首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gap models have been used extensively in ecological studies of forest structure and succession, and they should be useful tools for studying potential responses of forests to climatic change. There is a wide variety of gap models with different degrees of physiological detail, and the manner in which the effects of climatic factors are analyzed varies across that range of detail. Here we consider how well the current suite of gap models can accommodate climatic-change issues, and we suggest what physiological attributes and responses should be added to better represent responses of aboveground growth and competition. Whether a gap model is based on highly empirical, aggregated growth functions or more mechanistic expressions of carbon uptake and allocation, the greatest challenge will be to express allocation correctly. For example, incorporating effects of elevated CO2 requires that the fixed allometry between stem volume and leaf area be made flexible. Simulation of the effects of climatic warming should incorporate the possibility of a longer growing season and acclimation of growth processes to changing temperature. To accommodate climatic-change factors, some of the simplicity of gap models must be sacrificed by increasing the amount of physiological detail, but it is important that the capability of the models to predict competition and successional dynamics not be sacrificed.  相似文献   

2.
The degree of general applicability across Europe currently achieved with several forest succession models is assessed, data needs and steps for further model development are identified and the role physiology based models can play in this process is evaluated. To this end, six forest succession models (DISCFORM, ForClim, FORSKA-M, GUESS, PICUS v1.2, SIERRA) are applied to simulate stand structure and species composition at 5 European pristine forest sites in different climatic regions. The models are initialized with site-specific soil information and driven with climate data from nearby weather stations. Predicted species composition and stand structure are compared to inventory data. Similarity and dissimilarity in the model results under current climatic conditions as well as the predicted responses to six climate change scenarios are discussed. All models produce good results in the prediction of the right tree functional types. In about half the cases, the dominating species are predicted correctly under the current climate. Where deviations occur, they often represent a shift of the species spectrum towards more drought tolerant species. Results for climate change scenarios indicate temperature driven changes in the alpine elevational vegetation belts at humid sites and a high sensitivity of forest composition and biomass of boreal and temperate deciduous forests to changes in precipitation as mediated by summer drought. Restricted generality of the models is found insofar as models originally developed for alpine conditions clearly perform better at alpine sites than at boreal sites, and vice versa. We conclude that both the models and the input data need to be improved before the models can be used for a robust evaluation of forest dynamics under climate change scenarios across Europe. Recommendations for model improvements, further model testing and the use of physiology based succession models are made.  相似文献   

3.
Climate Change Effects on Plant Growth, Crop Yield and Livestock   总被引:1,自引:0,他引:1  
A review is given of the state of knowledge in the field of assessing climate change impacts on agricultural crops and livestock. Starting from the basic processes controlling plant growth and development, the possible impacts and interactions of climatic and other biophysical variables in different agro-environments are highlighted. Qualitative and quantitative estimations of shifts in biomass production and water relations, inter-plant competition and crop species adaptability are discussed. Special attention is given to the problems encountered when scaling up physiological responses at the leaf- and plant level to yield estimates at regional to global levels by using crop simulation models in combination with geo-referenced, agro-ecological databases. Some non-linear crop responses to environmental changes and their relations to adaptability and vulnerability of agro-ecosystems are discussed.  相似文献   

4.
Effective policies for dealing with anticipated climatic changes must reflect the two-way interactions between climate, forests and society. Considerable analysis has focused on one aspect of forests - timber production - at a local and regional scale, but no fully integrated global studies have been conducted. The appropriate ecological and economic models appear to be available to do so. Nontimber aspects of forests dominate the social values provided by many forests, especially remote or unmanaged lands where the impacts of climatic change are apt to be most significant. Policy questions related to these issues and lands are much less well understood. Policy options related to afforestation are well studied, but other ways the forest sector can help ameliorate climatic change merit more extensive analysis. Promising possibilities include carbon taxes to influence the management of extant forests, and materials policies to lengthen the life of wood products or to encourage the substitution of CO2-fixing wood products for ones manufactured from less benign materials.  相似文献   

