首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The natural remanent magnetization (NRM) in individual chondrules from the Allende meteorite was measured. These had previously been oriented relative to each other. The NRM directions of the chondrules are not initially random, but they become scattered after either alternating field (AF) or thermal demagnetization. The NRM is less stable than anhysteretic remanent magnetization (ARM) against AF-demagnetization.

The bulk of the NRM in the matrix is erased by 300°C. For the larger chondrules it is erased by 550°C, but for the smaller chondrules and the white inclusion a substantial decrease in NRM occurs by 350°C leaving about 20% up to 600°C. The behavior of the laboratory-induced ARM and the NRM under alternating field demagnetization suggest that the NRM of the chondrules consists of at least two components of TRM. One is a high-temperature component which was acquired when the individual chondrules were cooled through the Curie temperature and before they were assembled into the Allende meteorite. The other is a low-temperature component which was probably acquired in a field of about 1 Oe when the meteorite experienced thermal metamorphism or during the assembly of the meteorite.  相似文献   


2.
To test the reliability of the Thellier method for paleointensity determinations, we studied six historic lavas from Hawaii and two Gauss-age lava flows from Raiatea Island (French Polynesia). Our aim is to investigate the effects of the NRM fraction and concave-up behavior of NRM–thermal remanent magnetization (TRM) diagrams on paleointensity determinations. For the Hawaiian samples, the paleointensity results were investigated at both sample and site levels. For consistency and confidence in the paleointensity results, it is important to measure multiple samples from each cooling unit. The results from the Raiatea Island samples confirm that reliable paleointensities can be obtained from NRM–TRM diagrams with concave-up curvature, provided the data are accompanied by successful partial TRM (pTRM) checks and no significant chemical remanent magnetization (CRM) production. We conclude that reliable determinations of the paleofield strength require analyses of linear segments representing at least 40–50% of the total NRM. This new criterion has to be considered for future studies and for evaluating published paleointensities for calculating average geomagnetic field models. Using this condition together with other commonly employed selection criteria, the observed mean site paleointensities are typically within 10% of the Definitive Geomagnetic Reference Field (DGRF). Our new results for the Hawaii 1960 lava flow are in excellent agreement with the expected value, in contrast to significant discrepancies observed in some earlier studies.

Overestimates of paleointensity determinations can arise from cooling-rate dependence of TRM acquisition, viscous remanent magnetization (VRM) at elevated temperatures, and TRM properties of multidomain (MD) particles. These outcomes are exaggerated at lower temperature ranges. Therefore, we suggest that, provided the pTRM checks are successful and there is no significant CRM production, it is better to increase the NRM fraction used in paleointensity analyses rather than to maximize correlation coefficients of line segments on the NRM–TRM diagrams.

We introduce the factor, Q = Nq, to assess the quality of the weighted mean paleointensity, Hw, for each cooling unit.  相似文献   


3.
Thermal remanent magnetization (TRM) and anhysteretic remanent magnetization (ARM) components were imposed on natural rock samples. The artificial laboratory components had different directions and the blocking temperature and/or coercivity spectra were overlapping. Two methods, principal component analysis (PCA) by Kirschvink and analytical modelling of demagnetization data (by Stupavsky and Symons, S&S) were used to resolve these components. The PCA technique calculated lines fitted to the demagnetization path with ASD = 10° (angular standard deviation), and the S&S method used four types of intensity decay curves for calculated components.

