首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Petrologic studies of tephra from Kanaga, Adak, and Great Sitkin Islands indicate that amphibole fractionation and magma mixing are important processes controlling the composition of calc-alkaline andesite and dacite magmas in the central Aleutians. Amphibole is ubiquitous in tephra from Kanaga and Adak Islands, whereas it is present only in a basaltic-andesite pumice from Great Sitkin. Dacitic tephra from Great Sitkin do not contain amphibole. Hornblende dacite tephra contain HB+PLAG+OX±OPX±CPX phenocrysts with simple zoning patterns, suggesting that the dacites evolved in isolated magma chambers. Andesitic tephra from Adak contain two pyroxene and hornbelende populations, and reversely zoned plagioclase, indicating a more complex history involving mixing and fractional crystallization. Mass balance calculations suggest that the andesitic tephra may represent the complements of amphibole-bearing cumulate xenoliths, both formed during the evolution of high-Al basalts. The presence of amphibole in andesitic and dacitic tephra implies that Aleutian cale-alkaline magmas evolve in the mid to lower crust under hydrous (>4 wt.% H2O) and oxidizing (Ni–NiO) conditions. Amphibole-bearing andesites and pyroxene-bearing dacites from Great Sitkin indicates fractionation at several levels within the arc crust. Despite its absence in many calc-alkaline andesite and dacite lavas, open system behavior involving amphibole fractionation can explain the trace element characteristies of lavas found on Adak Island. Neither open nor closed system fractionation involving a pyroxene-bearing assemblage is capable of explaining the trace element concentrations or ratios found in the Adak suite. We envision a scenario where amphibole was initially a liquidus phase in many calc-alkaline magmas, but was later replaced by pyroxenes as the magmas rose to shallow levels within the crust. The mineral assemblage in these evolved lavas reflects shallow level equilibration of the magma, whereas the trace element chemistry provides evidence for a earlier, amphibole-bearing, mineral assemblage.  相似文献   

2.
O- and Sr-isotope data are reported for cordieritebearing dacites and andesites forming part of the Neogene volcanic province of SE Spain. The almandine-bearing biotite-cordierite-labradorite dacite from the Cerro del Hoyazo with its numerous inclusions of metamorphic and igneous rocks has been studied in some detail. A syngenetic derivation of the Hoyazo dacite magma and part of its inclusions (interpreted as restite) by means of anatexis of (semi-)pelitic rocks has previously been proposed. 18O values and 87Sr/86Sr ratios, thought to be closely representative of the original magmas, vary from +12.2 to +15.6 and 0.7095 to 0.7171, respectively. The metamorphic rock inclusions have 18O values (+13.0-+16.2) comparable to the range for the volcanics. These results support an anatectic origin for the entire suite of cordierite-bearing volcanics. The inclusions of basic igneous rocks in the Hoyazo dacite have, in comparison with the dacite, lower 18O values (+11.1-+13.1) and equal to lower 87Sr/86Sr ratios (0.7081–0.7112), confirming an independent origin.The six analysed samples of the Hoyazo dacite show a strong linear correlation of 87Sr/86Sr versus 87Rb/86Sr which, if interpreted as an isochron, yields an age of 210±17 Ma. Similar linear arrays for samples from the Mazarrón and Mar Menor areas yield nearly concordant ages. Samples for the Vera area define a 535±22 Ma line. These linear correlations may be interpreted either as (1) mixing lines, in which case the indicated ages have no geological meaning, or (2) true isochrons dating pre-eruptional events of the parent (meta-)sediments.  相似文献   

3.
Calc-alkaline dacites are found in the Tertiary Kroksfjordurcentral volcano besides the more typical tholeiitic dacitesand rhyolites characteristic of Icelandic rift zones. It isclear that these calc-alkaline dacites are not subduction related,but their chemistry and petrography are definitely calc-alkaline.They are much lower in Fe and higher in Ca and Al than otherrocks from Iceland with comparable silica percentages. Theyare significantly depleted in the high field strength elements(HFSE, e.g., Nb, Zr, Y, and heavy rare earth elements), andsome of them contain hydrous phases or their relics. The anhydrousphase assemblage and relatively high Fe content of the tholeiiticsilicic rocks indicate generation at shallow depths (PH2o <1kb). The high Ca and Al contents and the depletion of HFSE inthe calc-alkaline dacites indicate generation by partial meltingof amphibolite facies rocks at 5–6 km depth. The generationof the tholeiitic silicic rocks requires a shallow magma chamber,where they could be formed by fractionation of basaltic magma,or by partial melting of country rock heated by basaltic magma.The calc-alkaline dacites require a different volcanotectonicenvironment for their generation. The geothermal gradient requiredis comparable with that of regional geothermal gradients closeto the active rift zones. They were probably formed when thecentral volcano was drifting away from the rift axis and itsactivity was waning. Intrusion of basaltic magma, probably relatedto another volcanic center, mobilized the dacite magma.  相似文献   

