首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
《水文科学杂志》2013,58(4):690-703
Abstract

One of the key uncertainties surrounding the impacts of climate change in Africa is the effect on the sustainability of rural water supplies. Many of these water supplies abstract from shallow groundwater (<50 m) and are the sole source of safe drinking water for rural populations. Analysis of existing rainfall and recharge studies suggests that climate change is unlikely to lead to widespread catastrophic failure of improved rural groundwater supplies. These require only 10 mm of recharge annually per year to support a hand pump, which should still be achievable for much of the continent, although up to 90 million people may be affected in marginal groundwater recharge areas (200–500 mm annual rainfall). Lessons learnt from groundwater source behaviour during recent droughts, substantiated by groundwater modelling, indicate that increased demand on dispersed water points, as shallow unimproved sources progressively fail, poses a much greater risk of individual source failure than regional resource depletion. Low yielding sources in poor aquifers are most at risk. Predicted increased rainfall intensity may also increase the risk of contamination of very shallow groundwater. Looking to the future, an increase in major groundwater-based irrigation systems, as food prices rise and surface water becomes more unreliable, may threaten long-term sustainability as competition for groundwater increases. To help prepare for increased climate variability, it is essential to understand the balance between water availability, access to water, and use/demand. In practice, this means increasing access to secure domestic water, understanding and mapping renewable and non-renewable groundwater resources, promoting small-scale irrigation and widening the scope of early warning systems and mapping to include access to water.  相似文献   

2.
3.
Sub-Saharan Africa faces significant challenges in dealing with ground water pollution. These countries can look to successes and missteps on other continents to help choose their own individual paths to ensuring reliable and clean supplies of ground water. In the large view, sub-Saharan Africa can define specific levels of acceptable risk in water quality that drive cleanup efforts and are amenable to acceptance across national and geographic boundaries. Ground water quality databases must be expanded, and data must be available in an electronic form that is flexible, expandable, and uniform, and that can be used over wide geographic areas. Guidance from other continents is available on well construction, sampling and monitoring, interim remediation, technical impracticability, monitored natural attenuation, and many specific issues such as how to deal with small waste generators and septic contamination of water supply wells. It is important to establish a common African view on the appropriateness of other nations’ ground water quality guidance for African issues, economic conditions, and community circumstances. Establishing numerical, concentration-based, water quality action levels for pollutants in ground water, which many neighboring African nations could hold comparable, would set the stage for risk-based remediation of contaminated sites. Efforts to gain public, grass-roots understanding and support for stable and balanced enforcement of standards are also key. Finally, effective capacity building in the region could be an eventual solution to ground water quality problems; with increased numbers of trained environmental professionals, ground water throughout the region can be protected and contaminated sites cleaned up.  相似文献   

4.
Gu A  Gray F  Eastoe CJ  Norman LM  Duarte O  Long A 《Ground water》2008,46(3):502-509
Sulfate (S and O) isotopes used in conjunction with sulfate concentration provide a tracer for ground water contributions to base flow. They are particularly useful in areas where rock sources of contrasting S isotope character are juxtaposed, where water chemistry or H and O isotopes fail to distinguish water sources, and in arid areas where rain water contributions to base flow are minimal. Sonoita Creek basin in southern Arizona, where evaporite and igneous sources of sulfur are commonly juxtaposed, serves as an example. Base flow in Sonoita Creek is a mixture of three ground water sources: A, basin ground water with sulfate resembling that from Permian evaporite; B, ground water from the Patagonia Mountains; and C, ground water associated with Temporal Gulch. B and C contain sulfate like that of acid rock drainage in the region but differ in sulfate content. Source A contributes 50% to 70%, with the remainder equally divided between B and C during the base flow seasons. The proportion of B generally increases downstream. The proportion of A is greatest under drought conditions.  相似文献   

