首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological responses of Nitzschia palea Kiitzing, a freshwater diatom, to elevated CO2 were investigated and compared with those of a marine diatom, Chaetoceros muelleri Lemmermann previously reported. Elevated CO2 concentration to 700 μl/L increased the dissolved inorganic carbon (DIC) and lowered the pH in the cultures of N. palea, thus enhancing the growth by 4%-20% during the whole growth period. High CO2-grown N. palea cells showed lower levels of dark respiration rates and higher Ik values. Light-saturated photosynthetic rates and photosynthetic efficiencies decreased in N. palea with the doubling CO2 concentration in airflow to the bottom of cultures, although the doubling CO2 concentration in airflow to the surface cultures had few effects on these two photosynthetic parameters. N. palea cells were found to be capable of using HCO3- in addition to gaseous CO2, and the CO2 enrichment decreased their affinity for HCO3- and CO2. Although doubled CO2 level would enhance the biomass of N. palea and C. muelleri to different extents, compared with the marine diatom, it had a significant effect on the specific growth rates of N. palea. In addition, the responses of photosynthetic parameters of N. palea to doubled CO2 concentration were almost opposite to those of C. muelleri.  相似文献   

2.
The effects of several nutritional factors on the growth and eicosapentaenoic acid (EPA) production of diatom Nitzschia laevis were studied. 4 LDM (quadrupled concentration of the nutrient salt) was the optimal concentration of nutrient salt for the growth and EPA production of N. laevis. The growth of N. laevis was inhibited when the glucose concentration was either lower than 10 gL−1 or higher than 15 gL−1. Both sodium nitrate and urea were good nitrogen sources for the growth and EPA production, while ammonium chloride seriously decreased the dry cell weight (DW) and the EPA content. Silicate seriously influenced the growth of N. laevis. The maximum DW of 2.34 gL−1 was obtained in the presence of 150 mgL−1 Na2SiO3·9H2O. The EPA content remained almost the same when the silicate concentration was lower than 150 mgL−1; however, higher silicate concentrations resulted in a steady decrease of EPA content. Low medium salinity (⩽29) did not seem to influence the DW of N. laevis, and high salinity resulted in a decrease of DW. The highest EPA content (4.08%) and yield (110 mgL−1) were observed at the salinity of 36 and 29, respectively.  相似文献   

3.
Inorganic carbon utilization in the non-calcifying marine microalgae,Nannochloropsis oculata, Phaeodactylum tricornutum andPorphyridium purpureum was compared with high- and low-calcifying strains ofEmiliania huxleyi grown in artificial seawater medium aerated with either air (0.03% V/V CO2) or CO2-free air. For high-calcifying strain ofE. oculata andP. tricornutem, similar growth patterns were observed in air-and CO2-free air-grown cultures.P. purpureum showed a less final cell density in CO2-free air than in air-grown culture. However, low-calcifying strain ofE. huxleyi was able to grow only in air-grown culture, but not in CO2-free air-grown culture. Measurements of alkalinity, pH, concentration of dissolved inorganic carbon (DIC) and free CO2 showed different patterns of DIC utilization. WithN. oculata, P. tricornutum andP. purpureum the pattern of DIC utilization was characterized by an increase of pH and a decrease of DIC but a constant alkalinity in the cultures aerated with air or CO2-free air, suggesting that bicarbonate utilization was concomitant with an efflux of OH. Both alkalinity and pH were maintained rather constant in air-grown culture of low-calcifying strain ofE. huxleyi, suggesting that diffusive entry of CO2 could meet the requirement of DIC for its photosynthesis and growth. High-calcifying strain ofE. huxleyi, however, showed a pattern of decrease of alkalinity and DIC but an almost constant pH, indicating that bicarbonate was the major form of inorganic carbon utilised by this organism and bicarbonate uptake is unlikely to be accompanied by an efflux of OH. The final pH values reached byN. oculata, P. tricornutum andP. purpureum in a closed system were 10.75, 10.60 and 9.85 respectively, showing that bicarbonate utilisation is concomitant with an efflux of OH. While the final pH of 8.4 in high-calcifyingE. huxleyi suggests that bicarbonate utilization was not accompanied by an efflux of OH. Contribution No. 3557 from the Institue of Oceanology, Chinese Academy of Sciences. This work was supported by NERC grant GRE3/7853 U. K. and partly supported by Bio-Engineering Center, SSTC 96-C01-05-01.  相似文献   