4.
Quaternary basalts, andesites and dacites from the Abu monogenetic volcano group, SW Japan, (composed of more than 40 monogenetic volcanoes) show two distinct chemical trends especially on the FeO*/MgO vs SiO2 diagram. One trend is characterized by FeO*/MgO-enrichment with a slight increase in SiO2 content (Fe-type trend), whereas the other shows a marked SiO2-enrichment with relatively constant FeO*/MgO ratios (Si-type trend). The Fe-type trend is explained by fractional crystallization with subtraction of olivine and augite from a primitive alkali basalt magma. Rocks of the Si-type trend are characterized by partially melted or resorbed quartz and sodic plagioclase phenocrysts and/or fine-grained basaltic inclusions. They are most likely products of mixing of a primitive alkali basalt magma containing olivine phenocrysts with a dacite magma containing quartz, sodic plagioclase and hornblende phenocrysts. Petrographic variation as well as chemical variation from basalt to dacite of the Si-type trend is accounted for by various mixing ratios of basalt and dacite magmas. Pargasitic hornblende and clinopyroxene phenocrysts in andesite and dacite may have crystallized from basaltic magma during magma mixing. Olivine and spinel, and quartz, sodic plagioclase and common hornblende had crystallized in basaltic and dacitic magmas, respectively, before the mixing. Within a lava flow, the abundance of basaltic inclusions decreases from the area near the eruptive vent towards the perimeter of the flow, and the number of resorbed phenocrysts varies inversely, suggesting zonation in the magma chamber.The mode of mixing changes depending on the mixing ratio. In the mafic mixture, basalt and dacite magmas can mix in the liquid state (liquid-liquid mixing). In the silicic mixture, on the other hand, the basalt magma was quenched and formed inclusions (liquid-solid mixing). During mixing, the disaggregated basalt magma and the host dacite magma soon reached thermal equilibrium. Compositional homogenization of the mixed magma can occur only when the equilibrium temperature is sufficiently above the solidus of the basalt magma. The Si-type trend is chemically and petrographically similar to the calc-alkalic trend. Therefore, a calc-alkalic trend which is distinguished from a fractional crystallization trend (e.g. Fe-type trend) may be a product of magma mixing.  相似文献   

5.
Mount St. Helens has explosively erupted dacitic magma discontinuously over the last 40,000 years, and detailed stratigraphic data are available for the past 4,000 years. During this last time period the major-element composition of the dacites has ranged from mafic (62–64 wt% SiO2) to felsic (65–67 wt% SiO2), temperature has varied by about 150°C (770°–920°C), and crystallinity has ranged between 20% and 55%. Water content of these dacites has also fluctuated greatly. Although the source for the dacitic magmas is probably partial melting of lower crustal rocks, there is strong physical evidence, such as banded pumices, thermal heterogeneities in single pumices, phenocryst disequilibrium, contrasts between compositions of glass inclusions and host matrix glass, and amphibole reaction rims, that suggests that magma mixing has been prominent in the dacitic reservoir. Indeed, we suggest that the variations in major- and trace-element abundances in Mount St. Helens dacites indicate that magma mixing between felsic dacite and mafic magma has controlled the petrologic diversity of the dacitic magmas. Magma mixing has also controlled the composition of andesites erupted at Mount St. Helens, and thus it appears that the continuum of magmatic composition erupted at the volcano is controlled by mixing between felsic dacite, or possibly rhyodacite, and basalt. The flux of the felsic endmember to the reservior appears to have been relatively constant, whereas the flux of basalt may have increased in the past 4,000 years, as suggested by the apparently increased abundance of mafic dacite and andesite erupted in this period.  相似文献   

