首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The theory of viscous accretion disks developed by Lynden-Bell and Pringle has been applied to the evolution of the primitive solar nebula. The additional physical input needed to determine the structure of the disk is described. A series of calculations was carried out using a steady flow approximation to explore the effects on the disk properties of variations in such parameters as the angular momentum and accretion rate of the infalling material from a collapsing interstellar cloud fragment. The more detailed evolutionary calculations involved five cases with various combinations of parameters. It was concluded that the late stages of evolution of the disks would be dominated by the effects of mass loss from the expansion of a hot disk corona into space, and the effects of this were included in the evolutionary calculations. A new theory of comet formation is formulated upon these results. The most important result is the conclusion, which appears to be inescapable, that the primitive solar accretion disk was repeatedly unstable against axisymmetric perturbations, in which rings would form and collapse upon themselves, with the subsequent formation of giant gaseous protoplanets.  相似文献   

2.
Patrick Cassen  Ann Moosman 《Icarus》1981,48(3):353-376
An analysis is presented of the hydrodynamic aspects of the growth of protostellar disks from the accretion (or collapse) of a rotating gas cloud. The size, mass, and radiative properties of protostellar disks are determined by the distribution of mass and angular momentum in the clouds from which they are formed, as well as from the dissipative processes within the disks themselves. The angular momentum of the infalling cloud is redistributed by the action of turbulent viscosity on a shear layer near the surface of the disk (downstream of the accretion shock) and on the radial shear across cylindrical surfaces parallel to the rotation axis. The fraction of gas that is fed into a central core (protostar) during accretion depends on the ratio of the rate of viscous diffusion of angular momentum to the accretion rate; rapid viscous diffusion (or a low accretion rate) promotes a large core-to-disk mass ratio. The continuum radiation spectrum of a highly viscous disk is similar to that of a steady-state accretion disk without mass addition. It is possible to construct models of the primitive solar nebula as an accretion disk, formed by the collapse of a slowly rotating protostellar cloud, and containing the minimum mass required to account for the planets. Other models with more massive disks are also possible.  相似文献   

3.
The formation of the solar nebula and the distribution of mass in its planetary system is studied. The underlying idea is that the protosun, fragmented out from an interstellar cloud as a result of cluster formation, gathered the planetary material and, hence, spin angular momentum by gravitational accretion during its orbital motion around the centre of the Galaxy. The study gives the initial angular momentum of the solar nebula nearly equal to the present value of the solar system.  相似文献   

4.
As gas flowed from the solar accretion disk or Solar Nebula onto the proto-Sun, magnetic pressure gradients in the solar magnetosphere and the inner Solar Nebula provided an environment where some of this infalling flow was diverted to produce a low pressure, high temperature, gaseous, “infall” atmosphere around the inner Solar Nebula. The pressure in this inner disk atmosphere was mainly dependant on the accretion flow rate onto the star. High flow rates implied relatively high pressures, which decreased over time as the accretion rate decreased.In the first hundred thousand years after the formation of the Solar Nebula, accretional flow gas pressures were high enough to create submicron-sized Refractory Metal Nuggets (RMNs) – the precursors to Calcium Aluminum Inclusions (CAIs). Optimal temperatures and pressures for RMN formation may have occurred between 20,000 and 100,000 years after the formation of the Solar Nebula. It is possible that conditions were conducive to RMN/CAI formation over an 80,000 year timescale. The “infall” atmosphere and the condensation of refractory particles within this atmosphere may be observable around the inner disks of other protostellar systems.The interaction of forces from magnetic fields with the radiation pressure from the proto-Sun and the inner solar accretion disk potentially produced an optical-magnetic trap above and below the inner Solar Nebula, which provided a relatively stable environment in which the RMNs/proto-CAIs could form and grow. These RMN formation sites only existed during accretion events from the proto-solar disk onto the proto-Sun. As such, the formation and growth time of a particular RMN was dependent on the timescale of its nascent accretion event.Observational evidence suggests that RMNs were the nucleation particles for CAIs. As a consequence, the observed bimodal distribution of 26Al in CAIs, where some CAIs have 26Al while others do not, is probably due to the injection 26Al during the short CAI formation period, where 26Al was not present when the first CAIs were formed.  相似文献   