4.
Although the annual global sea-air CO2 flux has been estimated extensively with various wind-dependent-k parameterizations, uncertainty still exists in the estimates. The sea-state-dependent-k parameterization is expected to improve the uncertainty existing in these estimates. In the present study, the annual global sea-air CO2 flux is estimated with the sea-state-dependent-k parameterization proposed by Woolf (2005), using NOAA/NCEP reanalysis wind speed and hindcast wave data from 1998 to 2006, and a new estimate, −2.18 Gt C year−1, is obtained, which is comparable with previous estimates with biochemical methods. It is interesting to note that the averaged value of previous estimates with various wind-dependent-k parameterizations is almost identical to that of previous estimates with biochemical methods by various authors, and that the new estimate is quite consistent with these averaged estimates.  相似文献   

5.
Partial pressure of CO2 (pCO2) was investigated in the Changjiang (Yangtze River) Estuary, Hangzhou Bay and their adjacent areas during a cruise in August 2004, China. The data show that pCO2 in surface waters of the studied area was higher than that in the atmosphere with only exception of a patch east of Zhoushan Archipelago. The pCO2 varied from 168 to 2 264 μatm, which fell in the low range compared with those of other estuaries in the world. The calculated sea-air CO2 fluxes decreased offshore and varied from -10.0 to 88.1 mmol m^-2 d^-1 in average of 24.4 ± 16.5 mmol m^-2 d^-1. Although the area studied was estimated only 2 × 10^4 km^2, it emitted (5.9 ± 4.0) × 10^3 tons of carbon to the atmosphere every day. The estuaries and their plumes must be further studied for better understanding the role of coastal seas playing in the global oceanic carbon cycle.  相似文献   

6.
The process-oriented model Forest-DNDC describing biogeochemical cycling of C and N and GHGs (greenhouse gases) fluxes (CO2, NO and N2O) in forest ecosystems was applied to simulate carbon sequestration and GHGs emissions in Abies fabric forest of the Gongga Mountains at southeastern edge of the Tibetan Plateau. The results indicated that the simulated gross primary production (GPP) of Abies fabric forest was strongly affected by temperature. The annual total GPP was 24,245.3 kg C ha^-1 yr^-1 for 2005 and 26,318.8 kg C ha^-1 yr^-1 for 2006, respectively. The annual total net primary production (NPP) was 5,935.5 and 4,882.2 kg C ha^-1 yr^-1 for 2005 and 2006, and the annual total net ecosystem production (NEP) was 4,815.4 and 3,512.8 kg C ha^-1 yr^-1 for 2005 and 2006, respectively. The simulated seasonal variation in CO2 emissions generally followed the seasonal variations in temperature and precipitation. The annual total CO2 emissions were 3,109.0 and 4,821.0 kg C ha^-1 yr^-1 for 2005 and 2006, the simulated annual total N2O emissions from forest soil were 1.47 and 1.36 kg N ha^-1 yr^-1 for 2005 and 2006, and the annual total NO emissions were 0.09 and o.12 kg N ha^-1 yr^-1 for 2005 and 2006, respectively.  相似文献   