6.
The mineralogy and petrology of volcanic and plutonic rocks from the island of Grenada are described. The volcanic rocks include basanitoids, alkalic and subalkalic basalts, andesites and dacites. Phenocryst phases in the basanitoids and basalts are olivine (Fo90–71), zoned calcic augite, spinel ranging from ferrian pleonaste through chromite to titaniferous magnetite, and plagioclase. Some of the basalts contain pargasitic amphibole. Andesites and dacites generally contain hypersthene and augite, and one pigeonite-hypersthene-augite-bearing andesite was found. Apatite commonly occurs as a phenocryst in the andesites and dacites and quartz is present in some dacites as well as being a possible xenocryst in both alkalic and subalkalic basalts. Plutonic cumulates found as ejected fragments in tuffs and ashes are composed of variable proportions of olivine, magnetite, calcic augite, amphibole and plagioclase. One peridotitic (ol-cpx-opx) fragment was found but spinel or garnet peridotitis are absent. Despite the alkalic nature of the association, calcalkalic characteristics such as calcic plagioclase, restricted Feenrichment in coexisting pyroxenes and generally low TiO2 content relative to oceanic suites are present in Grenada. Estimates of conditions of equilibration of the basanitoids with potential upper mantle materials using the results of high-pressure experiments are compared with estimates from thermodynamic data. Equating and basanitoid with hypothetical garnet peridotite assemblages gives a pressure and temperature of equilibration in the region of 35–38 kbar and 1550–1625 ° K. Experimental results are not supportive of these estimates.  相似文献   

7.
Dikii Greben' Volcano is the largest modern volcano with silicic rocks in the Kurile-Kamchatka island arc. It consists of many domes and lava flows of rhyodacite, dacite and andesite which were erupted in a reverse differentiation sequence. Non-equilibrium phenocryst assemblages (quartz + Mg-rich olivine, An-rich + An-poor plagioclase etc.), abundance of chilled mafic pillows in the dacites and andesites, and linear variations of rock compositions in binary plots are considered as mineralogical, textural and geochemical evidence for mixing. Mafic pillows in volcanics have a lower density (because of high porosity) and contain the same non-equilibrium phenocryst assemblages as the host rocks. Their groundmass contains skeletal microlites of plagioclase and amphibole proving that the groundmass as well as the pillows themselves formed from a water-rich basaltic magma at depth. They are considered as supercooled, vesiculated floating drops of a hot hybrid layer in the magma chamber which formed after refilling. The lower density of the inclusions allows them to float in the host magma and to concentrate at the top of the chamber prior to eruption. Magma mingling was effected by mechanical disintegration of the inclusions in the host magma during eruption. The rhyodacitic and basic end-members of the mixing series cannot be linked by low-P fractionation though high-P, amphibole-rich fractionation is not excluded.  相似文献   

8.
Three different types of carbonatite magma may be recognized in the Cambrian Fen complex, S.E. Norway: (1) Peralkaline calcite carbonatite magma derived from ijolitic magma; (2) Alkaline magnesian calcite carbonatite magma which yielded biotite-amphibole søvite and dolomite carbonatite; and (3) ferrocarbonatite liquids, related to (2) and/or to alkaline lamprophyre magma (damjernite). Apatite formed during the pre-emplacement evolution of (2) contains inclusions of calcite and dolomite, devitrified mafic silicate glass and aqueous fluid. All of these inclusions have a magmatic origin, and were trapped during a mid-crustal fractionation event (P4 kbars, T625° C), where apatite and carbonates precipitated from a carbonatite magma which coexisted with a mafic silicate melt. The fluid inclusions contain water, dissolved ionic species (mainly NaCl, with minor polyvalent metal salts) and in some cases CO2. Two main groups of fluid inclusions are recognized: Type A: CO2-bearing inclusions, of approximate molar composition H2O 88–90 CO 27-5 NaCl 5 (d=0.85–0.87 g/ cm3). Type B: CO2-free aqueous inclusions with salinities from 1 to 24 wt% NaCleq and densities betwen 0.7 and 1.0 g/cm3. More strongly saline type B inclusions (salinity ca. 35wt%, d=1.0 to 1.1 g/cm3) contain solid halite at room temperature and occur in overgrowths on apatite. Type A inclusions probably contain the most primitive fluid, from which type B fluids have evolved during fractionation of the magmatic system. Type B inclusions define a continuous trend from low towards higher salinities and densities and formed as a result of cooling and partitioning of alkali chloride components in the carbonatite system into the fluid phase. Available petrological data on the carbonatites show that the fluid evolution in the Fen complex leads from a regime dominated by juvenile CO2 + H2O fluids during the magmatic stage, to groundwater-derived aqueous fluids during post-magmatic reequilibration.  相似文献   