5.
A.G.W. Cameron  M.R. Pine 《Icarus》1973,18(3):377-406
Numerical models have been constructed to represent probable conditions in the primitive solar nebula. A two solar mass fragment of a collapsing interstellar gas cloud has been represented by a uniformly rotating sphere. Two cases have been considered: one in which the internal density of the sphere is uniform and the other in which the density falls linearly from a central value to zero at the surface (the uniform and linear models). These assumptions served to define the distribution of angular momentum per unit mass with mass fraction. The spheres were flattened into disks, and models of the disks were found in which there was a force balance in the radial and vertical directions, subject to certain approximations, and with everywhere the assigned values of angular momentum per unit mass. The radial pressure gradient of the gas was included in the force balance. The energy transport in the vertical direction involved convection and radiative equilibrium; the principal contributors to opacity at lower temperatures were metallic iron grains and ice. The models contained two convection zones, an inner one due to the dissociation of hydrogen molecules, and an outer one in which there was a high opacity due to metallic iron grains. The characteristic semithickness of the disks ranged from about 0.1 astronomical units near the center to about one astronomical unit near the exterior. Characteristic angular momentum transport times and radiation lifetimes for these models of the initial solar nebula were estimated. Both types of characteristic lifetime were as short as a few years near the inner part of the models, and became about 104 years or longer at distances greater than ten astronomical units.  相似文献   

6.
Modern models of the formation of the regular satellites of giant planets, constructed with consideration for their structure and composition suggest that this process lasted for a considerable period of time (0.1–1 Myr) and developed in gas-dust circumplanetary disks at the final stage of giant planet formation. The parameters of protosatellite disks (e.g., the radial distribution of surface density and temperature) serve as important initial conditions for such models. Therefore, the development of protosatellite disk models that take into account currently known cosmochemical and physical restrictions remains a pressing problem. It is this problem that is solved in the paper. New models of the accretion disks of Jupiter and Saturn were constructed with consideration for the disk heating by viscous dissipation of turbulent motions, by accretion of material from the surrounding region of the solar nebula, and by radiation from the central planets. The influence of a set of input model parameters (the total rate of mass infall onto the disk, the turbulent viscosity and opacity of disk material, and the centrifugal radius of the disk) on thermal conditions in the accretion disks was studied. The dependence of opacity on temperature and the abundance and size of solid particles present in the disk was taken into account. Those constructed models that satisfy the existing constraints limit the probable values of input parameters (primarily rates of mass infall onto the disks of Jupiter and Saturn at the stage of regular satellite formation and, to a lesser extent, the disk opacities). Constraints on the location of the regions of formation of the major satellites of Jupiter and Saturn are suggested based on the constructed models and simple analytical estimates concerning the formation of satellites in the accretion disks. It is shown that Callisto and Titan could hardly be formed at significantly greater distances from their planets.  相似文献   

7.
A.G.W. Cameron 《Icarus》1973,18(3):407-450
Particle accumulation processes are discussed for a variety of physical environments, ranging from the collapse phase of an interstellar cloud to the different parts of the models of the primitive solar nebula constructed by Cameron and Pine. Because of turbulence in the collapsing interstellar gas, it is concluded that interstellar grains accumulate into bodies with radii of a few tens of centimeters before the outer parts of the solar nebula are formed. These bodies can descend quite rapidly through the gas toward midplane of the nebula, and accumulation to planetary size can occur in a few thousand years. Substantial modifications of these processes take place in the outer convection zone of the solar nebula, but again it is concluded that bodies in that zone can grow to planetary size in a few thousand years.From the discussion of the interstellar collapse phase it is concluded that the angular momentum of the primitive solar nebula was predominantly of random turbulent origin, and that it is plausible that the primitive solar nebula should have possessed satellite nebulae in highly elliptical orbits. It is proposed that the comets were formed in these satellite nebulae.A number of other detailed conclusions are drawn from the analysis. It is shown to be plausible that an iron-rich planet should be formed in the inner part of the outer nebular convection zone. Discussions are given of the processes of planetary gas accretion, the formation of satellites, the T Tauri solar wind, and the dissipation of excess condensed material after the nebular gases have been removed by the T Tauri solar wind. It is shown that the present radial distances of the planets (but not Bode's Law) should be predicted reasonably well by a solar nebula model intermediate between the uniform and linear cases of Cameron and Pine.  相似文献   

