首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flux and composition of material caught using two different upper ocean sediment trap designs was compared at the Bermuda Atlantic Time-series Study site (BATS). The standard surface-tethered trap array at BATS was compared to a newly designed neutrally buoyant sediment trap (NBST). Both traps used identical cylindrical collection tubes. Of particular concern was the effect of horizontal flow on trap collection efficiency. In one experiment, mass, particulate organic carbon (POC) and particulate organic nitrogen (PON) fluxes were slightly lower (20–30%) in the NBST than in the standard BATS trap. In contrast, 234Th and fecal pellet fluxes were up to a factor of two to three lower in the NBST. In a second experiment, mass and POC fluxes decreased significantly with depth in the BATS surface-tethered trap, but not in the NBST. Different brine treatments had no measurable effect on collection efficiencies. A striking observation was that the swimmer “flux” was much larger in the standard BATS traps than in the NBST. Overall, these results show that different components of the sinking flux can be collected with differing efficiencies, depending upon how traps are deployed in the ambient environment.  相似文献   

2.
Myctophids are among the most abundant fishes in the world׳s ocean and occupy a key position in marine pelagic food webs. Through their significant diel vertical migrations and metabolism they also have the potential to be a significant contributor to carbon export. We investigated the feeding ecology and contribution to organic carbon export by three myctophid species, Benthosema glaciale, Protomyctophum arcticum, and Hygophum hygomii, from a structurally and ecologically unique ecosystem- the Mid-Atlantic Ridge (MAR). Similar to the results of previous studies, the diet of these fishes was primarily copepods and euphausiids, however, gelatinous zooplankton was identified in the diet of B. glaciale for the first time. Ridge section and time of day were significant explanatory variables in the diet of B. glaciale as determined by canonical correspondence analysis, while depth was the only significant explanatory variable in the diet of P. arcticum. Daily consumption by MAR myctophids was less than 1% of dry body weight per day and resulted in the removal of less than 1% of zooplankton biomass daily. Although lower than previous estimates of carbon transport by myctophids and zooplankton in other areas, MAR myctophid active transport by diel vertical migration was equivalent to up to 8% of sinking particulate organic carbon in the North Atlantic. While highly abundant, myctophids do not impart significant predation pressure on MAR zooplankton, and play a modest role in the active transport of carbon from surface waters.  相似文献   

3.
Export processes play a major role in regulating global marine primary production by reducing the efficiency of nutrient cycling and turnover in surface waters. Most studies of euphotic zone export focus on passive fluxes, that is, sinking particles. However, active transport, the vertical transfer of material by migrating zooplankton, can also be an important component of carbon (C) and nitrogen (N) removal from the surface ocean. Here we demonstrate that active transport is an especially important mechanism for phosphorus (P) removal from the euphotic zone at Station ALOHA (Hawaii Ocean Time-series program; 22°45′N, 158°W), a P-stressed site in the North Pacific Subtropical Gyre. Migrant excretions in this region are P-rich (C51:N12:P1) relative to sinking particles (C250:N31:P1), and migrant-mediated P fluxes are almost equal in magnitude (82%) to P fluxes from sediment traps. Migrant zooplankton biomass and therefore the importance of this P removal pathway relative to sinking fluxes has increased significantly over the past 12 years, suggesting that active transport may be a major driving force for enhanced P-limitation of biological production in the NPSG. We further assess the C:N:P composition of zooplankton size fractions at Station ALOHA (C88:N18:P1, on average) and discuss migrant-mediated P export in light of the balance between zooplankton and suspended particle stoichiometries. We conclude that, because active transport is such a large component of the total P flux and significantly impacts ecosystem stoichiometry, export processes involving migrant zooplankton must be included in large-scale efforts to understand biogeochemical cycles.  相似文献   