7.
Rock weathering plays an important role in studying the long-term carbon cycles and global climatic change. According to the statistics analysis, the Huanghe (Yellow) River water chemistry was mainly controlled by evaporite and carbonate weathering, which were responsible for over 90% of total dissolved ions. As compared with the Huanghe River basin, dissolved load of the Changjiang (Yangtze) River was mainly originated from the carbonate dissolution. The chemical weathering rates were estimated to be 39.29t/(km2·a) and 61.58t/(km2·a) by deducting the HCO 3 derived from atmosphere in the Huanghe River and Changjiang River watersheds, respectively. The CO2 consumption rates by rock weathering were calculated to be 120.84×103mol/km2 and 452.46×103mol/km2annually in the two basins, respectively. The total CO2 consumption of the two basins amounted to 918.51×109mol/a, accounting for 3.83% of the world gross. In contrast to other world watersheds, the stronger evaporite reaction and infirm silicate weathering can explain such feature that CO2 consumption rates were lower than a global average, suggesting that the sequential weathering may be go on in the two Chinese drainage basins. Foundation item: Under the auspices of Ministry of Science and Technology Project of China (No. G1999043075) Biography: LI Jing-ying (1974-), female, a native of Xinye of Henan Province, Ph.D., associate professor, specialized in environmental geochemistry. E-mail: wxxljy2001@public.qd.sd.cn  相似文献   

8.
A laboratory experiment was conducted to assess the bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of Spirulina (Arthrospira) platensis. The specimen cultured in Zarrouk liquid medium was treated with various initial metal concentrations (0, 5, 10, 30, 50 and 100 μg mL−1). The growth of S. platensis was adversely affected by Pb2+ at high concentrations (30, 50 and 100 μg mL−1). However, at low concentrations (5 μg mL−1), Pb2+ could stimulate its growth slightly. The pigment contents (chlorophyll α and β carotene) were decreased in a dose-dependent manner. The highest reductions (67% and 53% respectively in chlorophyll α and β carotene) were observed in 100 μg mL−1 treatment group. The LC50 (96 h) of Pb2+ was measured as 75.34 μg mL−1. Apart from a few cases of filament breakages at elevated concentrations (50 and 100 μg mL−1), morphological abnormalities are not specific. Metal bioaccumulation increased with Pb2+ concentrations, but decreased with exposure time. The maximum accumulated amount was 188 mg g−1 dry weight. The bioconcentration factor (BCF) reached to a peak at day 2, followed by a gradual reduction for all the exposure concentrations. S. platensis is able to tolerate considerably high Pb2+ concentrations. Consequently it can be used as a potential species to remove heavy metal from contaminated waters.  相似文献   

9.
There is limited information available on CO2 concentration and flux over marsh. The objective of this work was to characterize CO2 concentration and flux within and above marsh plant (Carex lasiocarpa Ehrh. and C. pseudocuraica F. Schm) canopy at heights 0.5, 1.0 and 1.5 m. CO2 concentration was measured sequentially every 3 hours by using an infrared gas analyzer. Soil and air temperature, wind speed, net radiation and soil heat flux were also measured simultaneously. Extremely daily minimum and maximum CO2 concentration ranged from 250 to 754 μmd/mol for the 4-year work. The typical minimum and maximum values ranged from 314 to 464 μmol/mol at the height of marsh plant (about 0.5 m) during the fruiting period and mature date. The seasonal changes in CO2 concentration show that the minimum CO2 concentration occurred in the fruiting period and mature date, and both of their minimum values were 314 μmol/mol. This illustrates that CO2 consumed by photosynthesis was stable during the period. The flux of CO2 can be thought as a turbulent diffusion phenomenon. By micrometeorological methods, the diurnal CO2 fluxes were measured in the flowering period, fruiting period, early mature date, late mature date and yellow-ripe stage. Their values were −0.18, 38.15,24.13,10.9 and 4.91 μmol/mol respectively.  相似文献   