5.
Process-based models used to investigate forest ecosystem response to climate change were not necessarily developed to include the effect of carbon dioxide (CO2) and temperature increases on physiological processes. Simulation of the impacts of climate change with such models may lead to questionable predictions. It is generally believed that significant shifts in the performance of black spruce (Picea mariana [Mill] B.S.P.) will occur under climate change. This species, which accounts for 64% of Ontario's coniferous growing stock and 80% of the annual allowable cut, represents important economic activity throughout the boreal forest region. Forest management planning requires relatively accurate productivity estimates. Thus, it is imperative to ensure that process-based models realistically predict the effect of climate change. In this study, CENTURY and FOREST-BGC models were calibrated for a productive, upland black spruce stand in northwestern Ontario. Even though both models predicted similar relative outcomes after 100 years of climate change, they disagreed on the impacts of temperature in combination with an increase in CO2. Also, absolute amounts of carbon sequestered varied with climate change scenarios. Comparison of both models indicated that the representation of critical processes in these two forest ecosystem models is incomplete. For instance, the interactive effects of CO2 and temperature increases on physiological processes at stand and soil levels are not well documented nor are they easily identifiable in the models. Their incorporation into models is therefore problematic. Practitioners must consequently be wary of assumptions about the inclusion of critical processes in models.  相似文献   

6.
Comparing the Performance of Forest gap Models in North America   总被引:6,自引:0,他引:6  
Forest gap models have a long history in the study of forest dynamics, including predicting long-term succession patterns and assessing the potential impacts of climate change and air pollution on forest structure and composition. In most applications, existing models are adapted for the specific question at hand and little effort is devoted to evaluating alternative formulations for key processes, although this has the potential to significantly influence model behavior. In the present study, we explore the implications of alternative formulations for selected ecological processes via the comparison of several gap models. Baseline predictions of forest biomass, composition and size structure generated by several gap models are compared to each other and to measured data at boreal and temperate sites in North America. The models ForClim and LINKAGES v2.0 were compared based on simulations of a temperate forest site in Tennessee, whereas FORSKA-2V, BOREALIS and ForClim were compared at four boreal forest sites in central and eastern Canada. Results for present-day conditions were evaluated on their success in predicting forest cover, species composition, total biomass and stand density, and allocation of biomass among species. In addition, the sensitivity of each model to climatic changes was investigated using a suite of six climate change scenarios involving temperature and precipitation. In the temperate forest simulations, both ForClim and LINKAGES v2.0 predicted mixed mesophytic forests dominated by oak species, which is expected for this region of Tennessee. The models differed in their predictions of species composition as well as with respect to the simulated rates of succession. Simulated forest dynamics under the changed climates were qualitatively similar between the two models, although aboveground biomass and species composition in ForClim was more sensitive to drought than in LINKAGES v2.0. Under a warmer climate, the modeled effects of temperature on tree growth in LINKAGES v2.0 led to the unrealistic loss of several key species. In the boreal forest simulations, ForClim predicted significant forest growth at only the most mesic site, and failed to predict a realistic species composition. In contrast, FORSKA-2V and BOREALIS were successful in simulating forest cover, general species composition, and biomass at most sites. In the climate change scenarios, ForClim was highly sensitive, whereas the other two models exhibited sensitivity only at the drier central Canadian sites. Although the studied sites differ strongly with respect to both the climatic regime and the set of dominating species, a unifying feature emerged from these simulation exercises. The major differences in model behavior were brought about by differences in the internal representations of the seasonal water balance, and they point to an important limitation in some gap model formulations for assessing climate change impacts.  相似文献   