5.
A number of previous studies have identified changes in the climate occurring on decadal to multi‐decadal time‐scales. Recent studies also have revealed multi‐decadal variability in the modulation of the magnitude of El Niño–Southern Oscillation (ENSO) impacts on rainfall and stream flow in Australia and other areas. This study investigates multi‐decadal variability of drought risk by analysing the performance of a water storage reservoir in New South Wales, Australia, during different climate epochs defined using the Inter‐decadal Pacific Oscillation (IPO) index. The performance of the reservoir is also analysed under three adaptive management techniques and these are compared with the reservoir performance using the current ‘reactive’ management practices. The results indicate that IPO modulation of both the magnitude and frequency of ENSO events has the effect of reducing and elevating drought risk on multi‐decadal time‐scales. The results also confirm that adaptive reservoir management techniques, based on ENSO forecasts, can improve drought security and become significantly more important during dry climate epochs. These results have marked implications for improving drought security for water storage reservoirs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Peatlands in the Western Boreal Plains act as important water sources in the landscape. Their persistence, despite potential evapotranspiration (PET) often exceeding annual precipitation, is attributed to various water storage mechanisms. One storage element that has been understudied is seasonal ground ice (SGI). This study characterized spring SGI conditions and explored its impacts on available energy, actual evapotranspiration, water table, and near surface soil moisture in a western boreal plains peatland. The majority of SGI melt took place over May 2017. Microtopography had limited impact on melt rates due to wet conditions. SGI melt released 139mm in ice water equivalent (IWE) within the top 30cm of the peat, and weak significant relationships with water table and surface moisture suggest that SGI could be important for maintaining vegetation transpiration during dry springs. Melting SGI decreased available energy causing small reductions in PET (<10mm over the melt period) and appeared to reduce actual evapotranspiration variability but not mean rates, likely due to slow melt rates. This suggests that melting SGI supplies water, allowing evapotranspiration to occur at near potential rates, but reduces the overall rate at which evapotranspiration could occur (PET). The role of SGI may help peatlands in headwater catchments act as a conveyor of water to downstream landscapes during the spring while acting as a supply of water for the peatland. Future work should investigate SGI influences on evapotranspiration under differing peatland types, wet and dry spring conditions, and if the spatial variability of SGI melt leads to spatial variability in evapotranspiration.  相似文献   

7.
Abstract. The uses of water for nuclear power plants consist of the following: service water, emergency cooling water, domestic (potable, sanitary), construction, and fire fighting. The quantity of water for these various uses may range from 10 gpm (0.63 1/s) for domestic supplies to greater than 100,000 gpm (6309 1/s) for service water and emergency cooling water supplies. Historically, the source of water for nuclear power plant use has been surface-water bodies, such as rivers, lakes, oceans, and man-made canals. Ground-water sources have supplied relatively small quantities of water for plant use, mainly domestic and construction supplies. A survey of 123 nuclear power plant sites which are either built, under construction, or planned, revealed that about 3 percent of all plant water supplies is derived from ground-water sources. Presently, four nuclear power plants intend to use ground water in relatively large quantities (as service water and emergency cooling water). Two of these plants will use ground water via induced infiltration from radial collector wells, and the other two plants intend to withdraw ground water from deep wells (1,000 feet) from a confined aquifer. Another plant, under construction, intends to use sewage effluent which is originally derived from a combination of surface and ground water.  相似文献   

8.
《Water Policy》2001,3(4):273-281
Private water supplies are defined as any water supply which is not provided by a statutory water undertaker and in which the responsibility for its maintenance lies with the owner or person who uses the supply. In Scotland around 60,000 people rely on such supplies from which they will be receiving water subject to either limited or no statutory requirement for quality sampling. Further, while 60,000 is the resident population, a large number of people attending campsites, hotels, guesthouses or using food outlets will be exposed to private supplies for transitory periods of time. Of greatest concern is the threat of microbial contamination resulting in an increased threat to public health. In an effort to improve the microbiological quality of the drinking water from private supplies a microbiological risk assessment protocol was developed to enhance the source protection of such supplies. This paper details the development of this protocol.  相似文献   

9.
International borders, ground water flow, and hydroschizophrenia   总被引:1,自引:0,他引:1  
A substantial body of research has been conducted on transboundary water, transboundary water law, and the mitigation of transboundary water conflict. However, most of this work has focused primarily on surface water supplies. While it is well understood that aquifers cross international boundaries and that the base flow of international river systems is often derived in part from ground water, transboundary ground water and surface water systems are usually managed under different regimes, resulting in what has been described as "hydroschizophrenia." Adding to the problem, the hydrologic relationships between surface and ground water supplies are only known at a reconnaissance level in even the most studied international basins, and thus even basic questions regarding the territorial sovereignty of ground water resources often remain unaddressed or even unasked. Despite the tensions inherent in the international setting, riparian nations have shown tremendous creativity in approaching regional development, often through preventive diplomacy, and the creation of "baskets of benefits," which allow for positive-sum, integrative allocations of joint gains. In contrast to the notion of imminent water wars, the history of hydropolitical relations worldwide has been overwhelmingly cooperative. Limited ground water management in the international arena, coupled with the fact that few states or countries regulate the use of ground water, begs the question: will international borders serve as boundaries for increased "flows" of hydrologic information and communication to maintain strategic aquifers, or will increased competition for shared ground water resources lead to the potential loss of strategic aquifers and "no flows" for both ground water users?  相似文献   