10.
Aerosol samples of PM10 (particulate matter with aerodynamic diameters less than 10μm) and TSP (total suspended particles) were simultaneously collected from April 2001 to March 2002 at the top of Mount Baguan on the downtown campus of Ocean University of China, Qingdao, China. The concentrations of Al, Fe, Mn, Cu, Pb and Zn were determined by means of inductively coupled plasma atomic emission spectrometry (ICP-AES). The monthly variability of the mass concentrations of aerosol particles and the concentrations of trace metals are presented and discussed. The distribution pattern of these metals in PM10 and TSP is also discussed. During the observation period, the mass concentration of PM10 at this site ranged from 13.80 to 306.42 μgm−3, while that of TSP ranged from 31.02 to 568.82μgm−3. Both PM10 and TSP reached their highest concentrations in springtime, while the lowest values occurred in summertime. The concentrations of crustal metals followed the same variation pattern, while those of anthropogenic metals did not. A closer examination led to the conclusion that anthropogenic metals are mainly from local sources. The average concentration ratios of anthropogenic metals in PM10 to TSP were higher than the average mass ratio of PM10 to TSP, suggesting that there was a higher proportion of anthropogenic metals on smaller particles although there were a few exceptions. For crustal metals, however, the metal concentration ratios were close to the particle mass ratio, indicating that the distribution of crustal metals was much more homogeneous on aerosol particles with different sizes. The correlation analysis indicated that Al, Fe and Mn were originated from similar sources and were mainly controlled by the particle mass, while Cu, Pb and Zn were predominated by local anthropogenic sources, with Pb and Zn having similar origins.  相似文献   

11.
A 4.34 liter two-stage air-lift photobioreactor incorporatingAnabaena variabilis ATCC29413 mutant PK84 was used to study H2 production. Results showed that H2 production increased with increasing light intensity from 47 μE/(m2·s) up to 190 μE/(m2·s), but that further increase of light intensity decreased the H2 production because of the inhibition due to the high pO2. The data also indicated that longer argon gas charge resulted in more H2 produced due to the increase of nitrogenase activities and heterocyst frequency, and that more than 1.3 L net H2 was produced from this computer controlled photobioreactor.  相似文献   

12.
K.  K.  I.  U.  Arunakumarat  张学成 《中国海洋湖沼学报》2009,27(2):383-388
The unicellular cyanobacterium Synechocystis sp. PCC 6803, a model organism known for its unique combination of highly desirable molecular genetic, physiological and morphological characteristics, was employed in the present study. The species was cultured in BG11 liquid medium contained various initial concentrations of Pb2+ and Cd2+ (0, 0.5, 1, 2, 4, 6 and 8 mg/L). The experiment was conducted for six days and the metal induced alterations in the ultrastructure, growth and pigment contents were assessed. Alterations in the ultrastructure of the Synechocystis sp. PCC 6803 cells became evident with the increased (>4 mg/L Pb2+) metal concentration. The photosynthetic apparatus (thylakoid membranes) were found to be the worst affected. Deteriorated or completely destroyed thylakoid membranes have made large empty spaces in the cell interior. In addition, at the highest concentration (8 mg/L Pb2+), the polyphosphate granules became more prominent both in size and number. Despite the initial slight stimulations (0.2, 3.8 and 6.5% respectively at 0.5, 1 and 2 mg/L Pb2+), both metals inhibited the growth in a dose-dependent manner as incubation progressed. Pigment contents (chlorophyll α, β carotene and phycocyanin) were also decreased with increasing metal concentration. Cells exposed to 6 mg/L Pb2+, resulted in 36.56, 37.39 and 29.34% reductions of chlorophyll α, β carotene and phycocyanin respectively over the control. Corresponding reductions for the same Cd2+concentrations were 57.83, 48.94 and 56.90%. Lethal concentration (96 h LC50) values (3.47 mg/L Cd2+ and 12.11 mg/L Pb2+) indicated that Synechocystis sp. PCC 6803 is more vulnerable to Cd2+ than Pb2+. Supported by the Chinese Scholarship Council  相似文献   

