possible line segments that connect any point on the surface of particle A to any point on the surface of particle B, the one with the shortest length defines the shortest link between the two particles. The perpendicular bisector plane of the shortest link fulfils all the conditions of a CP, suggesting that CP can be obtained by seeking the shortest link. A new algorithm, called shortest link method (SLM), is proposed to obtain the shortest link and subsequently the CP between any two polyhedral particles. Comparison of the analysis time between SLM and previously introduced algorithms demonstrate that SLM results in a substantial speed up for polyhedral particles contact detection. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The coupled discrete element method and lattice Boltzmann method (DEMLBM) has increasingly drawn attention of researchers in geomechanics due to its mesoscopic nature since 2000. Immersed boundary method (IBM) and immersed moving boundary (IMB) are two popular schemes for coupling fluid particle in DEMLBM. This work aims at coupling DEM and LBM using the latest IBM algorithm and investigating its accuracy, computational efficiency, and applicability. Two benchmark tests, interstitial fluid flow in an ideal packing and single particle sedimentation in viscous fluid, are carried out to demonstrate the accuracy of IBM through semi-empirical Ergun equation, finite element method (FEM), and IMB. Then, simulations of particle migration with relatively large velocity in Poiseuille flow are utilized to address limitations of IBM in DEMLBM modeling. In addition, advantages and deficiencies of IBM are discussed and compared with IMB. It is found that the accuracy of IBM can be only guaranteed when sufficient boundary points are used and it is not suitable for geomechanical problems involving large fluid or particle velocity.  相似文献   

12.
13.

A primal C0-conforming virtual element discretization for the approximation of the bidimensional two-phase flow of immiscible fluids in porous media using general polygonal meshes is discussed. This work investigates the potentialities of the Virtual Element Method (VEM) in solving this specific problem of immiscible fluids in porous media involving a time-dependent coupled system of non-linear partial differential equations. The performance of the fully discrete scheme is thoroughly analysed testing it on general meshes considering both a regular problem and more realistic benchmark problems that are of interest for physical and engineering applications.

  相似文献   

14.
The dry‐stone retaining walls (DSRW) have been tipped as a promising solution for sustainable development. However, before recently, their behavior is relatively obscure. In this study, discrete element method (DEM) approach was applied to simulate the plane strain failure of these walls. A commercial DEM package (PFC2D™) was used throughout this study. The authors used a fully discrete approach; thus, both the wall and the backfill were modeled as discrete elements. The methodology for obtaining the micromechanical parameters was discussed in detail; this includes the three mechanical sub‐systems of DSRWs: wall, backfill and interface. The models were loaded progressively until failure, and then the results were compared with the full‐scale experimental results where the walls were loaded, respectively, with hydrostatic load and backfill. Despite its complexity and its intensive calculation time, DEM model can then be used to validate a more simplified approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Interaction between solid particles and fluid is of fundamental interest to scientists and engineers in many different applications—cardiopulmonary flows, aircraft and automobile aerodynamics, and wind loading on buildings to name a few. In geomechanics, particle shape significantly affects both particle-particle and particle-fluid interaction. Herein, we present a generalized method for modeling the interaction of arbitrarily shaped polyhedral particles and particle assemblages with fluid using a coupled discrete element method (DEM) and lattice Boltzmann method (LBM) formulation. The coupling between DEM and LBM is achieved through a new algorithm based on a volume-fraction approach to consider three-dimensional convex polyhedral particles moving through fluid. The algorithm establishes the interaction using linear programming and simplex integration and is validated against experimental data. This approach to modeling the interaction between complex polyhedral particles and fluid is shown to be accurate for directly simulating hydrodynamic forces on the particles.  相似文献   