4.
Carbon budgets of the mesopelagic zone are poorly constrained, highlighting our lack of understanding of the biota that inhabit this environment and their role in the cycling and sequestering of carbon in the deep ocean. A simple food web model of the mesopelagic zone is presented that traces the turnover of particulate organic carbon (POC), supplied as sinking detritus, through to its respiration by the biota via three pathways: colonization and solubilization of detritus by attached bacteria, production of free-living bacteria following losses of solubilization products during particle degradation, and consumption by detritivorous zooplankton. The relative consumption of detritus by attached bacteria was initially specified as 76%, with the remaining 24% by detritivores. Highlighting an asymmetry between consumption and respiration, the resulting predicted share of total respiration due to bacteria was 84.7%, with detritivores accounting for just 6.6% (with 6.5% and 2.2% by bacterivores and higher zooplankton, respectively). Bacteria thus dominated respiration and thereby acted as the principal sink for POC supplied to the mesopelagic zone, whereas zooplankton mainly recycled carbon back to the base of the food web as detritus or dissolved organic carbon rather than respiring it to CO2. Estimates of respiration are therefore not necessarily a reliable indicator of the relative roles of bacteria and zooplankton in consuming and processing POC in the mesopelagic zone of the ocean. The work highlighted a number of major unknowns, including how little we know in general about the dynamics and metabolic budgets of bacteria and zooplankton that inhabit the mesopelagic zone and, specifically, the degree to which the solubilized products of enzymatic hydrolysis of POC by attached bacteria are lost to the surrounding water, the magnitude and factors responsible for bacterial growth efficiency, the role of microbes in the nutrition of detritivores, and the recycling processes by which zooplankton return what they consume to the food web as detritus and dissolved organic matter.  相似文献   

5.
The annual flux of biologically produced organic carbon from surface waters is equivalent to annual net community production (NCP) at a steady state and equals the export of particulate and dissolved organic carbon (POC and DOC, respectively) to the ocean interior. NCP was estimated from carbon budgets of salinity-normalized dissolved inorganic carbon (nDIC) inventories at two time-series stations in the western subarctic (K2) and subtropical (S1) North Pacific Ocean. By using quasi-monthly biogeochemical observations from 2004 to 2013, monthly mean nDIC inventories were integrated from the surface to the annual maximum mixed layer depth and corrected for changes due to net air–sea CO2 exchange, net CaCO3 production, vertical diffusion from the upper thermocline, and horizontal advection. The annual organic carbon flux at K2 (1.49 ± 0.42 mol m?2 year?1) was lower than S1 (2.81 ± 0.53 mol m?2 year?1) (p < 0.001 based on t test). These fluxes consist of three components: vertically exported POC fluxes (K2: 1.43 mol m?2 year?1; S1: 2.49 mol m?2 year?1), vertical diffusive DOC fluxes (K2: 0.03 mol m?2 year?1; S1: 0.25 mol m?2 year?1), and suspended POC fluxes (K2: 0.03 mol m?2 year?1; S1: 0.07 mol m?2 year?1). The estimated POC export flux at K2 was comparable to the sum of the POC flux observed with drifting sediment traps and active carbon flux exported by migrating zooplankton. The export fluxes at both stations were higher than those reported at other time-series sites (ALOHA, the Bermuda Atlantic Time-series Study, and Ocean Station Papa).  相似文献   

6.
Accumulating evidence points to the importance of mesoscale eddies in supplying nutrients to surface waters in oligotrophic gyres. However, the nature of the biological response and its evolution over time has yet to be elucidated. Changes in mesozooplankton community composition due to eddy perturbation also could affect biogeochemical cycling. Over the course of two summers we sampled seven eddies in the Sargasso Sea. We focused on and followed a post-phytoplankton bloom cyclonic eddy (C1) in 2004 and a blooming mode-water anticyclonic eddy (A4) in 2005. We collected zooplankton in all eddies using a Multiple Opening and Closing Net Environmental Sampling System (MOCNESS) and quantified biomass (>0.15 mm, in five size fractions) from 0 to 700 m over nine discrete depth intervals. Zooplankton biomass (>0.5 mm) in the upper 150 m was similarly enhanced at night for the periphery of C1 and the center of A4 at 0.514 g m−2 and 0.533 g m−2, respectively, compared to outside (0.183 g m−2 outside C1 and 0.197 g m−2 outside A4). Despite minimal chlorophyll a enhancement and dominance by picoplankton in C1, zooplankton biomass increased most for the largest size class (>5 mm). Gut fluorescence for euphausiids and large copepods was also elevated on the C1 periphery. In A4, peak biomass occurred at eddy center coincident with peak primary production, but was highly variable (changing by >3-fold) over time, perhaps resulting from the dense, but patchy distribution of diatom chains in this region. Shifts in zooplankton community composition and abundance were reflected in enhancement of fecal pellet production and active transport by diel vertical migration in eddies. Inside C1 the flux of zooplankton fecal pellets at 150 m in June 2004 was 1.5-fold higher than outside the eddy, accounting for 9% of total particulate organic carbon (POC) flux. The flux of fecal pellets (mostly from copepods) increased through the summer in eddy A4, matching concurrent increases in zooplankton <2 mm in length, and accounting for up to 12% of total POC flux. Active carbon transport by vertically migrating zooplankton was 37% higher on the periphery of C1 and 74% higher at the center of A4 compared to the summer mean at the Bermuda Atlantic Time-series Study (BATS) station. Despite contrasting responses by the phytoplankton community to cyclonic and mode-water eddies, mesozooplankton biomass was similarly enhanced, possibly due to differential physical and biological aggregation mechanisms, and resulted in important zooplankton-mediated changes in mesoscale biogeochemistry.  相似文献   