8.
The origin of water in the inner Solar System is not well understood. It is believed that temperatures were too high in the accretion disk in the region of the terrestrial planets for hydrous phases to be thermodynamically stable. Suggested sources of water include direct adsorption of hydrogen from the nebula into magma oceans after the terrestrial planets formed, and delivery of asteroidal or cometary material from beyond the zone of the terrestrial planets. We explore a new idea, direct adsorption of water onto grains prior to planetary accretion. This hypothesis is motivated by the observation that the accretion disk from which our planetary system formed was composed of solid grains bathed in a gas dominated by hydrogen, helium, and oxygen. Some of that hydrogen and oxygen combined to make water vapor. We examine quantitatively adsorption of water onto grains in the inner Solar System accretion disk by exploring the adsorption dynamics of water molecules onto forsterite surfaces via kinetic Monte Carlo simulations. We conclude that many Earth oceans of water could be adsorbed.  相似文献   

9.
Gas giant planets have been detected in orbit around an increasing number of nearby stars. Two theories have been advanced for the formation of such planets: core accretion and disk instability. Core accretion, the generally accepted mechanism, requires several million years or more to form a gas giant planet in a protoplanetary disk like the solar nebula. Disk instability, on the other hand, can form a gas giant protoplanet in a few hundred years. However, disk instability has previously been thought to be important only in relatively massive disks. New three-dimensional, "locally isothermal," hydrodynamical models without velocity damping show that a disk instability can form Jupiter-mass clumps, even in a disk with a mass (0.091 M middle dot in circle within 20 AU) low enough to be in the range inferred for the solar nebula. The clumps form with initially eccentric orbits, and their survival will depend on their ability to contract to higher densities before they can be tidally disrupted at successive periastrons. Because the disk mass in these models is comparable to that apparently required for the core accretion mechanism to operate, the models imply that disk instability could obviate the core accretion mechanism in the solar nebula and elsewhere.  相似文献   

10.
Astronomical observations have shown that protoplanetary disks are dynamic objects through which mass is transported and accreted by the central star. This transport causes the disks to decrease in mass and cool over time, and such evolution is expected to have occurred in our own solar nebula. Age dating of meteorite constituents shows that their creation, evolution, and accumulation occupied several Myr, and over this time disk properties would evolve significantly. Moreover, on this timescale, solid particles decouple from the gas in the disk and their evolution follows a different path. It is in this context that we must understand how our own solar nebula evolved and what effects this evolution had on the primitive materials contained within it. Here we present a model which tracks how the distribution of water changes in an evolving disk as the water-bearing species experience condensation, accretion, transport, collisional destruction, and vaporization. Because solids are transported in a disk at different rates depending on their sizes, the motions will lead to water being concentrated in some regions of a disk and depleted in others. These enhancements and depletions are consistent with the conditions needed to explain some aspects of the chemistry of chondritic meteorites and formation of giant planets. The levels of concentration and depletion, as well as their locations, depend strongly on the combined effects of the gaseous disk evolution, the formation of rapidly migrating rubble, and the growth of immobile planetesimals. Understanding how these processes operate simultaneously is critical to developing our models for meteorite parent body formation in the Solar System and giant planet formation throughout the galaxy. We present examples of evolution under a range of plausible assumptions and demonstrate how the chemical evolution of the inner region of a protoplanetary disk is intimately connected to the physical processes which occur in the outer regions.  相似文献   