13.
The effects of environmental Na+/K+ ratio on the gill ion-transport enzyme activity, plasma osmolality and growth of Cynoglossus semilaevis juveniles were investigated. The results showed that, plasma osmolality was similar among flounder adapted to different Na+/K+ ratios of saline groundwaters (P>0.05), while the growth, gill Na+, K+-ATPase and HCO3 -ATPase activities were affected by Na+/K+ ratio significantly (P<0.05). The gill Na+, K+-ATPase activity reached its maximum on day 3, then decreased gradually from day 3 to day 9 and remained constant from day 9 to day 15. The peak values of gill Na+, K+-ATPase activity were detected on day 3 for all Na+/K+ ratios of saline groundwaters, then the enzyme activities descended, and on day 9 the enzyme activities achieved steady state, and the gill HCO3 -ATPase activity increased rapidly and achieved steady state after one day. During steady state, the gill Na+, K+-ATPase and HCO3 -ATPase activity of Na+/K+ ratios 20 and 40 treatments were significantly higher than those in the control group (Na+/K+ ratio 27.5), while there were no significant differences between the Na+/K+ ratio 30 treatment and the control group; the gill Na+, K+-ATPase activity of Na+/K+ ratio 20 and 40 treatments were significantly higher than that for ratio 30 treatment, but there were no significant differences of gill HCO3 -ATPase activity among these treatments. At the end of the 15-day experiment, the weight gain (%) and specific growth rate (SGR) of flounders maintained in seawater were significantly higher than those in groundwaters; significant differences also occurred among the treatments; Na+/K+ ratio 30 treatment had the highest values (33.7% and 1.94 respectively), which were significantly higher than those under Na+/K+ ratios 20 and 40 treatments. Therefore, for the saline groundwater used in this experiment, it is suggested that the Na+/K+ ratio be adjusted to approximately 30, i.e., as close to that of natural seawater as possible in the culture of flounder.  相似文献   

14.
Abalone Haliotis diversicolor supertexta is an important economic mollusk. The settlement and metamorphosis are two critical stages during its development period, which has direct influence on abalone survival and production. The influence of reactive oxygen species (hydrogen peroxide) on abalone embryo and juvenile development were examined in this study. Larvae of Haliotis diversicolor supertexta were induced to settlement and metamorphose by exposure to seawater supplemented with hydrogen peroxide. They had the best performance at 800 μmol/L. The concentration of 1 000 μmol/L or higher was toxic to the larvae, as the larvae could settle down only at benthic diatom plates without complete metamorphosis. In addition, H2O2 adding time was critical to the larval performance. 24h after two-day post-fertilization was proved to be the optimal adding time. In this paper, two action mechanisms of hydrogen peroxide are discussed: (1) hydrogen peroxide has direct toxicity to ciliated cells, thus cause apoptosis; (2) hydrogen peroxide, as a product from catecholamines' autoxidation process in vivo, can reverse this process to produce neuro-transmitters to induce abalone metamorphosis.  相似文献   

15.
This study on dynamic changes of culture color,astaxanthin and chlorophylls,inorganic N including N-NO3^-,N-NO2^- and N-NH4^ in batch culture of Haematococcus pluvialis exposed to different additive nitrate concentration showed(1)ast/chl ratio was over 0.8 for brown and red algae,but was usually less than 0.5 for green and yellow algae;(2)N-NO3^-,in general,was unstable and decreased,except for a small unexpected increase in nitrate enriched treatment groups;(3)measurable amounts of N-NO2^- and N-NH4^ were observed respectively with three change modes although no extemal nitrite and ammonia were added into the culture;(4)a non-linear correlation between ast/chl ratio(or color)changes and the levels of N-NO3^-,N-NO2^-,N-NH4^ in H.pluvialis culture;(5)up and down variation of the ast/chl ratio occurred simultaneously with a perceptible color change from yellow to brown(or red)when N-NO3^-,N-NO2^- and N-NH4^ fluctuated around 30,5,5μmol/L respectively;(6)existence of three dynamic modes of N-NO3^-,N-NO2^- and N-NH4^ changes,obviously associated with initial extemal nitrate;(7)the key level of total inorganic N concentration regulating the above physiological changes during indoor cultivation was about 50 μmol/L;and(8)0.5-10mmol/L of nitrate was theoretically conducive to cell growth in batch culture.  相似文献   