9.
Chichi-jima, Bonin Islands, consists of dominant Eocene submarine volcanic rocks, comprising boninites, andesites and dacites, and subordinate sedimentary rocks. The dacites occur frequently in breccias and pillows overlying a boninite pillow lava sequence. The boninite pillows are intruded by a multiple dike, in which a core boninite is chilled against outer dacites. A density-stratified chamber may have been capped by a dacite magma. The dacites, which can be divided into quartz dacite and quartz-free dacite, are differentiates from the boninite-forming magmas, because they vary continuously in composition from boninites through andesites. The quartz dacites, corresponding to rhyolite in SiO2, are lower in Na2O and K2O than most orogenic dacites. Some of the dacites are characterized by ferropigeonite (Wo7–16En23–39Fs68-54) phenocrysts and are clearly ferrodacite, producing variable amounts of Fs-rich normative pyroxenes. The relation of SiO2 to total FeO/MgO ratio indicates that many of both types of dacites, with glasses in boninites, are enriched in total FeO despite the strong calc-alkalic affinity of boninites. The crystallization temperature of ferropigeonite with Mg value 30 in a quartz dacite is estimated to be 900° C and that in a quartz-free dacite to be 1050° C, which are unusually high for differentiated silicic rocks. Some Chichi-jima rocks are fresh, having a low ratio of Fe2O3 to FeO. On the basis of the experimental study of magmatic ferric-ferrous equilibria at 1 bar, the oxygen fugacities are calculated as 10–13.6 bars at 900° C for a ferropigeonite quartz dacite and 10–8.9 bars at 1200° C for a boninite with the lowest Fe3+/Fe2+. Both values lie below the quartz-fayalite-magnetite buffer line. The boninite series volcanic rocks have preserved low oxygen fugacities as well as high temperatures until the latest differentiation stage. The ferropigeonite phenocrysts have crystallized from the dacite magmas under the conditions of moderately high temperatures, very low oxygen fugacities and high total FeO and SiO2 concentrations.  相似文献   

10.
Boninite series volcanic rocks have been recovered from three dredge hauls on the inner slope of the Mariana Trench. These hauls included olivine boninites, boninites, boninitic andesites and boninitic dacites, as well as island arc tholeiitic basalts and andesites. The boninite series volcanics range from 52 to 68% SiO2, and are characterized by very low abundances of high-field-strength cations and heavy-rare-earth elements. Boninites and olivine boninites have phenocrysts of olivine and orthopyroxene, the andesites phenocrysts of orthopyroxene and clinopyroxene, and the dacites orthopyroxene, clinopyroxene, and plagioclase. Most of the major and trace element variation in the series from boninite to boninitic dacite can be modelled by fractionation of olivine, orthopyroxene, clinopyroxene, and plagioclase in the proportions 2.5412, leaving 47% residual liquid. The fractionation must be in part open-system: reverse zoned phenocrysts, resorbed olivine and plagioclase xenocrysts, and bulk rock compositions which cannot be fit by simple closed system crystallization indicate some magma mixing and phenocryst accumulation. Two boninitic magma stems can be identified, with similar high-field-strength element abundances, but different amounts of Ca, Na, Al and light-rare-earth elements. There is also evidence for a magma stem transitional in chemistry from the boninites to arc tholeiites. The compositions of these boninites are consistent with hypotheses for boninite formation by partial melting of a depleted mantle mixed with an incompatible element enriched fluid. The Mariana forearc boninite series lacks a strong iron enrichment, but produces andesites with lower Ti, Al and Y/Zr, and higher Mg, Ni and Cr than typical calcalkaline arc andesites and dacites. Boninites in the Mariana system were erupted only in the earliest phases of subduction zone activity.  相似文献   