11.
Abstract— A widely held view of nebular evolution is that during the ~0.5 Ma while interstellar material was collapsing onto the disk, the latter grew in mass to the point of gravitational instability. It responded to this by losing axial symmetry, growing spiral arms that had the capacity to tidally redistribute disk mass (inward) and angular momentum (outward) and prevent further increase in the disk/protosun mass ratio. The spiral arms (density waves) rotated differently than the substance of the nebula, and in some parts of the disk, nebular material may have encountered the arms at supersonic velocities. The disk gas, and solid particles entrained in it, would have been heated to some degree when they passed through shock fronts at the leading edges of the spiral arms. The present paper proposes this was the energetic nebular setting or environment that has long been sought, in which the material now in the planets and chondritic meteorites was thermally processed.  相似文献   

12.
Abstract— Redistribution or loss of batches of condensate from a cooling protosolar nebula is generally thought to have led to the formation of the chemical groups of chondrites. This demands a nebula hot enough for silicate vaporization over 1–3 AU, the region where chondrites formed. Alternatively, heating of a protosolar accretion disk may have been confined to an annular zone at its inner edge, ?0.06 AU from the protosun. Most infalling matter was accreted by the protosun, but a proportion was heated and carried outwards by an x‐wind. Shu et al. (1996, 1997) proposed that larger objects such as chondrules and calcium‐aluminum‐rich inclusions (CAIs) were returned to the disk at asteroidal distances by sedimentation from the x‐wind. Fine dust and gas were lost to space. The model implies that solids were not lost from the cold disk. The chemical compositions of the chondrite groups were produced by mixing different proportions of CAIs and chondrules with disk solids of CI composition. Heating at the inner edge of the disk was accompanied by particle irradiation, which synthesized nuclides including 26Al. The x‐wind model can produce CAIs, not chondrules, and allows survival of presolar grains >0.06 AU from the protosun. Normalization to Al and CI indicates that non‐carbonaceous chondrites may be disk material that gained a Si‐ and Mg‐enriched fraction. Carbonaceous chondrites are different; they appear to be CI that lost lithophile elements more volatile than Ca. Five carbonaceous chondrite groups also lost Ni and Fe but the CH group gained siderophiles. Elemental loss from CI is incompatible with the x‐wind model. Silicon and CI normalization confirms that the CM, CO, CK and CV groups may be CI that gained refractories as CAIs. The Si‐, Mg‐rich fraction may have formed by selective vaporization followed by precipitation on grains in the x‐wind. This fractional distillation mechanism can account for lithophile element abundances in non‐carbonaceous chondrite groups, but an additional process is required for the loss of Ca and Mn in the EL group and for fractionated siderophile abundances in the H, L and LL groups. Heated and recycled fractions were not homogenized across the disk so the chondrite groups were established in a single cycle of enhanced protosolar activity in lt;104 years, the time for a millimeter‐sized particle to drift into the Sun from 2 to 3 AU, due to gas‐drag.  相似文献   

13.
We have constructed a model of the solar nebula that allows for the temperature and pressure distributions at various stages of its evolution to be calculated. The mass flux from the accretion envelope to the disk and from the disk to the Sun, the turbulent viscosity parameter α, the opacity of the disk material, and the initial angular momentum of the protosun are the input model parameters that are varied. We also take into account the changes in the luminosity and radius of the young Sun. The input model parameters are based mostly on data obtained from observations of young solar-type stars with disks. To correct the input parameters, we use the mass and chemical composition of Jupiter, as well as models of its internal structure and formation that allow constraints to be imposed on the temperature and surface density of the protoplanetary disk in Jupiter’s formation zone. Given the derived constraints on the input parameters, we have calculated models of the solar nebula at successive stages of its evolution: the formation inside the accretion envelope, the evolution around the young Sun going through the T Tauri stage, and the formation and compaction of a thin dust layer (subdisk) in the disk midplane. We have found the following evolutionary trend: an increase in the temperature of the disk at the stage of its formation, cooling at the T Tauri stage, and the subsequent internal heating of the dust subdisk by turbulence dissipation that causes a temperature rise in the formation zone of the terrestrial planets at the high subdisk density and the opacity in this zone. We have obtained the probable ranges of temperatures in the disk midplane, i.e., the temperatures of the protoplanetary material in the formation region of the terrestrial planets at the initial stage of their formation.  相似文献   