7.
The forest model ForClim was used to evaluate the applicability of gap models in complex topography when the climatic input data is provided by a global database of 0.5° resolution. The analysis was based on 12 grid cells along an altitudinal gradient in the European Alps. Forest dynamics were studied both under current climate as well as under four prescribed 2 × CO2 scenarios of climatic change obtained from General Circulation Models, which allowed to assess the sensitivity of mountainous forests to climatic change.Under current climate, ForClim produces plausible patterns of species composition in space and time, although the results for single grid cells sometimes are not representative of reality due to the limited precision of the climatic input data.Under the scenarios of climatic change, three responses of the vegetation are observed, i.e., afforestation, gradual changes of the species composition, and dieback of today's forest. In some cases widely differing species compositions are obtained depending on the climate scenario used, suggesting that mountainous forests are quite sensitive to climatic change. Some of the new forests have analogs on the modern landscape, but in other cases non-analog communities are formed, pointing at the importance of the individualistic response of species to climate.The applicability of gap models on a regular grid in a complex topography is discussed. It is concluded that for their application on a continental scale, it would be desirable to replace the species in the models by plant functional types. It is suggested that simulation studies like the present one must not be interpreted as predictions of the future fate of forests, but as means to assess their sensitivity to climatic change.  相似文献   

8.
The climatic warming and humidification observed in the arid region of Northwest China(ARNC) and their impacts on the ecological environment have become an issue of concern. The associated multi-scale characteristics and environmental responses are currently poorly understood. Using data from satellite remote sensing, field observations, and the Coupled Model Intercomparison Project phase 6, this paper systematically analyzes the process and scale characteristics of the climatic warming and humidification in the ARNC and their impacts on ecological vegetation. The results show that not only have temperature and precipitation increased significantly in the ARNC over the past 60 years, but the increasing trend of precipitation is also obviously intensifying. The dryness index, which comprehensively considers the effects of precipitation and temperature, has clearly decreased, and the trend in humidification has increased. Spatially, the trend of temperature increase has occurred over the entire region, while 93.4% of the region has experienced an increase in precipitation, suggesting a spatially consistent climatic warming and humidification throughout the ARNC. Long-term trends and interannual changes in temperature and precipitation dominate the changes in climatic warming and humidification. Compared to interannual variations in temperature, the trend change of temperature contributes more to the overall temperature change. However, the contribution of interannual variations in precipitation is greater than that of the precipitation trend to the overall precipitation change. The current climatic warming and humidification generally promote the growth of ecological vegetation. Since the 1980 s,82.4% of the regional vegetation has thrived. The vegetation index has a significant positive correlation with precipitation and temperature. However, it responds more significantly to interannual precipitation variation, although the vegetation response varies significantly under different types of land use. The warming and humidification of the climate in the ARNC are probably related to intensifications of the westerly wind circulation and ascending air motions.They are expected to continue in the future, although the strength of the changes will probably be insufficient to significantly change the basic climate pattern in the ARNC. The results of this study provide helpful information for decision making related to China's "Belt and Road" development strategies.  相似文献   

9.
Micrometeorological and physiological measurements were used to develop Penman-Monteith models of evapotranspiration for a wheat field in eastern Nebraska, a forest in Tennessee, and a grassland in east-central Kansas. The model fit the measurements well over the periods of observation. Model sensitivities to changes in climatic and physiological parameters were then analyzed. The range of changes considered was established from recent general circulation model output and from review of recent plant physiological research. Finally, climate change scenarios produced by general circulation models for the locations and seasons matching the observed data were applied to the micrometeorological models. Simulation studies show that when all climatic and plant factors are considered, evapotranspiration estimates can differ greatly from those that consider only temperature. Depending on ecosystem and on climate and plant input used, evapotranspiration can differ from the control (no climate or plant change) by about -20 to +40%.  相似文献   