7.
南沙渚碧礁生态系有机碳的分布及周日变化特征   总被引:4,自引:0,他引:4  
1999 年 4 月对我国南沙群岛渚碧礁海水中溶解有机碳的分布及礁坪区颗粒有机碳 (POC) 和溶解有机碳 (DOC) 的周日变化特征进行了观测。结果表明,渚碧礁表层海水 DOC 变化范围为 1.43~3.62 mg/L,平均为 2.16 mg/L,含量分布大致表现为礁坪区>潟湖>礁外。潟湖 DOC 的垂直分布大致表现为表层高于底层,可能与表层浮游植物的光合作用有关。礁坪区 POC 及 DOC 都呈现显著的周日变化特征,POC 呈现夜晚高,白天低的特点,浮游植物的昼夜垂直移动可能是产生该现象的主要原因。DOC 的周日变化则主要受浮游动物昼夜垂直移动及细菌等生物活动的影响。  相似文献   

8.
We examined the impact of a cyclonic eddy and mode-water eddy on particle flux in the Sargasso Sea. The primary method used to quantify flux was based on measurements of the natural radionuclide, 234Th, and these flux estimates were compared to results from sediment traps in both eddies, and a 210Po/210Pb flux method in the mode-water eddy. Particulate organic carbon (POC) fluxes at 150 m ranged 1–4 mmol C m−2 d−1 and were comparable between methods, especially considering differences in integration times scales of each approach. Our main conclusion is that relative to summer mean conditions at the Bermuda Atlantic Time-series Study (BATS) site, eddy-driven changes in biogeochemistry did not enhance local POC fluxes during this later, more mature stage of the eddy life cycle (>6 months old). The absence of an enhancement in POC flux puts a constraint on the timing of higher POC flux events, which are thought to have caused the local O2 minima below each eddy, and must have taken place >2 months prior to our arrival. The mode-water eddy did enhance preferentially diatom biomass in its center, where we estimated a factor of three times higher biogenic Si flux than the BATS summer average. An unexpected finding in the highly depth-resolved 234Th data sets is narrow layers of particle export and remineralization within the eddy. In particular, a strong excess 234Th signal is seen below the deep chlorophyll maxima, which we attribute to remineralization of 234Th-bearing particles. At this depth below the euphotic zone, de novo particle production in the euphotic zone has stopped, yet particle remineralization continues via consumption of labile sinking material by bacteria and/or zooplankton. These data suggest that further study of processes in ocean layers is warranted not only within, but below the euphotic zone.  相似文献   

9.
Dissolved organic carbon (DOC), stable carbon isotopic (δ13C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. δ13C values of both POC (−23.8‰ to −26.8‰) and DOC (−25.0‰ to −29.0‰) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in δ13C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-δ13C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-δ13C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10–30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted.  相似文献   