16.
Interactions between Skeletonema costatum (S. costatum) and Prorocentrum donghaiense (P. donghaiiense) were inves-tigated using bi-algal cultures at different concentrations of phosphate (PO4-P) and nitrate/phosphate (N/P) ratios. Experiments were conducted under P-limited conditions and the Lotka-Volterra mathematical model was used to simulate the growth of S. costatum and P. donghaiense in the bi-algal cultures. Both of these two species were inhibited significantly in bi-algal culture. The results of the simulation showed that the inhibitory degree of S. costaum by P. donghaiense was high when the concentration of PO4-P was low (0.1μmolL-1/2 d), but that of P. donghaiense by S. costaum was high with increased PO4-P supply (0.6μmolL-1/2 d). At low concen-tration of PO4-P (0.1μmolL-1/2 d), or high concentration of PO4-P (0.6μmolL-1/2 d) with high N/P ratio (160), the interactions be-tween S. costatum and P. donghaiense were dependent on the initial cell densities of both species. At high concentration of PO4-P (0.6μmolL-1/2 d) with low N/P ratio (25 or 80), S. costatum exhibited a survival strategy superior to that of P. donghaiense. The de-gree of inhibition of P. donghaiense by S. costaum increased with elevated N/P ratio when the medium was supplemented with con-centration 0.1μmolL-1/2 d of PO4-P. The degree of inhibition to P. donghaiense by S. costaum increased with elevated N/P ratio at low concentration of PO4-P (0.1 μmolL-1/2 d). This trend was conversed at high concentration of PO4-P (0.6μmolL-1/2 d). However, the degree of inhibition of S. costaum by P. donghaiense increased with the increased N/P ratio at different PO4-P concentrations (0.1μmolL-1/2 d and 0.6μmolL-1/2 d). These results suggested that both phosphate concentration and N/P ratio affected the competition between S. costaum and P. donghaiense: P. donghaiense is more competitive in environments with low phosphate or high N/P ratio and the influence of N/P ratio on the competition was more significant with lower phosphate concentration.  相似文献   

17.
The aim of this study is to isolate protoplasts from Undaria pinnatifida. Protoplasts of the alga were isolated enzymatically by using alginate lyase, which was prepared by fermenting culture of a strain Vibrio sp. 510. Monofacterial method was applied for optimizing digestion condition. The optimum condition for protoplast preparation is enzymatic digestion at 28°C for 2h using alginate lyase at the concentration of 213.36 U (8 mL) every 0.5g fresh thalline with NaCl 50 and at the shaking speed of 150 r min−1 during digestion. The protoplast yield can reach 2.62±0.09 million per 0.5 g fresh leave under the optimum condition. The enzyme activity is inhibited by Ca2+ and slightly enhanced by Fe2+ and Mn2+ at concentrations of 0.05, 0.08 and 0.10 mol L−1.  相似文献   

