首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismic reflection data obtained with a 500-channel digital streamer cable can be processed by array-forming techniques such as optimal weighting of individual channels and beam-steering. Such processing can improve the resolution of horizons at early and intermediate times as well as enhance the continuity and clarity of later reflections. The data may also be processed to simulate results obtainable with a wide variety of conventional streamers. To demonstrate data enhancement obtained by these processing techniques, a selected line was surveyed in the Gulf of Mexico, first with the 500-channel digital system and then with a conventional 48-channel streamer. Comparison of stacked sections shows that: 1) long steered arrays can enhance deeper events while retaining the high-frequency content of shallow data, and 2) short arrays at small group intervals allow finer vertical resolution of shallow events, as well as finer lateral resolution at all depths. When the digital streamer data were processed to duplicate the 48-channel conventional data, the digital system yielded somewhat better results; this improvement may be attributed in part to inherent advantages of digital telemetry over analog telemetry.  相似文献   

2.
海洋高分辨率地震调查主要受震源系统、接收系统、缆源的调谐组合技术、地震记录系统和野外作业条件的影响。缆源的调谐组合技术是整个方法研究最为关键的环节之一。通过对“电缆、震源的沉放深度”等野外参数的合理组合,达到最理想的勘探效果。受地震勘探中“鬼波效应”的影响,缆源的调谐组合参数与地震系统的接收频率直接相关,对地震调查资料影响很大。文中从地震系统的滤波效应、直达波与鬼波传播路径及时间差及野外资料的处理对比和理论计算,分析了直达波和鬼波的综合效应,结果表明理论与实际资料在陷波点及幅频特性方面非常一致。研究结果在“海洋天然气水合物调查”项目中得到了应用,对缆源沉放深度的确定具有一定的指导意义。  相似文献   

3.
The development and initial field test results of the Autonomous Ocean Profiler (AOP) are described. The profiler uses a hydrodynamic lift device to fly the instrument package up and down the water column along a taut vertical cable. Because the local currents drive the platform's vertical motion, power requirements are low, and therefore long, unattached deployments are possible. By using ARGOS or GOES satellite retrieval networks, the system can supply near-real-time data. The system provides profile data at very high vertical resolution in contrast to conventional buoys, which gather data only at fixed sensor depths. Because only a single set of sensors is required to cover the vertical range desired, the system is low cost and, for many applications, expendable. The initial deployment configuration is as an Arctic drifting buoy  相似文献   

4.
海洋环境噪声垂直分布测试和分析   总被引:5,自引:0,他引:5  
采用船舷法对某海域海洋环境噪声垂直分布进行了测量.数据处理与分析结果表明,在6种接收深度下,当地的海面风生破碎波浪噪声对环境噪声有显著贡献.给出了所测海域环境噪声在0.1~20.0kHz频段的宽带声级和接收深度以及多种频率谱级与风速的对数之间的关系.1.0~4.0kHz频段的谱级与风速的对数呈良好的线性关系,且基本上不受接收深度的影响.  相似文献   

5.
Short acoustical signals like those caused by explosions will in a waveguide split into mode arrivals. If the distance is long enough, they can at the receiver be resolved in time with appropriate narrowband filters. They can simultaneously be resolved in vertical angle (incidence-) with an endfire array and a beamformer. Combined in a beam-time diagram the arrivals will line up along a straight line. The slope of this line is invariant with frequency, mode indexes, source and receiver depths. It can conveniently be linked to the so-called waveguide invariant /spl beta/. An alternative approach to /spl beta/ is to compute it from the bathymetric profile. This is valid for range variable waveguides under adiabatic conditions, constant water sound speed over a harder bottom, and small grazing angles. Together these two approaches to /spl beta/ can be combined in a formula, where direct range determination is the end product. The applicability of the method is demonstrated on data from an experiment at sea. An 820-m array with 10 hydrophones was deployed at the bottom in 320-m water depth. For two endfire runs in opposite directions, small explosive charges out to 115 km were used as sound sources. Typical range estimation errors were 5-10%.  相似文献   