10.
We compared wintertime depth distributions of the mesozooplankton community and dominant copepods between the subtropical (S1) and subarctic (K2) Pacific Oceans to evaluate the relative importance of actively transported carbon by vertical migrants to sinking particulate organic carbon flux. Primary production was higher and the ratio of sinking particulate organic carbon flux to primary production was lower at S1 compared with those at K2. The mesozooplankton community was lower in abundance and biomass at S1 compared to K2. Copepods were the dominant group among both mesozooplankton abundance and biomass throughout the water column down to 1000 m at both sites. The depth distribution showed that diel vertical migration was obvious for the mesozooplankton abundance and biomass at S1 but was not apparent for the abundance at K2, because the dominant component was diurnally migrating species at S1 and overwintering species residing at mesopelagic depths at K2. The major components of diel migrants were copepods and euphausiids at S1 and only euphausiids at K2. Respiratory flux by the diurnally migrating mesozooplankton was estimated to be 2 mgC m−2 day−1 at S1 and 7 mgC m−2 day−1 at K2. The respiratory flux was equivalent to 131% of sedimentary fecal pellet flux at S1 and 136% of that at K2. Because pathways of downward carbon flux are facilitated by the mesozooplankton community, the actively transported carbon (respiration of dissolved inorganic carbon, excretion of dissolved organic carbon and egestion of fecal pellets at depth) might be larger during winter than the flux of sinking fecal pellets.  相似文献   

11.
Export of particles was studied at the equator during an El Nin˜o warm event (October 1994) as part of the French ORSTOM/FLUPAC program. Particulate mass, carbon (organic and inorganic) (C), nitrogen (N), and phosphorus (P) export fluxes were measured at the equator in the western and central Pacific during two 6–7 day-long time-series stations located in the warm pool (TS-I at 0°, 167°E) and in the equatorial HNLC situation (TS-II at 0°, 150°W), using drifting sediment traps deployed for 48 h at four depths (between, approximately, 100 and 300 m).The particulate organic carbon (POC) fluxes at the base of the euphotic zone (0.1 % light level), were approximately four times lower at TS-I than at TS-11 (4.1 vs. 17.0 mmol C m-2 day-1). Conversely, fluxes measured at 300 m were similar at both sites (3.6vs. 3.7 mmol C m−2 day−1 at TS-I and TS-11, respectively). This change in export fluxes was in good agreement with food-web dynamics in the euphotic zone characterized by an increase in plankton biomasses and metabolic rates and a shift towards larger size from TS-1 to TS-II. The POC flux profiles indicated high remineralization (up to 78%) of the exported particles at TS-II, between 100 and 200 m in the Equatorial Undercurrent. According to zooplankton ingestion estimates from 100 – 300 m, 60% of this POC loss could be accounted for by zooplankton grazing. At TS-I, no marked increase of flux with depth was observed, and we assume that loss of particles was compensated by in-situ particle production by zooplankton. Fluxes of particulate nitrogen and phosphorus followed the same general patterns as the POC fluxes. The elemental and pigment composition of the exported particles was not very different between the two stations. In particular, the POCYN flux molar ratio at the base of the euphotic zone was low, 6.9 and 6.2 at TS-1 and TS-II, respectively.For particulate inorganic carbon (mainly carbonate) flux, values at the base of the euphotic zone averaged 0.9 mmol C m-2 day-1 at TS-I and 2.3 mmol C m-2 day-1 at TS-11 (corresponding to a 2.6-fold increase) and showed low depth changes at both stations.POC export flux (including active flux associated with the interzonal migrants) at the 0.1 % light level depth represented only 8% of primary production (1°C uptake) measured at TS-1 and 19% at TS-II. For the time and space scales considered in the present study, new primary production, as measured by the 15N method, was in good agreement with the total export flux in the HNLC situation, thus leading to negligible dissolved organic carbon (DOC) or nitrogen (DON) losses from the photic zone. Conversely, export flux was found to be only 50% (C units) and 60% (N) of new production in the oligotrophic system, either because of an overestimation by the 15N method or of a significant export of DOC and DON.Comparison with other oceanic regions shows that export flux in the warm pool was within the same range as in the central gyres. On the other hand, comparison with EgPac data in the central Pacific suggests that there is no straightforward relation between the magnitude of the export and surface nitrate concentrations.  相似文献   

12.
A new method of evaluating the rate of mineralization of photoassimilated organic matter is described. This method enables us to compare the rate of direct mineralization of particulate organic carbon (POC) to CO2 with the rate of solubilization of photoassimilated organic carbon followed by the mineralization of the resultant dissolved organic carbon (DOC) under the same conditions. The direct mineralization of photoassimilated carbon from POC to CO2 is a more significant process compared with the mineralization of extracellular released organic carbon. The first-order rate coefficients range from 0.132 to 0.434 day–1 for direct mineralization and 0.034 to 0.189 day–1 for solubilization.  相似文献   