10.
Climate change will have serious repercussions for agriculture, ecosystems, and farmer livelihoods in Central America. Smallholder farmers are particularly vulnerable due to their reliance on agriculture and ecosystem services for their livelihoods. There is an urgent need to develop national and local adaptation responses to reduce these impacts, yet evidence from historical climate change is fragmentary. Modeling efforts help bridge this gap. Here, we review the past decade of research on agricultural and ecological climate change impact models for Central America. The results of this review provide insights into the expected impacts of climate change and suggest policy actions that can help minimize these impacts. Modeling indicates future climate-driven changes, often declines, in suitability for Central American crops. Declines in suitability for coffee, a central crop in the regional economy, are noteworthy. Ecosystem models suggest that climate-driven changes are likely at low- and high-elevation montane forest transitions. Modeling of vulnerability suggests that smallholders in many parts of the region have one or more vulnerability factors that put them at risk. Initial adaptation policies can be guided by these existing modeling results. At the same time, improved modeling is being developed that will allow policy action specifically targeted to vulnerable groups, crops, and locations. We suggest that more robust modeling of ecological responses to climate change, improved representation of the region in climate models, and simulation of climate influences on crop yields and diseases (especially coffee leaf rust) are key priorities for future research.  相似文献   

11.
Sensitivity of agricultural production to climatic change   总被引:2,自引:0,他引:2  
Although the range of cultivated species is relatively restricted, domestic plants and animals exhibit considerable resilience to stochastic shocks, and the study of their ecological adaptability and critical physiological and phenological requirements is a valuable first step in determining their possible response to climatic change. Methods of assessing agroclimatic suitability and their limitations are discussed, and suggestions are made for simulating the probable impact of shifts in the main climatic parameters on the productivity and spatial distribution of key crops and livestock. Some regions and crops are climatically more vulnerable than others: some regions (in particular North America) are strategically more critical to the stability of world food supplies, while in others resources for agricultural production are under more severe pressure.As well as attempts to forecast long-term climatic trends and their effects on agriculture, combating climatic variability merits high priority. This is an ever-present source of instability in production and could be enhanced in association with changing climate. Its magnitude differs widely among crops and geographical regions, but its impact from year to year is often greater than that predicted from climatic change even in extreme scenarios. The paper indicates a number of potentially desirable areas for action and suggests that several of these would be beneficial both as a buffer against short-term effects of variability and as a means of combating climatic change.  相似文献   

12.
The impacts of year-to-year and decade-to-decade climatic variations on some of the Pacific Northwest's key natural resources can be quantified to estimate sensitivity to regional climatic changes expected as part of anthropogenic global climatic change. Warmer, drier years, often associated with El Niño events and/or the warm phase of the Pacific Decadal Oscillation, tend to be associated with below-average snowpack, streamflow, and flood risk, below-average salmon survival, below-average forest growth, and above-average risk of forest fire. During the 20th century, the region experienced a warming of 0.8 °C. Using output from eight climate models, we project a further warming of 0.5–2.5 °C (central estimate 1.5 °C) by the 2020s, 1.5–3.2°C (2.3 °C) by the 2040s, and an increase in precipitation except in summer. The foremost impact of a warming climate will be the reduction of regional snowpack, which presently supplies water for ecosystems and human uses during the dry summers. Our understanding of past climate also illustrates the responses of human management systems to climatic stresses, and suggests that a warming of the rate projected would pose significant challenges to the management of natural resources. Resource managers and planners currently have few plans for adapting to or mitigating the ecological and economic effects of climatic change.  相似文献   

13.
We used an individual-based forest simulator (a gap model) to assess the potential effects of anthropogenic climatic change on conifer forests of the Pacific Northwestern United States. Steady-state simulations suggested that forest zones could be shifted on the order of 500–1000 m in elevation, which could lead to the local extirpation of some high-altitude species. For low-elevation sites, species which currently are more abundant hundreds of kilometers to the south would be favored under greenhouse scenarios. Simulations of transient responses suggested that forest stands could show complex responses depending on initial species composition, stand age and canopy development, and the magnitude and duration of climatic warming. Assumptions about species response to temperature, which are crucial to the model's behaviors, were evaluated using data on species temperature limits inferred from regional distributions. The high level of within-species variability in these data, and other confounding factors influencing species distributions, argue against over-interpreting simulations. We suggest how we might resolve critical uncertainties with further research.  相似文献   