14.
R. Brunetto  T. Pino  A.-T. Cao  G. Strazzulla 《Icarus》2009,200(1):323-3884
We use a low pressure flame to produce soot by-products as possible analogues of the carbonaceous dust present in diverse astrophysical environments, such as circumstellar shells, diffuse interstellar medium, planetary disks, as well as in our own Solar System. Several soot samples, displaying an initial chemical diversity from aromatic to aliphatic dominated material, are irradiated with 200-400 keV H+, He+, and Ar++ ions, with fluences comprised between 1014 and 1016 ions/cm2, to simulate expected radiation induced modification on extraterrestrial carbon. The evolution of the samples is monitored using Raman spectroscopy, before, during, and after irradiation. A detailed analysis of the first- and second-order Raman spectra is performed, using a fitting combination of Lorentzian and/or Gaussian-shaped bands. Upon irradiation, the samples evolve toward an amorphous carbon phase. The results suggest that the observed variations are more related to vacancy formation than ionization processes. A comparison with Raman spectra of extraterrestrial organic matter and other irradiation experiments of astrophysically relevant carbonaceous materials is presented. The results are consistent with previous experiments showing mostly amorphization of various carbonaceous materials. Irradiated soots have Raman spectra similar to those of some meteorites, IDPs, and Comet Wild 2 grains collected by the Stardust mission. Since the early-Sun expected irradiation fluxes sufficient for amorphization are compatible with accretion timescales, our results support the idea that insoluble organic matter (IOM) observed in primitive meteorites has experienced irradiation-induced amorphization prior to the accretion of the parent bodies, emphasizing the important role played by early solar nebula processing.  相似文献   

15.
Abstract— Forty‐three corundum grains (1–11 μm in size) and 5 corundum‐hibonite grains with corundum overgrown by hibonite (4–7 μm in size), were found in the matrix of the mineralogically pristine, ungrouped carbonaceous chondrite Acfer 094 by using cathodoluminescence imaging. Some of the corundum and corundum‐hibonite grains occur as aggregates of 2 to 6 grains having similar sizes. The oxygen isotopic compositions of some of the corundum‐bearing grains suggest their solar nebula origin. 26Al‐26Mg systematics of one corundum grain showed the canonical initial 26Al/27Al ratio, also suggesting a solar nebula origin. Quantitative evaluation of condensation and accretion processes made based on the homogeneous nucleation of corundum, diffusion‐controlled hibonite formation, collisions of grains in the nebula, and critical velocity for sticking, indicates that, in contrast to the hibonite‐bearing aggregates of corundum grains, the hibonite‐free corundum aggregates could not have formed in the slowly cooling nebular region with solar composition. We suggest instead that such aggregates formed near the protosun, either in a region that stayed above the condensation temperature of hibonite for a long time or in a chemically fractionated, Ca‐depleted region, and were subsequently physically removed from this hot region, e.g., by disk wind.  相似文献   

16.
We calculate the polarization of the radiation from an optically thick accretion disk with a vertical averaged magnetic field. The polarization arises from the scattering of light by free electrons in a magnetized disk plasma. The Faraday rotation of the polarization plane during the propagation of a photon in a medium with a magnetic field is considered as the main effect. We discuss various models of optically thick accretion disks with a vertical averaged magnetic field. Our main goal is to derive simple asymptotic formulas for the polarization of radiation in the case where the Faraday rotation angle Ψ ≫ 1 at the Thomson optical depth τ = 1. The results of our calculations allow the magnetic field strength in the region of the marginally stable orbit near a black hole to be estimated from polarimetric observations, including X-ray observations expected in the future. Since the polarization spectrum of the radiation strongly depends on the accretion disk model, a realistic physical model of the accretion disk can be determined from data on the polarization of its radiation.  相似文献   