Both methods (PCA and S&S) resolved perfectly the one-component case. The two- or three-component case results strongly depended on spectra overlapping, and on the angles between component directions and magnetic minerals in samples. Principal component analysis gave more reliable results for separated spectra of TRM and thermally cleaned samples, whereas the S&S technique was more efficient for the case of strong spectra overlapping of ARM components and the alternative current field (AF) demagnetization method. Remarkable anisotropy of RM was observed which influences the results for the haematite-bearing samples.  相似文献   


4.
Paleofield intensity determinations involving a comparison of the stable natural remanence (NRM) component with a laboratory thermoremanence (TRM) were carried out on nine chondrites selected in Brecher and Fuhrman (1979a, this issue, hereafter called Paper I), as well as on two manifestly unsuitable controls. To judge their reliability: (1) heat-alteration was monitored by comparing saturation coercivity spectra before and after heating; and (2) the NRM and TRM intensity and stability were compared to those of residual magnetization following zero-field cooling (TRM0) from above the Curie point of kamacite (Ni---Fe). The latter criterion separates the role of an external magnetic field (of 0.43 Oe) at cooling from intrinsic contributions to magnetic grain alignments, due to accretionary, metamorphic or shock-oriented petrofabrics.

In some chondrites (e.g., Brownfield, H3B; Holyoke, H4C; Farley, H5A), a surprisingly large (10% NRM) and stable TRM0 proved so similar to NRM and TRM, that sizeable spurious “paleofields” — comparable to paleointensities obtained — were derived by the standard method for zero-field cooling. In other chondrites, with negligible TRM0 (1% of NRM) and irregular AF demagnetization curves, more reliable paleofield strengths in the range 0.01–0.09 Oe were obtained (e.g., Cavour, H6C). These seem representative of magnetic fields at the end of metamorphism intervals (107 years after accretion) and/or at post-shock cooling. Thus, field strengths obtained from ordinary chondrites are typically weaker (by factors of 10–100) than those reliably determined from carbonaceous chondrites and ureilites, suggesting temporal decay of nebular magnetic fields, from the end of accretion until the end of metamorphism and early catastrophic-collisional stages.  相似文献   


5.
Magnetic properties of samples from Bell Island sedimentary rocks have been studied. X-ray analysis indicates that the main magnetic mineral is hematite in all samples. The other iron-bearing minerals identified are siderite and chamosite. Microscope observations of thin sections suggest that the rocks consist of oolitic hematite in a matrix of siderite or calcite. The intensity of natural remanent magnetization (NRM) varies in the range of (0.03–0.4 A m?1), depending on the percentage of hematite. The thermal demagnetization curves of NRM show in some cases a sharp increase in magnetization at temperatures in the range 500–600°C. The peaks that occur in these demagnetization curves are due to a chemical change of siderite during repeated laboratory heating. X-ray analysis confirmed that the newly formed material is magnetite. Since the original NRM has been masked by the new intergrown material, this would result in a serious error in the determination of paleomagnetic pole positions. The samples showing this behaviour were not considered for paleomagnetic study. The samples containing oolitic hematite in a calcite matrix exhibit very high stability of NRM, including directional stability until almost 670°C. For these samples, a virtual pole position based on N = 6 samples (32 specimens) demagnetized to 665°C is 34°N, 114°E, not far from published Ordovician poles for the North American craton.  相似文献   

6.
The magnetic properties of samples of the Olivenza chondrite (LL5) obtained from four collections have been investigated. The natural remanent magnetization (NRM) consists of a very stable primary component, which is randomly scattered in direction on a scale of 1 mm3 or less within the samples, and a secondary magnetization widely varying in intensity, and probably also in direction. The origin of the secondary NRM is not clear, and may be of terrestrial origin. It is concluded that the NRM is carried by the ordered nickel-iron mineral, tetrataenite. The origin of the primary NRM could be a magnetic field associated with the solar nebula, out of which the metal grains condensed and acquired a thermo-remanent magnetization (TRM), or Olivenza could be a fine-grained breccia, the constituent fragments possessing randomly directed magnetization. The implications for the origin and evolution of Olivenza and its parent body if the former magnetizing process has occurred are discussed.  相似文献   