14.
An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change across a broad range of climates and mountain ecosystems in the northwestern U.S.A.  相似文献   

15.
Assessing the impact of climatic change on food production   总被引:1,自引:0,他引:1  
Attempts to assess the impact of a hypothetical climatic change on food production have relied on the use of statistical models which predict crop yields using various climatic variables. It is emphasized that the coefficients of these models are not universal constants, but rather statistical estimates subject to several sources of error. Thus, any statement regarding the estimated impact of climatic change on food production must be qualified appropriately.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

16.
The response of plant species to future climate conditions is probably dependent on their ecological characteristics, including climatic niche, demographic rates and functional traits. Using forest inventory data from 27 dominant woody species in Spanish forests, we explore the relationships between species characteristics and projected changes in their average climatic suitability (occurrence of suitable climatic conditions for a species in a given territory) obtained by empirical niche-based models, under a business-as-usual climate change scenario (A1, HadCM3, 2001–2100). We hypothesize that most species will suffer a decline in climatic suitability, with a less severe for species (i) currently living in more arid climates or exhibiting a broader current climatic niche; (ii) with higher current growth rates; (iii) with functional traits related to resistance to water deficits. The analysis confirm our hypothesis since apart from a few Mediterranean species, most species decrease their climatic suitability in the region under future climate, characterized by increased aridity. Also, species living in warmer locations or under a wider range of climatic conditions tend to experience less decrease in climatic suitability. As hypothesized, a positive relationship was detected between current relative growth rates and increase in future climatic suitability. Nevertheless, current tree mortality did not correlate with changes in future climatic suitability. In contrast with our hypothesis, functional traits did not show a clear relationship with changes in climate suitability; instead species often presented idiosyncratic responses that, in some cases, could reflect past management. These results suggest that the extrapolation of species performance to future climatic scenarios based on current patterns of dominance is constrained by factors other than species autoecology, particularly human activity.  相似文献   

17.
Three gap models, KOPIDE, NEWCOP, and ForClim, were compared with respect to their structure and behavior at four sites along an elevational gradient on Changbai Mt., northeastern China, under current climate and six climate change scenarios. This study intends to compare the three gap models under identical conditions, using a standardized simulation protocol. The three models were originally developed with different backgrounds and for different purposes. While they are relatively similar in the level of structural detail they include, they still differ in many respects regarding the assumptions that are made for representing specific ecological processes.The simulations showed that none of the three gap models provides satisfactory results in all situations; each gap model has strong and weak points in its behavior. While all models are fairly successful in simulating the composition of dominant species along the gradient under current climatic conditions, their projections under a set of hypothetical scenarios of climatic change diverge rather strongly. The analysis of these simulation results shows that several problem areas need to be addressed before any of the models can be used for a reliable impact assessment.Recommendations for improvements of the models are made, including the formulation of temperature and drought effects on tree establishment and tree growth, the size of the species pool, the appropriate choice of patch size and disturbance regimes, and allometric relationships. When aiming to use gap models under new environmental conditions, we propose to carefully reconsider their formulations based on our knowledge of the relevant processes in the region under concern, instead of using the models in an `as-is' mode.  相似文献   