13.
We investigated seasonal changes in carbon demand and flux by mesozooplankton communities at subtropical (S1) and subarctic sites (K2) in the western North Pacific Ocean to compare the impact of mesozooplankton communities on the carbon budget in surface and mesopelagic layers. Fecal pellet fluxes were one order higher at K2 than at S1, and seemed to be enhanced by copepod and euphausiid egestion under high chlorophyll a concentrations. The decrease in pellet volume and the lack of any substantial change in shape composition during sink suggest a decline in fecal pellet flux due to coprorhexy and coprophagy. While respiratory and excretory carbon by diel migrants at depth (i.e., active carbon flux) was similar between the two sites, the actively transported carbon exceeded sinking fecal pellets at S1. Mesozooplankton carbon demand in surface and mesopelagic layers was higher at K2 than S1, and an excess of demand to primary production and sinking POC flux was found during some seasons at K2. We propose that this demand was met by supplementary carbon sources such as feeding on protozoans and fecal pellets at the surface and carnivory of migrants at mesopelagic depths.  相似文献   

14.
Chemistry of organic materials of the suspended and sinking particles, and the evaluation of the particulate materials for the carbon cycle of the ocean are described in this paper. Organic carbon (POC) and nitrogen (PON) of the suspended particles collected from various areas of the North through South Pacific were determined with considerably high variabilities in their concentration. Higher values of the POC and PON were obtained in the surface water of the higher latitudinal areas of both northern and southern hemispheres and the equatorial Pacific, while the lower values of these organic elements were measured in the middle latitudinal areas of the Pacific. These facts clearly indicate that inorganic nutrients supply to the surface water layers from the underlying water is primarily determinative factor to govern the concentration of the POC and PON in the surface water layer. POC and PON concentrations in the intermediate through deep waters, however, are much less variable in time and space. Carbohydrates, free and combined amino acids and lipid materials were major organic constituents of the suspended particles. The organic composition of the particles was extensively variable in region, time and depth. Such change in the organic composition was mainly caused by the production and decay of the free and combined amino acids, lipid materials and water extractable carbohydrate. Sinking particle which has high sinking rate over 100 m day−1 and can be collected only by sediment trap, also consists of carbohydrates, free and combined amino acids and lipid materials. A detailed analysis of the particle indicate that the sinking particle was much different from the suspended particle from the intermediate through deep waters in terms of the abundance of the biologically susceptible organic materials such as unsaturated hydrocarbon, fatty acid and water extractable carbohydrate often found in phytoplankton. These facts clearly indicate that the sinking particle plays an important role on the vertical transport of the biologically susceptible organic materials from the surface water to the deep water. Vertical flux of organic materials in various water depths was extensively measured in the North Pacific and Antarctic Ocean using the depth-series sediment trap system to collect the sinking particles from various depths of the waters. Regional and seasonal variabilities of the organic carbon flux at the various depths were obviously observed, however the attenuation rate of the organic carbon flux in the intermediate through deep water was not changed so much irrespective of the sampling time and region. The time-series sediment trap system was also using to determine the seasonal variation of the organic carbon flux. An average organic carbon flux at 1 km depth from this trap system was almost comparable to the amount of organic carbon degraded in the water deeper than 1 km depth, which was calculated from oxygen consumption rate of the deep water. Thus, it is clear that the sinking particle must play an important role in the carbon cycle of the deep water.  相似文献   

15.
Seasonal and spatial variations of particulate organic carbon (POC) flux were observed with sediment traps at three sites in the Japan Sea (western and eastern Japan Basin and Yamato Basin). In order to investigate the transport processes of POC, radiocarbon (14C) measurements were also carried out. Annual mean POC flux at 1 km depth was 30.7 mg m−2day−1 in the western Japan Basin, 12.0 mg m−2day−1 in the eastern Japan Basin and 23.8 mg m−2day−1 in the Yamato Basin. At all stations, notably higher POC flux was observed in spring (March–May), indicating biological production and rapid sinking of POC in this season. Sinking POC in the high flux season showed modern Δ14C values (>0‰) and aged POC (Δ14C < −40‰) was observed in winter (December–January). The Δ14C values in sinking POC were negatively correlated with aluminum concentration, indicating that Δ14C is strongly related to the lateral supply of lithogenic materials. The Δ14C values also showed correlations with excess manganese (Mnxs) concentrations in sinking particles. The Δ14C-Mnxs relationship suggested that (1) the majority of the aged POC was advected by bottom currents and incorporated into sinking particles, and (2) some of the aged POC might be supplied from the sea surface at the trap site as part of terrestrial POC. From the difference in the Δ14C-Mnxs relationships between the Japan Basin and the Yamato Basin, we consider that basin-scale transport processes of POC occur in the Japan Sea.  相似文献   