7.
Twenty six samples from seven hand specimens, collected from the station 6 boulder at the Apollo 17 landing site, were studied magnetically. The boulder is a breccia consisting of three lithologic units distinguished by their clast population. The direction of magnetization of samples from unit B which is almost devoid of large clasts cluster fairly well after alternating field demagnetization. Samples from unit C which is characterized by abundant large clasts up to 1 m in size do not contain a uniform direction of magnetization but the distribution is not random. Based on these data we propose that the natural remanent magnetization (NRM) in these breccias is the vector sum of two magnetizations, a pre-impact magnetization and a partial thermoremanence acquired during breccia formation. The relative contribution of the two components is controlled by the thermal history of the ejecta, which in turn is determined by its clast population. Depending on the clast population, the NRM can be a total thermoremanence, a partial thermoremanence plus a pre-impact magnetization, or a pre-impact magnetization. This model of thermal overprinting might be applicable to all lunar breccias of medium and higher metamorphic grade.  相似文献   

8.
Thermally acquired remanent magnetization is important for the estimation of the past magnetic field present at the time of cooling. Rocks that cool slowly commonly contain magnetic grains of millimeter scale. This study investigated 1-mm-sized magnetic minerals of iron, iron–nickel, magnetite, and hematite and concluded that the thermoremanent magnetization (TRM) acquired by these grains did not accurately record the ambient magnetic fields less than 1 μT. Instead, the TRM of these grains fluctuated around a constant value. Consequently, the magnetic grain ability to record the ambient field accurately is reduced. Above the critical field, TRM acquisition is governed by an empirical law and is proportional to saturation magnetization (Ms). The efficiency of TRM is inversely proportional to the mineral's saturation magnetization Ms and is related to the number of domains in the magnetic grains. The absolute field for which we have an onset of TRM sensitivity is inversely proportional to the size of the magnetic grain. These results have implications for previous reports of random directions in meteorites during alternating field demagnetization, or thermal demagnetization of TRM. Extraterrestrial magnetic fields in our solar system are weaker than the geomagnetic field by several orders of magnitude. Extraterrestrial rocks commonly contain large iron-based magnetic minerals as a common part of their composition, and therefore ignoring this behavior of multidomain grains can result in erroneous paleofield estimates.  相似文献   

9.
本文对"鲁科一井"(CCSD-LK-Ⅰ)768.9~1112.3m之间的上白垩统沉积岩样品进行了岩石磁学、磁化率各向异性(AMS)以及天然剩磁组分的研究.在此基础上,分析了利用特征剩磁(ChRM)和黏滞剩磁(VRM)方向恢复岩芯原始方位的可行性.三轴等温剩磁热退磁曲线、磁滞回线、反向场退磁曲线、一阶反转曲线等岩石磁学测量结果表明,沉积岩的主要载磁矿物为磁铁矿和赤铁矿.335块样品的AMS测量结果表明磁化率椭球主轴的最大轴K1和中间轴K2与水平面夹角较小,最小轴K3接近垂直于水平面分布,说明沉积岩保留了原始沉积磁组构特征.系统热退磁实验表明,多数样品在25~350℃和500~690℃温度段分别获得VRM和ChRM分量.利用ChRM偏角方向,并考虑构造旋转量校正,对VRM偏角方向进行恢复,Fisher统计得到DVRM=-1.3°,IVRM=59.6°,与当地现代地磁场方向(D=-6.7°,I=53.9°)基本一致.用ChRM偏角方向对磁化率主轴K1偏角方向进行校正,校正的结果为:D_(ch_K1)=349.2°,I_(ch_K1)=-0.7°.本文研究结果对于地质勘探中利用古地磁学方法恢复钻孔岩芯原始方位具有一定参考意义.  相似文献   

10.
We test the possibility of using the pseudo-Thellier method as a means of determining absolute paleointensity. Thellier analysis of anhysteretic remanent magnetization (ARM) and pseudo-Thellier analysis of thermoremanent magnetization (TRM) have been carried out on a large collection of sized synthetic magnetites and natural rocks. In all samples, the intensity of TRM is larger than that of ARM and the ratio R (=TRM/ARM) is strongly grain size dependent. The best-fit slope (bTA) from pseudo-Thellier analysis of TRM shows a linear correlation with R. The ratio bTA/R yielded approximately correct paleointensities, although uncertainties are larger than in typical Thellier-type determinations. For single-domain and multidomain magnetites, alternating field and thermal stabilities of ARM and TRM are fairly similar. However, for ∼0.24 μm magnetite, ARM is both much less intense and less resistant to thermal demagnetization than TRM, reflecting different domain states for the two remanences and resulting in severely non-linear Arai plots for Thellier analysis of ARM.  相似文献   