11.
Carbonate phases, some rich in Na2O and comparatively rich in SrO and BaO, occur as inclusions in perovskite and calzirtite (Ca2Zr5Ti2O16) in the carbonatite of the Guli complex, Siberia. This is the first record of alkali carbonates, akin to nyerereite [Na2Ca(CO3)2], in plutonic igneous rocks. The inclusion populations suggest that the parental magma of the complex was Ca-rich but developed Na-rich differentiates during the latest stages. This points to the dominant calcic carbonatites of the complex not being derivatives of alkali-rich parental carbonatites. These alkali-rich carbonate inclusions (and rare inclusions of djerfisherite) have been preserved due to the resistance of perovskite and calzirtite to processes of leaching, hydrothermal alteration and weathering.  相似文献   

12.
Optimal activities of amphibole are obtained by means of a new application of Gibbs method to the assemblage amphibole-epidote-chlorite-plagioclase-quartz-water in the system SiO2-Al2O3-Fe2O3-FeO-MgO-CaO-Na2O-H2O, and consequently T, P and X are derived from the amphibole chemistries via the differences relative to a set of the reference conditions. Amphibole solid solutions are modeled by the regular solution composed of seven end-members (tr-ts-ed-gln-mrb-fact-otr), and the optimal Margules parameters are obtained from hundreds of natural data sets of amphiboles in the Sanbagawa schists in the range 300–550 °C, 0.2–1.1 GPa. The temperatures obtained by Gibbs method are consistent with the temperatures by the hornblende-plagioclase thermometer with the absolute deviation of about 30 °C. The P-T conditions of calcic and subcalcic amphiboles are plotted in the stability fields of actinolite, hornblende, winchite, and barroisite of the greenschists and epidote-amphibolite facies conditions. Calculations for the representative zonings of amphiboles in the Sanbagawa schists suggest distinctive decompression P-T paths.Editorial responsibility: K. Hodges  相似文献   

13.
The pumpellyite–actinolite facies proposed by Hashimoto is defined by the common occurrence of the pumpellyite–actinolite assemblage in basic schists. It can help characterize the paragenesis of basic and intermediate bulk compositions, which are common constituents of various low-grade metamorphic areas. The dataset of mutually consistent thermodynamic properties of minerals gives a positive slope for the boundary between the pumpellyite–actinolite and prehnite–pumpellyite facies in PT space. In the Sanbagawa belt in Japan, the mineral parageneses of hematite-bearing and -free basic schists, as well as pelitic schists have been well documented. The higher temperature limit of this facies is defined by the disappearance of the pumpellyite+epidote+actinolite+chlorite assemblage in hematite-free basic schists with XFe3+ of epidote around 0.20–0.25 and the appearance of epidote+actinolite+chlorite assemblage with XEpFe3+≤0.20. In hematite-bearing basic schists, there is a continuous change of paragenesis to higher grade, epidote–glaucophane or epidote–blueschist facies. In pelitic schists, the albite+lawsonite+chlorite assemblage does occur but only rarely, and its assemblage cannot be used to determine the regional thermal structure. The lower temperature equivalence of the pumpellyite–actinolite assemblage is not observed in the field. The Mikabu Greenstone complex and the northern margin of the Chichibu complex, which are located to the south of the Sanbagawa belt, are characterized by clinopyroxene+chlorite or lawsonite+actinolite assemblages, which are lower temperature assemblages than the pumpellyite+actinolite assemblage. These three metamorphic complexes belong to the same subduction-metamorphic complex. The pumpellyite–actinolite facies or subfacies can be useful to help reveal the field thermal structure of metamorphic complexes  相似文献   