10.
Many people in sub-Saharan Africa have to rely on meager water resources within mudstones for their only water supply. Although mudstones have been extensively researched for their low permeability behavior, little research has been undertaken to examine their ability to provide sustainable water supplies. To investigate the factors controlling the occurrence of usable ground water in mudstone environments, an area of Cretaceous mudstones in southeastern Nigeria was studied over a 3 yr period. Transmissivity (T) variations in a range of mudstone environments were studied. The investigations demonstrate that within the top 40 m of mudstones, transmissivity can be sufficient to develop village water supplies (T > 1 m2/d). Transmissivity is controlled by two factors: low-grade metamorphism and the presence of other, subordinate, lithologies within the mudstones. Largely unaltered mudstones (early diagenetic zone), comprising mainly smectite clays, are mostly unfractured and have a low T of < 0.1 m2/d. Mudstones that have undergone limited metamorphism (late diagenetic zone) comprise mixed layered illite/smectite clays, and ground water is found in widely spaced fracture zones (T > 1 m2/d in large fracture zones; T < 0.1 m2/d away from fracture zones). Mudstones that have been further altered and approach the anchizone comprise illite clays, are pervasively fractured, and have the highest transmissivity values (T > 4 m2/d). Dolerite intrusions in unaltered, smectitic mudstones are highly fractured with transmissivity in the range of 1 < T < 60 m2/d. Thin limestone and sandstone layers can also enhance transmissivity sufficiently to provide community water supplies.  相似文献   

11.
Abstract

The GWAVA (Global Water AVailability Assessment) model for indicating human water security has been extended with a newly developed module for calculating pollutant concentrations. This module is first described and then illustrated by being used to model nitrogen, phosphorus and organic matter concentrations. The module uses solely input variables that are likely to be available for future scenarios, making it possible to apply the module to such scenarios. The module first calculates pollutant loading from land to rivers, lakes and wetlands by considering drivers such as agriculture, industry and sewage treatment. Calculated loadings are subsequently converted to concentrations by considering aquatic processes, such as dilution, downstream transport, evaporation, human water abstraction and biophysical loss processes. Aquatic biodiversity is indicated to be at risk if modelled pollutant concentrations exceed certain water quality standards. This is indicated to be the case in about 35% of the European area, especially where lakes and wetlands are abundant. Human water security is indicated to be at risk where human water demands cannot be fulfilled during drought events. This is found to be the case in about 10% of the European area, especially in Mediterranean, arid and densely-populated areas. Modelled spatial variation in concentrations matches well with existing knowledge, and the temporal variability of concentrations is modelled reasonably well in some river basins. Therefore, we conclude that the updated GWAVA model can be used for indicating changes in human water security and aquatic biodiversity across Europe.

Editor Z.W. Kundzewicz

Citation Dumont, E., Williams, R., Keller, V., Voss, A., and Tattari, S., 2012. Modelling indicators of water security, water pollution and aquatic biodiversity in Europe. Hydrological Sciences Journal, 57 (7), 1378–1403.  相似文献   

12.
By using the Variable Infiltration Capacity model with Palmer Drought Severity Index (VIC‐PDSI) model and Standardized Precipitation Index (SPI), spatiotemporal trends of climate variation during the main growing seasons for plants of Loess Plateau between 1971 and 2010 were detected and characterized. The VIC‐PDSI model is established by combining the VIC model with PDSI. The simulation results and the grids system of VIC were applied to substitute for the two‐layer bucket‐type model to do the hydrological accounting, which could improve the physical mechanism of PDSI and expand its application range. Our results suggest that the climate of the study area has experienced a drying and warming trend during the past four decades. Apart from some individual years and regions, there was a perpetuation of water deficit over the Plateau both in spring and summer. The drought frequency increased from southeast to northwest in spring, while the drought frequency decreased from southeast to northwest in summer. The climate in the southern part of the Loess Plateau, accounting for 23.3% of the study region, showed a significant drying and warming trend in spring over the past four decades. The climate variability detected by VIC‐PDSI model shows good agreement with that monitored by SPI. Since a large part of the study region frequently suffered from water shortage during the main growing seasons for plants, people living in such drought‐prone areas should take measures to prevent the negative effects on agricultural production, reforestation, and regional food security caused by drought. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Evaluating climate variability and pumping effects in statistical analyses   总被引:1,自引:0,他引:1  
Mayer TD  Congdon RD 《Ground water》2008,46(2):212-227
As development of ground water resources reaches the limits of sustainability, it is likely that even small changes in inflow, outflow, or storage will have economic or environmental consequences. Anthropogenic impacts of concern may be on the scale of natural variability, making it difficult to distinguish between the two. Under these circumstances, we believe that it is important to account for effects from both ground water development and climate variability. We use several statistical methods, including trend analysis, cluster analysis, and time series analysis with seasonal decomposition, to identify climate and anthropogenic effects in regional ground water levels and spring discharge in southern Nevada. We discuss the parameterization of climate and suggest that the relative importance of various measures of climate provides information about the aquifer system response to climate. In our system, which may be characteristic of much of the arid southwestern United States, ground water levels are much more responsive to wet years than to dry years, based on the importance of selected climate parameters in the regression. Using cluster analysis and time series seasonal decomposition, we relate differences in amplitude and phase in the seasonal signal to two major forcings—climate and pumping—and distinguish between a regional recharge response to an extremely wet year and a seasonal pumping/evapotranspiration response that decays with distance from the pumping center. The observed spring discharge data support our hypothesis that regional spring discharge, particularly at higher elevation springs, is sensitive to relatively small ground water level changes.  相似文献   