11.
To further evaluate the potential of magnetic anisotropy techniques for determining the origin of the natural remanent magnetization (NRM) in sedimentary rocks, several new remanence anisotropy measurement techniques were explored. An accurate separation of the remanence anisotropy of magnetite and hematite in the same sedimentary rock sample was the goal.In one technique, Tertiary red and grey sedimentary rock samples from the Orera section (Spain) were exposed to 13 T fields in 9 different orientations. In each orientation, alternating field (af) demagnetization was used to separate the magnetite and hematite contributions of the high field isothermal remanent magnetization (IRM). Tensor subtraction was used to calculate the magnetite and hematite anisotropy tensors. Geologically interpretable fabrics did not result, probably because of the presence of goethite which contributes to the IRM. In the second technique, also applied to samples from Orera, an anisotropy of anhysteretic remanence (AAR) was applied in af fields up to 240 mT to directly measure the fabric of the magnetite in the sample. IRMs applied in 2 T fields followed by 240 mT af demagnetization, and thermal demagnetization at 90°C to remove the goethite contribution, were used to independently measure the hematite fabric in the same samples. This approach gave geologically interpretable results with minimum principal axes perpendicular to bedding, suggesting that the hematite and magnetite grains in the Orera samples both carry a depositional remanent magnetization (DRM). In a third experiment, IRMs applied in 13 T fields were used to measure the magnetic fabric of samples from the Dome de Barrot area (France). These samples had been demonstrated to have hematite as their only magnetic mineral. The fabrics that resulted were geologically interpretable, showing a strong NW-SE horizontal lineation consistent with AMS fabrics measured in the same samples. These fabrics suggest that the rock's remanence may have been affected by strain and could have originated as a DRM or a CRM.Our work shows that it is important to account for the presence of goethite when using high field IRMs to measure the remanence anisotropy of hematite-bearing sedimentary rocks. It also shows that very high magnetic fields (>10 T) may be used to measure the magnetic fabric of sedimentary rocks with highly coercive magnetic minerals without complete demagnetization between each position, provided that the field magnetically saturates the rock.  相似文献   

12.
This paper reports the alternating field demagnetization characteristics of glass–ceramic magnetite assemblages carrying weak-field thermoremanent magnetization (TRM), weak-field anhysteretic remanent magnetization (ARM), and saturation remanence (Jrs). Average grain sizes vary from less than 0.1 μm to approximately 100 μm, and hysteresis parameters indicate that these assemblages encompass single-domain (SD) through truly multidomain (MD) behavior. In all assemblages, weak-field TRM and weak-field ARM are more stable to alternating field demagnetization than is (Jrs). This response is especially remarkable in the 100 μm assemblage, which otherwise displays truly MD behavior. Although the SD samples pass the Lowrie–Fuller test for SD behavior, calculations presented here show that populations of noninteracting, uniaxial SD grains should behave in just the opposite sense to that reported originally by Lowrie and Fuller. This discrepancy could indicate that SD, glass–ceramic magnetite populations are more affected by magnetic interactions than would be expected for magnetite crystals that nucleated individually from a silicate matrix. This interpretation is supported by the SD assemblages failing the ‘Cisowski' test: that is, the curves for acquisition and AF demagnetization of (Jrs) intersect well below the 50% mark. However, a second and intriguing explanation of the SD-like results obtained from all samples is that alternating field demagnetization characteristics reflect a strong dependence of local energy minimum domain state, and its associated stability, on the state of magnetization.  相似文献   