6.
The Pasisar seismic acquisition system combines a source at the sea surface and a deep-towed single channel streamer. This unconventional device geometry reduces the width of the first Fresnel zone which increases the lateral resolution. However, the device acquisition geometry generates artifacts on seismic profiles and induces large incidence angles of the seismic signal. A specific processing sequence must be applied to the data to obtain a readable seismic section. Penetration of the seismic signal depends on the energy of the signal reaching the seafloor and on its incidence angle. Because of smaller source energy, 800 Joules Sparker data cannot be acquired in water depth larger than 1500 m for example, whereas there is no depth limit for the use of this system with air gun sources. Differential acoustic absorption of seismic frequencies (below 1000 Hz) in the water column is negligible when compared with wave fronts expansion. Thus, the horizontal resolution of any seismic system strongly depends on the frequency spectrum of the seismic source and on the travel distances. Pasisar and conventional seismic profiles being usually simultaneously recorded, we illustrate the interest of using a hybrid seismic device by comparing horizontal resolutions as well as signal-to-noise ratio obtained with both the Pasisar and conventional systems. In addition, by carefully picking time arrivals of a reflection on simultaneously recorded surface and deep-towed seismic records, it is possible to estimate the average interval seismic velocity. We present the simplified example of a horizontal reflector.  相似文献   

7.
A new seismic source for carrying out high resolution measurements of deep ocean crustal structure has been constructed and successfully used in a number of ocean bottom refraction experiments on the Mid Atlantic Ridge near 23° N. The source is towed within 100 m of the ocean floor on a conventional 0.68 coaxial cable and is capable of firing, upon command from the research vessel, up to 48 individual 2.3 kg explosive charges. The explosive used was commercially available Penta-Erythritol-Tetra Nitrate (PETN) that was activated by 14.9 gm m–1 Primacord and DuPont E-97 electrical detonators. For safety reasons each detonator was fitted with a pressure switch that maintained a short until the source was at depth in excess of approximately 300 m. In addition, a mechanical protector isolated the detonator from the main charge and was only removed by the physical release of the explosive from the source package. These and other safety precautions resulted in several misfires but three experiments were successfully completed during the summer of 1985 at source depths of 3000–4000 m.  相似文献   

8.
An ocean surface current radar (OSCR) in the very high frequency (VHF) mode was deployed in South Florida Ocean Measurement Center (SFOMC) during the summer of 1999. During this period, a 29-d continuous time series of vector surface currents was acquired starting on 9 July 1999 and ending 7 August 1999. Over a 20-min sample interval, the VHF radar mapped coastal ocean currents over a 7.5 km × 8 km domain with a horizontal resolution of 250 m at 700 grid points. A total of 2078 snapshots of the two-dimensional current vectors were acquired during this time series and of these samples, only 69 samples (3.3%) were missing from the time series. During this period, complex surface circulation patterns were observed that included coherent, submesoscale vortices with diameters of 2 to 3 km inshore of the Florida Current. Comparisons to subsurface measurements from moored and ship-board acoustic Doppler current profiles revealed regression slopes of close to unity with biases ranging from 4 to 8 cm s-1 between surface and subsurface measurements at 3 to 4 m beneath the surface. Correlation coefficients were 0.8 or above with phases of - 10 to - 20° suggestive of an anticyclonic veering of current with depth relative to the surface current. The radar-derived surface current field provided spatial context for an observational network using mooring-, ship- and autonomous underwater vehicle-sensor packages that were deployed at the SFOMC  相似文献   