16.
考虑到颗粒形状对粗粒料的力学特性有重大影响,提出了一种新的表征颗粒形状的方法,即在椭圆上随机选取一系列点连接成多边形颗粒,表征狭长扁平的颗粒。新方法较圆上取点的方法能代表更多类型的颗粒形状,适用范围更广。提出了一种新的粗粒料投放算法,即先缩小颗粒,然采用随机算法将缩小的颗粒投放至给定区域,对颗粒划分好网格后,将颗粒放大到原来的大小,然后采用有限元-离散元(FEM/DEM)方法计算稳定后即生成了相应的试样。通过将上述颗粒生成及投放算法与FEM/DEM结合,应用于粗粒料的数值模拟。分析表明,FEM/DEM是研究粗粒料力学性质的较好方法,对复杂的颗粒形状也可简单建模,且因在颗粒内部划分了有限元网格,复杂的接触判断及接触力计算转化为标准统一的三角形和三角形之间的接触判断及接触力计算,所有的计算均可标准化、统一化。同时因为颗粒是可以变形的,依然保留了连续介质力学中应力和应变的概念,无须像PFC那样需通过测量圆来间接表示某点的应力、应变。最后,通过粗粒料的侧限压缩试验的数值模拟,展现了文中提出的一整套解决方案在模拟粗粒料方面的巨大潜力。  相似文献   

17.
This work investigates the enforcement of continuity constraints on stair-step grids which are specialized grids for simulations in geosciences. They are rectilinear in horizontal directions but locally discontinuous (i.e., nonconforming) in the vertical direction. Furthermore, they allow for (partly) collapsed elements in order to model pinched-out layers. A robust and efficient algorithm for enforcing continuity is proposed which is tailored to the special properties of stair-step grids. A number of two- and three-dimensional finite element method (FEM) simulations on stair-step grids are conducted. Thereby, the Lagrange multiplier and penalty method with different ansatz spaces are studied for pointwise and averaged constraints. A particulary useful choice is the penalty method with continuous constraints and penalty parameters that depend on the element size.  相似文献   

18.
In the present work, a methodology for setting up virgin stress conditions in discrete element models is proposed. The developed algorithm is applicable to discrete or coupled discrete/continuum modeling of underground excavation employing the discrete element method (DEM). Since the DEM works with contact forces rather than stresses there is a need for the conversion of pre-excavation stresses to contact forces for the DEM model. Different possibilities of setting up virgin stress conditions in the DEM model are reviewed and critically assessed. Finally, a new method to obtain a discrete element model with contact forces equivalent to given macroscopic virgin stresses is proposed. The test examples presented show that good results may be obtained regardless of the shape of the DEM domain.  相似文献   

19.
The concurrent multiscale method, which couples the discrete element method (DEM) for predicting the local micro‐scale evolution of the soil particle skeleton with the finite element method (FEM) for estimating the remaining macro‐scale continuum deformation, is a versatile tool for modeling the failure process of soil masses. This paper presents the separate edge coupling method, which is degenerated from the generalized bridging domain method and is good at eliminating spurious reflections that are induced by coupling models of different scales, to capture the granular behavior in the domain of interest and to coarsen the mesh to save computational cost in the remaining domain. Cundall non‐viscous damping was used as numerical damping to dissipate the kinetic energy for simulating static failure problems. The proposed coupled DEM–FEM scheme was adopted to model the wave propagation in a 1D steel bar, a soil slope because of the effect of a shallow foundation and a plane‐strain cone penetration test (CPT). The numerical results show that the separate edge coupling method is effective when it is adopted for a problem with Cundall non‐viscous damping; it qualitatively reproduces the failure process of the soil masses and is consistent with the full micro‐scale discrete element model. Stress discontinuity is found in the coupling domain. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Microbially induced calcite precipitation (MICP) has emerged as a novel soil improvement method. In this paper, 3-D discrete element method (DEM) simulations are used to explore the behavior of MICP-cemented sands. Comparisons of the macro-scale response of numerical and physical specimens are made. Microstructure analyses indicate a shear band formed in the numerical specimens, consistent with physical experiments. The bond breakage pattern in numerical specimens is explored and compared to observed measurements from physical specimens. The relationship between dilatancy and stress-strain behavior is evaluated. The results indicate DEM is an effective technique to capture the mechanical behavior of MICP-cemented sand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号