13.
Paleomagnetic polarity data were obtained from nine sections of the Verde Formation, a late Tertiary carbonate-bearing lacustrine unit in central Arizona. This study tested the applicability of magnetostratigraphy as a geochronologic technique in a restricted terrestrial sedimentary basin, and its objective was to better define the age of the Verde Formation.Intensities of natural remanent magnetism (NRM) ranged from <10?7 to >10?4 gauss. Although secondary components of viscous magnetization commonly were observed, alternating field demagnetization was successful in revealing the polarity of the primary NRM at almost all sites. Thermomagnetic analysis, partial thermal demagnetization of NRM, and polished section analysis together indicate that the primary NRM is a depositional remanence carried by detrital magnetite. Intrabasin stratigraphic correlation of the sections, together with K-Ar ages on interbedded and underlying volcanic rocks has allowed construction of a composite magnetostratigraphic column for the Verde Formation that is correlated with the late Cenozoic polarity time scale. The correlation indicates nearly continuous sedimentation in the Verde basin from ~7.5 to ~2.5 m.y. ago.  相似文献   

14.
Remanent coercivity spectra derived from IRM acquisition curves and thermal demagnetization of the IRM indicate that magnetite, haematite and minor amounts of goethite determine the magnetic properties of the Pliensbachian limestones at Bakonycsernye. These limestones have been sampled at approximately 7-cm intervals along a 10-m stratigraphic section which covers the whole Pliensbachian stage (Lower Jurassic) without any recognizable break in sedimentation. The primary natural remanent magnetization (NRM) is carried by detrital particles of magnetite and haematite, but it is seriously overprinted by a normal magnetization which originates from secondary haematite with a wide range of blocking temperatures. This haematite is believed to have formed diagenetically during one of the Mesozoic periods of normal polarity. However, the reversal pattern obtained after NRM thermal demagnetization at temperatures ≥450°C is thought to be characteristic of the Pliensbachian stage.  相似文献   

15.
The REM(AF) method is a new tool for the analysis of the origin and alternating field demagnetization coercivity spectra of the remanent magnetization. We applied this method on precambrian Gila diabase sheets from Arizona in order to identify the high coercivity magnetic carrier, and on artificially shocked Rowley Regis basalt from UK in order to analyze the effect of the shock on the natural remanent magnetization. In the Gila diabase the high coercivity magnetic component was identified to be most likely represented by the acicular magnetite (increase in the efficiency ratio in the high coercivity region). In the Rowley Regis basalt, the REM(AF) analysis revealed that comparing to NRM, the shock produced a different distribution of the AF demagnetization coercivity spectra due to the occurrence of the Shock Remanent Magnetization.  相似文献   

16.
Geomagnetic paleointensity determination have been made by the Thellier method using samples from 27 sites in Bulgaria. The samples include bricks, specimens taken from historic kilns, from prehistoric hearths and the sites of ancient fires. The ages of the samples, which range from about 4500 B.C. to the 19th century A.D., have been determined partly by the 14C method and partly from archaeological evidence. The (residual NMR)-(induced TRM) diagrams tend to be less linear for the prehistoric samples either due to weathering or because the NRM is not a total TRM.  相似文献   

17.
系统研究了河西走廊火烧沟组陆相红层200个采点岩石的热退磁行为和17个代表性样品的岩石磁学特征,结果表明有102个采点可以分离出A、B、C三个剩磁分量,有82个采点只有一个分量(C分量),16个采点只能分离出A、B分量.A、B分量分别由针铁矿和磁赤铁矿携带,C分量在砂岩中由磁铁矿携带,在泥质砂岩和泥岩中由磁铁矿和赤铁矿共同携带.A、B分量剩磁方向随机分布,不能获得置信水平的古地磁平均方向,为次生剩磁.它们的存在并不影响岩石原生剩磁的分离,也不影响原生剩磁信号的稳定性和获得的古地磁数据的可靠性.16个砂岩采点中不能分离出C分量,是由于后生的赤铁矿彻底改变了由磁铁矿携带的原生剩磁组分,在高密度采样的情况下剔除这些采点并不影响古地磁极性柱的构建和解释.  相似文献   