9.
Three time-series sediment traps were deployed in the Japan Trench at 40°26′N, 144°28′E, from October 1994 to May 1995. The depths were approximately 1, 4.2 and 6.8 km and the water depth was 7150 m. There were large mass fluxes in spring at 1 and 4.2 km depths, whereas increased fluxes appeared from 27 December 1994 to 29 January 1995, at 4.2 and 6.8 km depths. The 1994 Sanriku-Oki earthquake (Mw=7.7) occurred on 28 December 1994, at 40°27′N, 143°43′E, adjacent to the study site. Distinct increases in non-biogenic material were observed at both 4.2 and 6.8 km just after the earthquake; the material seems to have originated from the surface sediments, though differing Mn/Al of particulate materials at the two depths imply a difference in their source areas. Analysis indicates that the main part of the increased particulate fluxes at 6.8 km depth derived from the sediment on the eastern slope of the Japan Trench.  相似文献   

10.
Very high-frequency marine multichannel seismic reflection data generated by small-volume air- or waterguns allow detailed, high-resolution studies of sedimentary structures of the order of one to few metres wavelength. The high-frequency content, however, requires (1) a very exact knowledge of the source and receiver positions, and (2) the development of data processing methods which take this exact geometry into account. Static corrections are crucial for the quality of very high-frequency stacked data because static shifts caused by variations of the source and streamer depths are of the order of half to one dominant wavelength, so that they can lead to destructive interference during stacking of CDP sorted traces. As common surface-consistent residual static correction methods developed for land seismic data require fixed shot and receiver locations two simple and fast techniques have been developed for marine seismic data with moving sources and receivers to correct such static shifts. The first method – called CDP static correction method – is based on a simultaneous recording of Parasound sediment echosounder and multichannel seismic reflection data. It compares the depth information derived from the first arrivals of both data sets to calculate static correction time shifts for each seismic channel relative to the Parasound water depths. The second method – called average static correction method – utilises the fact that the streamer depth is mainly controlled by bird units, which keep the streamer in a predefined depth at certain increments but do not prevent the streamer from being slightly buoyant in-between. In case of calm weather conditions these streamer bendings mainly contribute to the overall static time shifts, whereas depth variations of the source are negligible. Hence, mean static correction time shifts are calculated for each channel by averaging the depth values determined at each geophone group position for several subsequent shots. Application of both methods to data of a high-resolution seismic survey of channel-levee systems on the Bengal Fan shows that the quality of the stacked section can be improved significantly compared to stacking results achieved without preceding static corrections. The optimised records show sedimentary features in great detail, that are not visible without static corrections. Limitations only result from the sea floor topography. The CDP static correction method generally provides more coherent reflections than the average static correction method but can only be applied in areas with rather flat sea floor, where no diffraction hyperbolae occur. In contrast, the average static correction method can also be used in regions with rough morphology, but the coherency of reflections is slightly reduced compared to the results of the CDP static correction method.  相似文献   

11.
A shallow-water high-frequency (HF) acoustic propagation experiment was conducted just off shore in Panama City, FL. Several broad-band high-resolution sources and receivers were mounted on stable platforms and deployed in water depths of 8-10 m. Signals covering the frequency range from 20 to 200 kHz were transmitted from the sources to two spatially separated receivers. The data were analyzed to provide estimates of the signal phase variances as a function of frequency and source-to-receiver range. These phase variabilities are correlated with small-scale water column thermal variabilities and ocean swell conditions  相似文献   

12.
13.
A case study: imaging OBS multiples of South China Sea   总被引:3,自引:0,他引:3  
The subseafloor structure offshore South China Sea was imaged using first-order water-layer multiples from ocean-bottom seismometer data and the results were compared to conventional imaging using primary reflections. The mirror-imaging method employs a primaries-only reverse time pre-stack depth migration algorithm to image the receiver ghosts. The additional travel path of the multiples through the water layer is accounted for by a simple manipulation of the velocity model and processing datum: the receivers lie not on the sea floor but on a sea surface twice as high as the true water column. Migration results show that the multiple-migrated image provides a much broader illumination of the subsurface than the conventional image using the primaries, especially for the very shallow reflections. The resulting image from mirror imaging has illumination comparable to the vertical incidence surface streamer (single-channel) reflection data.  相似文献   