14.
Summary Several experimentally-based, empirical calibrations of the fO2 of natural silicate melts at atmospheric pressure as a function of melt composition, melt Fe2+/Fe3+, and crystallization temperature have been developed (e.g.Sack et al., 1980;Kilinc et al., 1983;Kress andCarmichael, 1988;Borisov andShapkin, 1990). Cr-Al spinel is a liquidus phase of primitive mantle-derived melts, and is commonly found as inclusions in near-liquidus phenocrysts (mainly olivine). The established atmospheric pressure correlation between Fe2+/Fe3+ values in spinel and coexisting melts over a broad range of basaltic compositions (Maurel andMaurel, 1982) can be used to calculate the Fe2+/Fe3+ value of a melt if the composition of the equilibrium spinel is known. Compositions and crystallization temperatures of primitive melts can be determined by experimental studies of melt inclusions trapped by early-formed refractory phenocrysts. Thus, the association of spinel and melt inclusions in early liquidus phenocrysts can be used to estimate fO2 conditions at the time of their crystallization.In this paper, we present a calibration of this method and discuss its applications. We conclude that combination of the equations ofMaurel andMaurel (1982) andBorisov andShapkin (1990) can be used to calculate fO2 with an accuracy of ±0.71og units, when liquidus spinels have TiO2 <2.5 wt% and Cr2O3 > 13 wt.%, and melt compositions are in the range from basaltic to picritic with H2O contents <6 wt.%.Using this technique we find NNO fO2 values of –0.8 to –1.4 for MORB dredged at the VEMA Fracture Zone in the Atlantic, and 0 to + 1 for Tongan high-Ca boninites.
Die Berechnung von Fe2+/Fe3+ und der Sauerstoff-Fugazitäten für primitive Mantelschmelzen: Kalibration einer empirischen Methode
Zusammenfassung Empirische, auf Experimenten basierende, Kalibrationen zur Berechnung von fO2 natürlicher Silikatschmelzen bei atmosphärischem Druck in Abhängigkeit von der Schmelzzusammensetzung, des Fe2+/Fe3+ Verhältnisses und der Kristallisationstemperatur wurden z.B. vonSack et al. (1980),Kilinc et al. (1983),Kress undCarmichael (1988) undBorisov undShapkin (1980) entwickelt. Cr-Al-Spinell ist eine Liquidusphase primitiver Mantelschmelzen und kommt üblicherweise als Einschluß in near-liquidus Phänokristallen (hauptsächlich in Olivin) vor. Die Korrelation des Atmosphärendruckes zwischen Fe2+/Fe3+ in Spinell und koexistierender Schmelze kann dazu verwendet werden, das Verhältnis von Fe2+/Fe3+ der Schmelze für einen weiten Bereich basaltischer Zusammensetzungen zu berechnen, wenn die Zusammensetzung des im Gleichgewicht gebildeten Spinells bekannt ist (Maurel undMaurel, 1982). Die Zusammensetzungen und Kristallisationstemperaturen primitiver Schmelzen können durch experimentelle Studien von Schmelzeinschlüssen, die in früh gebildeten refraktären Phänokristallen eingeschlossen wurden, ermittelt werden. Daher lassen sich Spinelle und assoziierte Schmelzeinschlüsse in frühen Liquidus-Phänokristallen dazu benützen, die fO2-Bedingungen während der Kristallisation abzuschätzen.In dieser Arbeit präsentieren wir eine neue Kalibration dieser Methode und diskutieren ihre Anwendungen. Wir schlußfolgern, daß unter Kombination der verwendeten Gleichungen vonMaurel undMaurel (1982) sowie vonBorisov undShapkin (1990) fO2 mit einer Genauigkeit von ±0.7 log Einheiten berechnet werden kann, soferne die Liquidus-Spinelle < 2.5 Gew.% TiO2 und > 13 Gew.% Cr2O3 haben und die Schmelzzusammensetzungen von basaltisch bis pikritisch, mit maximal 6 Gew.% H2O, reichen.Unter Verwendung dieser Technik wurden die NNO fO2 Werte für die von der VEMA Fracture Zone im Atlantik stammenden MORB Proben mit 0.8 bis - 1.4, die der der High-Ca Boninite von Tonga mit 0 bis + 1 bestimmt.


With 7 Figures  相似文献   

15.
Geothermometry and geobarometry of plagioclase-hornblende bearing assemblages   总被引:10,自引:0,他引:10  
The reaction Hb+Zo(Ep)+H2O+CO2⇌Pl+ Chl+Cc+Q was studied under hydrothermal conditions at P total=2, 4, 6 and 8 kb at . The continious transition from tremolite (actinolite) to Al-rich hornblende was fixed along the equilibrium curve of the reaction, providing a complete solid solution in the calcic amphibole series. A dependence of Al content in Ca-amphiboles and coexisting plagioclases on PT-conditions of their crystallization, determined for a wide range of temperature (450–650° C) and pressure (2–8 kb), has been used for construction of the experimental geothermobarometer. This may be employed to deduce temperature and pressure conditions of metamorphism of the albite-epidote-amphibolite and the amphibolite facies metabasites, including zoisite (or epidote)-bearing assemblages. An application of the Hb-Pl geothermobarometer is illustrated on the Patom Highland amphibolites and also on the well-known mafic schists of Vermont.  相似文献   