18.
Relative paleointensities are obtained from a 6-m sediment core from Lake St. Croix, Minnesota, spanning the time range from 445 to 1740 years B.P. To normalize the natural remanent magnetization (NRM) for variations in the magnetic content, a laboratory-induced remanence is chosen, whose alternating field (AF) demagnetization curves most closely resemble the NRM demagnetization curves. By plotting the ratio of the NRM to the normalizing remanence versus AF demagnetizing field, HAF, for samples of the same sediment horizon, as well as for samples from different horizons, estimates are obtained for expected uncertainties in the relative paleointensities. For the Lake St. Croix sediments the anhysteretic remanence (ARM) demagnetization curves are very similar to those of the NRM's, and ARM is therefore used as the normalization parameter. Because the sediment exhibits homogeneous remanence properties throughout, and HAF = 100Oe is the optimum “cleaning” field for the entire core, NRM100/ARM100 is evaluated to represent the fluctuations of the relative paleointensity. Our relative paleointensity data exhibit the same general features as obtained from archeomagnetic studies. The intensity increases as one goes back in time with a peak near 800 years B.P., representing an increase in the intensity of up to 60%. Apparent periodicities in the intensity of 300–400 years are observed.  相似文献   

19.
We present results of paleomagnetic and sedimentological studies carried out on three cores Lmor1, Lmo98-1, Lmor98-2 from bottom sediments of Lake Moreno (south-western Argentina), and integrate them with data from our previous studies. Measurements of directions (declination D and inclination I) and mass specific intensity of natural remanent magnetization (NRM intensity), magnetic susceptibility (specific, χ and volumetric, κ), isothermal remanent magnetization (IRM), saturation of isothermal remanent magnetization (SIRM), and back field remanent coercivity (B0CR) were performed. The stability of the NRM was investigated using alternating-field demagnetization. The results show that these sediments meet the criteria required to construct a reliable paleomagnetic record. The cores were correlated very well based on magnetic parameters, such as χ and NRM intensity, as well as with lithological features. Tephra layers were identified from the lithological profiles and magnetic susceptibility logs. We obtained the D and I logs of the characteristic remanent magnetization for the cores as a function of shortened depth. The data from the three cores were combined to form a composite record using the Fisher method. A comparison between stacked inclination and declination records of Lake Moreno and those obtained in previous works on Lake Escondido and Lake El Trébol shows good agreement. This agreement made it possible to transform the stacked curves into time series spanning the interval 12–20 kyr. The results obtained improved our knowledge of SV and the behaviour of the geomagnetic field and also allowed us to determine the range of past inclination variations from −70° to −45° for the southern hemisphere, where data are scarce.  相似文献   

20.
Summary Measurements of bulk magnetic properties, including the natural remanent magnetization (NRM), susceptibility and the Königsberger ratio, on over 250 samples of Tertiary basalts from Disko and Nûgssuaq, West Greenland are reported.The NRM intensities in basalts (geometric mean value 3.3 A/m in SI units) were on average three to four times as large as the induced magnetization intensities. The susceptibilities (geometric mean value 2.1×10–2 SI units) were much more uniform than the NRM intensities. In the majority of samples, the NRM was predominantly of reverse (R) polarity, but samples from a few sites showed a remanence of normal (N) polarity.The NRM of both polarity classes (N, R) was very stable against alternating field (AF) demagnetization with median destructive fields of the order of 20,000–30,000 A/m (250–350 Oe), comparable to those for many stable continental and oceanic basalts. The viscous remanence intensity, as studied by storage tests on some specimens, was found to be an insignificant fraction of the original NRM, except in few cases.The low field hysteresis loops (Rayleigh loops) were studied for some specimens. A qualitative association was noted between wide hysteresis loop and relatively low AF stability, but no correlation was apparent between the loop type and the Königsberger ratio (Q n) of a specimen.Contribution no. 6 Institute of Geophysics, University of Copenhagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号