17.
F.J. Ciesla 《Icarus》2010,208(1):455-467
Refractory objects such as Calcium, Aluminum-rich Inclusions, Amoeboid Olivine Aggregates, and crystalline silicates, are found in primitive bodies throughout our Solar System. It is believed that these objects formed in the hot, inner solar nebula and were redistributed during the mass and angular momentum transport that took place during its early evolution. The ages of these objects thus offer possible clues about the timing and duration of this transport. Here we study how the dynamics of these refractory objects in the evolving solar nebula affected the age distribution of the grains that were available to be incorporated into planetesimals throughout the Solar System. It is found that while the high temperatures and conditions needed to form these refractory objects may have persisted for millions of years, it is those objects that formed in the first 105 years that dominate (make up over 90%) those that survive throughout most of the nebula. This is due to two effects: (1) the largest numbers of refractory grains are formed at this time period, as the disk is rapidly drained of mass during subsequent evolution and (2) the initially rapid spreading of the disk due to angular momentum transport helps preserve this early generation of grains as opposed to later generations. This implies that most refractory objects found in meteorites and comets formed in the first 105 years after the nebula formed. As these objects contained live 26Al, this constrains the time when short-lived radionuclides were introduced to the Solar System to no later than 105 years after the nebula formed. Further, this implies that the t=0 as defined by meteoritic materials represents at most, the instant when the solar nebula finished accreting significant amounts of materials from its parent molecular cloud.  相似文献   

18.
The interaction of dust grains with each other in a finite-temperature solar nebula are examined, taking into account the important fact that such grains would carry net steady-state charges like those of grains in interstellar clouds. This charge is given by the well-known Spitzer relation. It provides a screening mechanism that operates during accretion and results in bodies of differing compositions depending on the local temperature in the nebula. In a typical nebula, it is found that planetesimals of 0.1–102-cm size form in a time of order 106–107 years. These planetesimals are of iron and stone and mixed composition in the inner solar system, but of mixed composition only in the outer solar system. The predictions of this type of charged-dust accretion can be compared to known data on meteorites and the composition of the planets.  相似文献   

19.
Alan Paul Boss 《Icarus》1982,51(3):623-632
Theories of solar system formation often presuppose the existence of the protosun and an accompanying preplanetary nebula. Numerical three-dimensional calculations are presented which demonstrate the possibility of formation of a co-orbital, triple protostellar system, which is unstable to decay to a binary and an ejected single star. The calculations are used to construct a plausible scenario for presolar nebula formation based on a hierarchy of collapse and fragmentation. While this sequence is unlikely to produce many single stars, it remains a possible sequence for the formation of the presolar nebula.  相似文献   

20.
The current state of knowledge about circumstellar matter of young stellar objects is briefly reviewed. It appears that some very young stars yet to accrete substantial amounts of mass may be seen through their dusty infalling envelopes even at optical wavelengths, because of the presence of holes or large departures from spherical symmetry in the envelopes. The evidence for this picture is summarized in the context of one wellstudied young star, HL Tau, indicating that much of the large-scale structure originally identified as a rotating disk is probably a flattened infalling envelope. Departures from spherical symmetry in protostellar clouds are likely to lead to quite flattened structures once collapse gets under way, further suggesting that infall in large-scale toroids may be a general feature of low-mass star formation. The best kinematic evidence for Keplerian disk rotation comes from optical and near-infrared high-resolution spectroscopy of the innermost regions of circumstellar disks. Disk masses are uncertain but are likely to be at least the order of minimum mass solar nebula models, if not much larger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号