16.
17.
Although bulk-rock normative analyses of the trachytic inclusions from the Carpenter Ridge Tuff yield abundant quartz and minor corundum, a portion of the phenocryst assemblage is indicative of an alkaline parentage. Sanidine and biotite contain up to 8 and 5 wt% BaO respectively. In addition, both amphibole and clinopyroxene compositions are compatible with having crystallized from a mildly silica-undersaturated magma. Amphibole is magnesiohastingsite with 3 wt% TiO2 and less than 0.3 mole fraction vacancies in the A site. Clinopyroxene compositions straddle the calcic augite-salite boundary. Chrondite-normalized REE patterns are similar for both inclusions and rhyolites. The inclusions are slightly poorer in REE and have a positive Eu anomaly versus the negative anomaly of the rhyolites. The similarity in REE patterns would seem to indicate that the two rock types are genetically related with the positive Eu anomalies resulting from feldspar accumulation. However, this possibility is denied by the antithetic alkaline and subalkaline phenocryst assemblages of the two rock types. We suggest that the best explanation for these discrepancies is that a mildly silica-undersaturated magma was the parent for the phenocrysts. This magma intruded the Carpenter Ridge chamber, and because the crystallization temperatures of both magma overlapped, the alkaline magma mixed with the ambient rhyolite to form a hybrid. This hybrid consisted of a portion of the phenocryst assemblage from the alkaline magma but the bulk-rock chemistry depended upon the proportions of the endmember liquids. The abundance of normative quartz, the minor normative corundum, and the similarity of REE patterns indicates that the inclusions are mixtures dominated by the rhyolitic component. Additional processes such as liquid-state diffusion, crystal accumulation, and alkali loss may have contributed to obscure the compositions of the initial liquids involved in the inferred mixing process.  相似文献   

18.
Summary The Ulten Zone of the Austroalpine crystalline basement south-west of Meran (Italy) contains metapelitic schists and granoblastic paragneisses, leucocratic orthogneisses, migmatites (in both gneiss-lithologies), metabasites and ultramafic lenses. Metamorphic textures of the metapelitic schists and granoblastic paragneisses indicate two different metamorphic events, characterized by two mineral assemblages, which differ in mineral chemistry: (1) an eclogite facies mineral assemblage (M1) comprising Grt-Ky I-Bt. Ms-Kfs-PI-Qtz-Rt, and (2) an amphibolite facies mineral assemblage (M2) comprising Grt-KyII-Bt-Ms-PI-Qtz-Ilm±St. For the M1 event, pressures of at least 15kbar and temperatures of about 700°±50°C can be estimated. The later amphibolite facies overprint occurred at pressures of 6 to 8kbar and about 600°±50°C. The M1 and M2 assemblages belong to a continuous clockwise metamorphic evolution during the Variscan orogeny. Evidence for Alpine metamorphism can only be detected by sericite rims around kyanite and reset biotite ages. The migmatites, which contribute about 15–30vol.% of all rocks in the investigated area, were formed on the prograde path during the M1 event. Dissolution of H2O in the melted part of the migmatites resulted in a CO2dominated fluid, which was trapped in primary kyanite (M1) fluid inclusions. Secondary H2O-rich fluid inclusions are found in quartz grains and may represent the fluid which enabled a pervasive equilibration during M2.
Übergang von eklogit-zu amphibolitfazieller Matamorphose in der austroalpinen Ultenzone
Zusammenfassung Die Ulten Zone, ein Teil des ostalpinen kristallinen basements, südwestlich von Meran, wird aus Metapeliten and granoblastischen Paragneisen, leukokraten Orthogneisen, Migmatiten (in beiden Lithologien), Metabasiten and ultramafischen Linsen aufgebaut. Metamorphe Texturen der Metapelite und granoblastischen Paragneise lassen auf zwei verschiedene metamorphe Ereignisse schließen, die durch unterschiedliche Mineral-chemismen und Paragenesen charakterisiert sind: (1) eine eklogitfazielle Paragenese (M1), bestehend aus Grt-KyI-Bt-Ms-Kfs-P1-Qtz-Rt und (2) eine amphibolitfazielle Paragenese (M2), bestehend aus Grt-KyII-Bt-Ms-P1-Qtz-Ilm±St. Für M1 konnten Minimaldrucke von 15kbar und Temperaturen von 700°±50°C abgeleitet werden. Die spätere amphibolitfazielle Überprägung fand bei 6 bis 8kbar und 600°±50°C statt. M1 und M2 gehören einer kontinuierlichen Metamorphoseentwicklung während der variszischen Orogenese an.Die Migmatite, ungefähr 15–30vol.% der Gesteine im untersuchten Gebiet, wurden am prograden Pfad während des M1 Ereignisses gebildet. Aufgrund der höheren Löslichkeit von H20 in der Schmelze, blieb ein CO2, reiches Fluid zurück, das im primären Kyanit (M1) eingeschlossen wurde. Wässrige Flüssigkeitseinschlüsse können in Quarzkörnern gefunden werden. Dieses Fluid ist wahrscheinlich für die Reequilibrierung zu amphibolitfaziellen Bedingungen verantwortlich.