14.
A permanent real-time geophysical observatory using a submarine cable was developed and deployed to monitor seismicity, tsunamis, and other geophysical phenomena in the southern Kurile subduction zone. The geophysical observatory comprises six bottom sensor units, two branching units, a main electro-optical cable with a length of 240 km and two land stations. The bottom sensor units are: 1) three ocean bottom broadband seismometers with hydrophone; 2) two pressure gauges (PGs); 3) a cable end station with environmental measurement sensors. Real-time data from all the undersea sensors are transmitted through the main electro-optical cable to the land station. The geophysical observatory was installed on the continental slope of the southern Kurile trench, southeast Hokkaido, Japan in July 1999. Examples of observed data are presented. Sensor noises and resolution are mentioned for the ocean bottom broadband seismometers and the PGs, respectively. An adaptable observation system including very broadband seismometers is scheduled to be connected to the branching unit in late 2001. The real-time geophysical observatory is expected to greatly advance the understanding of geophysical phenomena in the southern Kurile subduction zone  相似文献   

15.
Experimental results of the seismic profiling with bottom penetration up to 1000 m based on broadband signals and conducted in the Caspian Sea sites are presented. Use has been made of synchronized sequences of probing pulses with linear frequency modulation at a frequency deviation of 50 to100 Hz. The pulses were emitted by a towed sound source of an original design (acoustic power up to 300 W, frequency ranged from 100 to 1000 Hz) and received by a standard digital seismic streamer. The processing of the signals involved the matched filtering of the individual pulses and the trajectory accumulation of a long sequence of pulses lengthwise the horizontal-homogeneous reflecting layers of the bottom structure. The adaptive stacking procedure taking into account the linear inclinations of the individual layers allowed us to enlarge the stacking interval by up to 100 pulses and to increase the effective depth and the spatial resolution of the seismic profiling, which gave us a total increase of more than 30 dB in the S/N ratio. In our view, the seismic profiling using low-power (about 100 W) and broadband (up to several hundred Hz) coherent sound sources represents a promising technology for decreasing the hazardous impact on aquatic ecosystems. The approach developed is an alternative to the conventional technology of marine seismic prospecting based on powerful pulse sources of the shock type (air guns, sparkers) in the low frequency range (less than ~200 Hz).  相似文献   

16.
A 20 km long high resolution seismic reflection profile was carried out approximately 300 km southwest of Bermuda. The data were collected using a small airgun sound source and a single hydrophone receiver towed 100 m above the seafloor at a depth of 5400 m. Comparisons with nearby conventional seismic reflection profiles show the considerable improvement of resolving power provided by this method, particularly of the basement morphology beneath the 700 m thick sediment column. The data were recorded digitally and selected data examples show the enhancement provided by filtering, stacking, source deconvolution and corrections for hydrophone motion. The precise picture of basement topography that results from this data is compared with deep tow bathymetry profiles of the present day mid-Atlantic Ridge flanks, and is seen to be remarkably similar.  相似文献   

17.
A BM-04 microprocessor wave-tide gauge developed at the Shirshov Institute of Oceanology is used for the acquisition of data on the parameters of surface waves (the mean height \(\bar h\), the mean period \(\bar \tau \), the frequency spectrum S(ω), and so on) and the mean sea level ζ. As a wave gauge, the instrument can be deployed on the sea floor, on piles, and so on at depths down to 10 m in the near-shore zone and can be mounted on subsurface buoys offshore. As a tide gauge, the instrument can be used at depths down to 6000 m. The instruments were successfully tested and intercalibrated in the Black and Baltic seas and the Sea of Okhotsk.  相似文献   