18.
Scaling Issues in Forest Succession Modelling   总被引:5,自引:0,他引:5  
This paper reviews scaling issues in forest succession modelling, focusing on forest gap models. Two modes of scaling are distinguished: (1) implicit scaling, i.e. taking scale-dependent features into account while developing model equations, and (2) explicit scaling, i.e. using procedures that typically involve numerical simulation to scale up the response of a local model in space and/or time. Special attention is paid to spatial upscaling methods, and downscaling is covered with respect to deriving scenarios of climatic change to drive gap models in impact assessments. When examining the equations used to represent ecological processes in forest gap models, it becomes evident that implicit scaling is relevant, but has not always been fully taken into consideration. A categorization from the literature is used to distinguish four methods for explicit upscaling of ecological models in space: (1) Lumping, (2) Direct extrapolation, (3) Extrapolation by expected value, and (4) Explicit integration. Examples from gap model studies are used to elaborate the potential and limitations of these methods, showing that upscaling to areas as large as 3000 km2 is possible, given that there are no significant disturbances such as fires or insect outbreaks at the landscape scale. Regarding temporal upscaling, we find that it is important to consider migrational lags, i.e. limited availability of propagules, if one wants to assess the transient behaviour of forests in a changing climate, specifically with respect to carbon storage and the associated feedbacks to the atmospheric CO2 content. Regarding downscaling, the ecological effects of different climate scenarios for the year 2100 were compared at a range of sites in central Europe. The derivation of the scenarios is based on (1) imposing GCM grid-cell average changes of temperature and precipitation on the local weather records; (2) a qualitative downscaling technique applied by the IPCC for central and southern Europe; and (3) statistical downscaling relating large-scale circulation patterns to local weather records. Widely different forest compositions may be obtained depending on the local climate scenario, suggesting that the downscaling issue is quite important for assessments of the ecological impacts of climatic change on forests.  相似文献   

19.
Climatic change impacts on the ecohydrology of Mediterranean watersheds   总被引:2,自引:0,他引:2  
Impact of climate change on ecohydrologic processes of Mediterranean watersheds are significant and require quick action toward improving adaptation and management of fragile system. Increase in water shortages and land use can alter the water balance and ecological health of the watershed systems. Intensification of land use, increase in water abstraction, and decline in water quality can be enhanced by changes in temperature and precipitation regimes. Ecohydrologic changes from climatic impacts alter runoff, evapotranspiration, surface storage, and soil moisture that directly affect biota and habitat of the region. This paper reviews expected impacts of climatic change on the ecohydrology of watershed systems of the Mediterranean and identifies adaptation strategies to increase the resilience of the systems. A spatial assessment of changes in temperature and precipitation estimates from a multimodel ensemble is used to identify potential climatic impacts on watershed systems. This is augmented with literature on ecohydrologic impacts in watershed systems of the region. Hydrologic implications are discussed through the lens of geographic distribution and upstream-downstream dynamics in watershed systems. Specific implications of climatic change studied are on runoff, evapotranspiration, soil moisture, lake levels, water quality, habitat, species distribution, biodiversity, and economic status of countries. It is observed that climatic change can have significant impacts on the ecohydrologic processes in the Mediterranean watersheds. Vulnerability varied depending on the geography, landscape characteristics, and human activities in a watershed. Increasing the resilience of watershed systems can be an effective strategy to adapt to climatic impacts. Several strategies are identified that can increase the resilience of the watersheds to climatic and land use change stress. Understanding the ecohydrologic processes is vital to development of effective long-term strategies to improve the resilience of watersheds. There is need for further research into ecohydrologic dynamics at multiple scales, improved resolution of climatic predictions to local scales, and implications of disruptions on regional economies.  相似文献   

20.
Gap models were introduced over 30 years ago to examine the dynamics of forestvegetation structure and species composition based on plant populationdynamics. While there have been many advances, gap models remain heavilycriticized for their lack of attention to physiology, particularly as itaffects their ability to simulate forest response to elevated CO2concentration and climatic change. In this paper we provide a summary andsynthesis of the results from the Gap Model Comparison Workshop that was heldin July, 1999 at Pingree Park, Colorado (U.S.A.). We identify some grandchallenges for the future development of forest gap models and discusslimitations as well as potentials of this modeling approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号