14.
Although water resources managers speak of a water crisis in Africa, the management of ground water has to date not featured strongly in national and regional African water agendas. Examination of the physical environment of the continent and, in particular, the water resources in relation to the socioeconomic landscape and regional development challenges makes it clear that widely occurring, albeit largely low-yielding, ground water resources will be crucial in the achievement of water security and development. Ground water is important primarily in domestic water and sanitation services, but also for other local productive needs like community gardens, stock watering, and brick-making, all essential to secure a basic livelihood and thus to alleviate poverty. Despite the importance of small-scale farming in Africa, there is little information on the present and potential role of ground water in agriculture. In contrast to its socioeconomic and ecological importance, ground water has remained a poorly understood and managed resource. Widespread contamination of ground water resources is occurring, and the important environmental services of ground water are neglected. There appear to be critical shortcomings in the organizational framework and the building of institutional capacity for ground water. Addressing this challenge will require a much clearer understanding and articulation of ground water's role and contribution to national and regional development objectives and an integrated management framework, with top-down facilitation of local actions.  相似文献   

15.
ABSTRACT

In recent years there has been a surge in land investments, primarily in the African continent, but also in Asia and Latin America. This increase in land investment was driven by the food pricing crisis of 2007–2008. Land investors can be identified from a variety of sectors, with actors ranging from hedge funds to national companies. Many water-scarce countries in the Middle East and North Africa (MENA) are among these financiers, and primarily invest in Africa. Recognizing the potential for “outsourcing” their food security (and thereby also partly their water security), Middle Eastern countries such as Jordan, Qatar and the United Arab Emirates have invested in land for food production in Africa. The extent to which this is happening is still unclear, as many contracts are not yet official and the extent of the leases is vague. This paper investigates the land investments and acquisitions by Middle Eastern countries. It also seeks to analyse what effect, if any, these investments can have on the potential for conflict reduction and subsequent peacebuilding in the Middle East region as the activity removes pressure from transboundary water resources.

EDITOR D. Koutsoyiannis ASSOCIATE EDITOR K. Aggestam  相似文献   

16.
Climate change, combined with industrial growth and increasing demand, could result in serious future water shortages and related water quality and temperature issues, especially for upland and humid areas. The extreme 2018 drought that prevailed throughout Europe provided an opportunity to investigate conditions likely to become more frequent in the future. For an upland rural catchment utilised by the distilling industry in North-East Scotland, a tracer-based survey combined discharge, electrical conductivity, stable water isotopes and temperature measurements to understand the impacts of drought on dominant stream water and industry water sources, both in terms of water quantity and quality (temperature). Results showed that water types (groundwater, ephemeral stream water, perennial stream water and water from small dams) were spatially distinct and varied more in space than time. With regards to the drought conditions we found that streams were largely maintained by groundwater during low flows. This also buffered stream water temperatures. Water types with high young water fractions were less resilient, resulting in streams with an ephemeral nature. Although our results demonstrated the importance of groundwater for drought resilience, water balance data revealed these storage reserves were being depleted and only recovered towards the end of the following year because of above average rainfall in 2019. Increased storage depletion under continued trends of extreme drought and water abstraction could be addressed via informed (nature based) management strategies which focus on increasing recharge. This may improve resilience to droughts as well as floods, but site specific testing and modelling are required to understand their potential. Results could have implications for management of water volumes and temperature, particularly for the sustainability of an historic industry, balancing requirements of rural communities and the environment.  相似文献   