With 5 Figures  相似文献   

19.
The assemblage hornblende+white mica occurs in graphite-free schists at two localities in the southwest corner of the Tauern Window, Eastern Alps. In interbedded graphitic layers (1 mm to 1 m thick), however, hornblende is typically replaced by pseudomorphs of biotite+plagioclase +epidote±chlorite+staurolite in the presence of white mica. Garnets adjacent to these pseudomorphs have pronounced growth discontinuities near their rims, in contrast to the continuously zoned garnets in nongraphitic layers. These observations imply that reactions of the type hbl+white micagar+bio+plag+epid±chl±staur +H2O occurred in the graphitic samples, but that hbl+white mica remained stable in graphite-free layers.Calculation of the equilibrium constants for solid phases in five dehydration equilibria at locality 1 indicates thata(H2O) in the nongraphitic layers was 6 to 11 times greater thana(H2O) in the graphitic layers. Similar calculations involving six dehydration equilibria at locality 2 show no difference ina(H2O) between layers at the conditions of final equilibration. Initial differences in fluid composition maintained between the graphitic and nongraphitic layers caused the hbl+white mica reaction to occur at differentP-T conditions in different horizons of the schists.These data indicate that systematic differences in fluid composition were generated during metamorphism of the interlayered graphitic and non-graphitic schists but were subsequently homogenized at locality 2. The heterogeneities could initially have been produced while the rocks were in theP-T field of CO2-H2O immiscibility. Development of a penetrative, layer-parallel shear foliation at this time would have prevented subsequent mixing of the fluids across layers after temperatures exceeded the consolute temperature in the CO2-H2O system. Late-stage homogenization of fluids at locality 2 is thought to reflect loss of the buffer capacity of the mineral assemblage in response to total consumption of hornblende.  相似文献   

20.
There are three populations of fluid inclusions in quartz from the Sybille Monzosyenite: early CO2, secondary CO2, and rare secondary brines. The oldest consist of low density CO2 (0.70) inclusions that appear to be co-magmatic. The densities of these inclusions are consistent with the inferred crystallization conditions of the Sybille Monzosyenite, namely 3 kilobars and 950–1000° C. The other types of inclusions are secondary; they contain CO2 (0.50) and secondary brine inclusions that form trains radiating out from a decrepitated inclusion. The sites of these decrepitated inclusions are now marked by irregularly shaped fluid inclusions and solid inclusions of salt and carbonate. Rather than fluid inclusions, feldspar contain abundant solid inclusions. These consist of magmatic minerals, hedenbergite, hornblende, ilmenite, apatite, and graphite, intimately associated with K, Na chlorides. We interpret these relations as follows: The Sybille Monzosyenite formed from a magma that contained immiscible droplets of a halide-rich melt along with a CO2 vapor phase. The salt was trapped along with the other obvious magmatic minerals during growth of the feldspars. CO2 may have also been included in the feldspars but it probably leaked later during exsolution of the feldspars and was not preserved. Both the saline melt and the CO2 vapor were trapped in the quartz. The melt inclusions in the quartz later decrepitated, perhaps due to progressive exsolution of fluids, to produce the secondary H2O and CO2 inclusions. These observations indicate that the Sybille Monzosyenite, which is a markedly anhydrous rock, was actually vapor-saturated. Rather than being H2O, however, the vapor was CO2-rich and possibly related to an immiscible chloride-rich melt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号