18.
Soil respiration is a main dynamic process of carbon cycle in wetland. It is important to contribute to global climate changes. Water table and nutritious availability are significant impact factors to influence responses of CO2 emission from wetland soil to climate changes. Twenty-four wetland soil monoliths at 4 water-table positions and in 3 nitrogen status have been incubated to measure rates of CO2 emission from wetland soils in this study. Three static water-table controls and a fluctuant water-table control, with 3 nitrogen additions in every water-table control, were carried out. In no nitrogen addition treatment, high CO2 emissions were found at a static low water table (I) and a fluctuant water table (IV), averaging 306.7mg/(m2·h) and 307.89mg/(m2·h), respectively, which were 51%–57% higher than that at static high water table (II and III). After nitrogen addition, however, highest CO2 emission was found at II and lowest emission at III. The results suggested that nutritious availability of wetland soil might be important to influence the effect of water table on the CO2 emission from the wetland soil. Nitrogen addition led to enhancing CO2 emissions from wetland soil, while the highest emission was found in 1N treatments other than in 2N treatments. In 3 nutritious treatments, low CO2 emissions at high water tables and high CO2 emissions at low water tables were also observed when water table fluctuated. Our results suggested that both water table changes and nutritious imports would effect the CO2 emission from wetland. Foundation item: Under the auspices of the National Natural Science Foundation of China (No. 90211003) and the Knowledge Innovation Program of Chinese Academy of Sciences (No. KACX3-SW-332) Biography: YANG Ji-song (1978-), male, a native of Chengwu of Shandong Province, Ph.D. candidate, specialized in environmental ecology and wetland biogeochemistry. E-mail: yangjisong@neigae.ac.cn  相似文献   

19.
The distributions and relationships of O2, CO2, and dimethylsulfide (DMS) in the Changjiang (Yangtze) Estuary and its adjacent waters were investigated in June 2014. In surface water, mean O2 saturation level, partial pressure of CO2 (pCO2), and DMS concentrations (and ranges) were 110% (89%–167%), 374 μatm (91–640 μatm), and 8.53 nmol L?1 (1.10–27.50 nmol L?1), respectively. The sea-to-air fluxes (and ranges) of DMS and CO2 were 8.24 μmol m?2 d?1 (0.26–62.77 μmol m?2 d?1), and ?4.7 mmol m?2 d?1 (?110.8-31.7 mmol m?2 d?1), respectively. Dissolved O2 was oversaturated, DMS concentrations were relatively high, and this region served as a sink of atmospheric CO2. The pCO2 was significantly and negatively correlated with the O2 saturation level, while the DMS concentration showed different positive relationships with the O2 saturation level in different water masses. In vertical profiles, a hypoxic zone existed below 20 m at a longitude of 123°E. The stratification of temperature and salinity caused by the Taiwan Warm Current suppressed seawater exchange between upper and lower layers, resulting in the formation of a hypoxic zone. Oxidative decomposition of organic detritus carried by the Changjiang River Diluted Water (CRDW) consumed abundant O2 and produced additional CO2. The DMS concentrations decreased because of low phytoplankton biomass in the hypoxic zone. Strong correlations appeared between the O2 saturation level, pCO2 and DMS concentrations in vertical profiles. Our results strongly suggested that CRDW played an important role in the distributions and relationships of O2, CO2, and DMS.  相似文献   

20.
One isolate of Brachiomonas submarina was tested for its ability to grow heterotrophicly on 5 different organic compounds. Sodium acetate and glucose were found to be effective in supporting the growth. Sodium acetate was chosen as the organic nutrient to test the combined effects of organic and inorganic solutions on the growth and fatty acid composition of Brachiomonas submarina. The best growth rates were achieved at 3 mmol L−1 CH3COONa and 0.88 mmol L−1 NaNO3 in heterotrophic condition, and 4 mmol L−1 CH3COONa and 3.52 mmol L−1 NaNO3 in mixotrophic condition. The differences between fatty acid contents were significant. The total polyunsaturated fatty acids (T. P. U. F. As) varied from 55.79% to 67.72% in heteritrophic growth and from 52.39% to 65.55% in mixotrophic growth. It is concluded that CH3COONa and NaNO3 at 3 mmol L−1 and 3.52 mmol L−1 should respectively be used in order to achieve the highest growth rate and fatty acid content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号