18.
To perform geophysical and multidisciplinary real-time measurements on the ocean floor, it has been attempted to reuse decommissioned submarine cables. The VENUS project reuses the TPC-2, which is one of these systems and runs across the entire Philippine Sea Plate between Guam Island and Okinawa Island. The VENUS system comprises an ocean floor observatory, a submarine cable, and a land system. The major components of the ocean floor observatory are geophysical instruments and a telemetry system. There are seven scientific instrument units including broadband seismometers and a hydrophone array. Digital telemetry using the old analog telephone cable obtains high data accuracy and real-time accessibility to data from a laboratory on land. The bottom-telemetry system and a part of sensor units were installed at a depth of 2157 m on the landward slope of the Ryukyu (Nansei-Syoto) Trench on August 29, 1999. The data from the hydrophone array and tsunami gauge have been correctly transmitted to the data center. The rest of the scientific instruments will be deployed by deep-tow equipment and a remotely operated vehicle. Using a decommissioned submarine cable will greatly reduce construction costs compared to using a new cable system  相似文献   

19.
Low-frequency electromagnetic methods are used in geophysical exploration to detect the magnetic field distortion between a transmitter and receiver produced by locally conductive bodies. Both ground and airborne systems are in current use. It is possible to similarly conduct underwater geophysical exploration by using an underwater towed source of electromagnetic radiation and a receiving magnetic or electric field detector. The receiver can be towed on an auxiliary cable, mounted on a boom on the towing platform, or land based. An underwater towed electromagnetic source suitable for ocean-bottom exploration has been constructed, and its underwater propagation characteristics at low frequency have been studied. This underwater calibrated source (UCS) is 4 m long, weighs 383 kg in air, and can produce vertical and horizontal magnetic dipoles and a horizontal electric dipole. Powered by a current-feedback-controlled, high-power, modified sonar amplifier, the UCS can produce 9710 ampereturn.m2 of magnetic dipole or 200 A.m of electric dipole at 50 A at frequencies up to 200 Hz without significant attenuation from coil inductance. This paper concentrates on the mechanical, hydrodynamic, and magnetic design details of the UCS and the electrical system, consisting of the high-current drive power system and the shipboard monitoring system for attitude and depth detectors.  相似文献   

20.
R. M. Carter  L. Carter 《Marine Geology》1996,130(3-4):181-202
The Bounty Channel and Fan system provides the basis for a model for deep-sea channel and fan development in a rifted continental margin setting. The sedimentary system results from an interplay between tectonics (fan location; sediment source), turbidity currents (sediment supply), geostrophic currents (sediment reworking and distribution) and climate (sea level, and hence sediment supply and type). Today, sediment is shed from the collisional Southern Alps, part of the Pacific/Indo-Australian plate margin, and passes east across the adjacent shelf and into the Otago Fan complex at the head of the Bounty Trough. Paths of sediment supply, and locations of sediment deposition, are controlled by the bathymetry of the Bounty Trough, with axial slopes as high as 37 m/km (2°) towards the trough head, diminishing to around 3.5 m/km (0.2°) along the trough axis. The Bounty Fan is located 800 km further east, where the Bounty Channel debouches onto abyssal oceanic crust at the mouth of the Bounty Trough. The Bounty Fan comprises a basement controlled fan-channel complex with high leveed banks exhibiting fields of mud waves, and a northward-elongated middle fan. Channel-axis gradients diminish from 6 m/km (0.35°) or more on the upper fan to less than 1 m/km (<0.06°) on the lower fan. Parts of the left bank levee and almost the entire middle fan are being eroded and re-entrained within a Deep Western Boundary Current (DWBC), which passes along the eastern New Zealand margin at depths below 2000 m. The DWBC is the prime source of deep, cold water flow into the Pacific Ocean, with a volume of ca. 20 Sv and velocities up to 4 cm/s or greater. The mouth of the Bounty Channel, at a depth of 4950 m at the south end of the middle fan, acts as a point source for an abyssal sediment drift entrained northward under the DWBC at depths below 4300 m. The Bounty Fan probably originated in the early to middle Neogene, but has mostly been built during the last 3 Myr (Plio-Pleistocene), predominantly as climate-controlled sedimentary couplets of terrigenous, micaceous mud (acoustically reflective; glacial) and biopelagic ooze (acoustically transparent; interglacial), deposited under the pervasive influence of the DWBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号