17.
The mappings of poverty and food insecurity were carried out for the rural districts of the four riparian countries (Botswana, Mozambique, South Africa and Zimbabwe) of the Limpopo river basin using the results of national surveys that were conducted between 2003 and 2013. The analysis shows lower range of food insecure persons (0–40%) than poverty stricken persons (0–95%) that is attributable to enhanced government and non-government food safety networks in the basin countries, the dynamic and transitory nature of food insecurity which depends on the timings of the surveys in relation to harvests, markets and food prices, and the limited dimension of food insecurity in relation to poverty which tends to be a more structural and pervasive socio-economic condition. The usefulness of this study in influencing policies and strategies targeted at alleviating poverty and improving rural livelihoods lies with using food insecurity mappings to address short-term socio-economic conditions and poverty mappings to address more structural and long-term deprivations. Using the poverty line of $1.25/day per person (2008–2013) in the basin, Zimbabwe had the highest percentage of 68.7% of its rural population classified as poor, followed by Mozambique with 68.2%, South Africa with 56.1% and Botswana with 20%. While average poverty reduction of 6.4% was observed between 2003 and 2009 in Botswana, its population growth of 20.1% indicated no real poverty reduction. Similar observations are made about Mozambique and Zimbabwe where population growth outstripped poverty reductions. In contrast, both average poverty levels and population increased by 4.3% and 11%, respectively, in South Africa from 2007 to 2010. While areas of high food insecurity and poverty consistently coincide with low water availability, it does not indicate a simple cause–effect relationship between water, poverty and food insecurity. With limited water resources, rural folks in the basin require stronger institutions, increased investments and support to enable them generate sufficient income from their rain-fed farming livelihood to break out of the poverty cycle.  相似文献   

18.
The aim of this review is to provide a basis for selecting a suitable hydrological model, or combination of models, for hydrological drought forecasting in Africa at different temporal and spatial scales; for example short and medium range (1–10 days or monthly) forecasts at medium to large river basin scales or seasonal forecasts at the Pan-African scale. Several global hydrological models are currently available with different levels of complexity and data requirements. However, most of these models are likely to fail to properly represent the water balance components that are particularly relevant in arid and semi-arid basins in sub-Saharan Africa. This review critically looks at weaknesses and strengths in the representation of different hydrological processes and fluxes of each model. The major criteria used for assessing the suitability of the models are (1) the representation of the processes that are most relevant for simulating drought conditions, such as interception, evaporation, surface water-groundwater interactions in wetland areas and flood plains and soil moisture dynamics; (2) the capability of the model to be downscaled from a continental scale to a large river basin scale model; and (3) the applicability of the model to be used operationally for drought early warning, given the data availability of the region. This review provides a framework for selecting models for hydrological drought forecasting, conditional on spatial scale, data availability and end-user forecast requirements. Among 16 well known hydrological and land surface models selected for this review, PCR-GLOBWB, GWAVA, HTESSEL, LISFLOOD and SWAT show higher potential and suitability for hydrological drought forecasting in Africa based on the criteria used in this evaluation.  相似文献   

19.
Project organization problems are not uncommon in ground water monitoring projects, particularly those which occur at sites remote from the office. Successful project management depends on coordination of the personnel, supplies, and equipment necessary to carry out each phase of the project. Procedures for planning and organizing field projects involving well installation, ground water sampling, and aquifer testing are outlined. Methods are suggested that will aid the Project Manager in planning and scheduling field work to make efficient use of personnel and material resources. Cautions are given regarding common pitfalls of projects involving operations at remote sites, and means of avoidance are enumerated. A checklist of commonly used field equipment and supplies is provided.  相似文献   

20.
Previous site-specific studies designed to assess the impacts of unsewered subdivisions on ground water quality have relied on upgradient monitoring wells or very limited background data to characterize conditions prior to development. In this study, an extensive monitoring program was designed to document ground water conditions prior to construction of a rural subdivision in south-central Wisconsin. Previous agricultural land use has impacted ground water quality; concentrations of chloride, nitrate-nitrogen, and atrazine ranged from below the level of detection to 296 mg/L, 36 mg/L, and 0.8 microg/L, respectively, and were highly variable from well to well and through time. Seasonal variations in recharge, surface topography, aquifer heterogeneities, surficial loading patterns, and well casing depth explain observed variations in ground water chemistry. This variability would not have been detected if background conditions were determined from only a few monitoring wells or inferred from wells located upgradient of the subdivision site. This project demonstrates the importance of characterizing both ground water quality and chemical variability prior to land-use change to detect any changes once homes are constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号