16.
The likelihood that the carbon fluxes measured as part of the US-JGOFS field program in the equatorial Pacific ocean (EgPac) during 1992 yielded a balanced carbon budget for the surface ocean was determined. The major carbon fluxes incorporated into a surface carbon budget were: new production, particulate organic carbon (POC) and dissolved organic carbon (DOC) export, CaC03 export, C02 gas evasion, dissolved inorganic carbon (DIC) supply, and the time rate of charge. The ratio of the measured concentration gradients of DOC and DIC provided a constraint on the ratio of POC/DOC export. Uncertainties of ±30–50% for individual carbon flux measurements reduce the likelihood that a carbon balance can be measured during a JGOFS process-type study. As a benchmark, carbon fluxes were prescribed to yield a hypothetical surface carbon budget that was, on average, balanced. Given the typical errors in the individual carbon fluxes, however, there was only about a 30% chance that this hypothetical budget could be measured to be balanced to ±50%. Using this benchmark, it was determined that there was a 95 % chance that the carbon flux measurements yielded a surface DIC budget balanced (to ±50%) during El Nino conditions in boreal spring 1992, when the total organic carbon export rate was - 5 mmol C m-2 day- 1 and the POC export was 3 mmol C m−2 day−1. In boreal fall 1992, during cold period conditions, there was a 70% chance that the surface carbon DIC budget was balanced when the total organic carbon export rate was 20 mmol C m−2 day−1 and export was -13 mmol C m-2 day-'. The DOC to DIC concentration gradient ratio of - -0.15, measured in depth profiles down to 100m and in surface waters, was used as an important constraint that most (> 70%) of the organic carbon exported from the euphotic zone was POC rather than DOC. If a balanced surface DIC budget was used to test the compatibility of individual carbon fluxes measured during EgPac, then a three- to four-fold increase in total and particulate organic carbon export between spring and fall is indicated. This increase was not reflected in the POC loss rates measured by drifting sediment trap collections or estimated by234Th deficiencies coupled with the C/Th measured on suspended particles.  相似文献   

17.
In three sections in the Kara Sea, the contents of the dissolved and particulate organic carbon (the DOC and POC, respectively), as well as of the organic carbon of the bottom sediments (Corg) were determined. The contents of varied from 6.3 to 2400 μg/l for the DOC and from 0.84 to 12.2 mg of C/l for the POC. The average concentrations for all the samples tested amounted to 200 μg/l for the DOC (n = 78, σ = 368) and 2.7 mg/l for the POC (n = 92, σ = 2.7). The concentrations of Corg in the samples of the upper layer of the bottom sediments of the area treated varied from 0.13 to 2.10% of the dry substance at an average value of 0.9% (n = 21, σ= 0.49%). It is shown that the distribution of the different forms of organic matter (OM) is an indicator of the supply and spreading of the particulate matter in the Kara Sea and that the DOC and POC of the Kara Sea are formed under the impact of the runoff of the Ob and Yenisei river waters. It is found that the distribution of the OM of the bottom sediments in the surveyed area of the Kara Sea is closely related to their grain-size composition and to the structure of the currents in the area studied. The variations in the Corg content in the bottom sediment cores from the zone of riverine and marine water mixing represent the variability of the OM burial.  相似文献   

18.
Successive measurements of the size distribution and abundance of marine snow in the upper 100 m of the Santa Barbara Channel, California, with an in situ still camera system following 11 tagged water masses revealed a consistent pattern of nighttime decreases in the abundance of large particles. A net nocturnal reduction in particulate flux from the upper 100 m as calculated from camera profiles occurred in 75% of the day–night comparisons, and nighttime aggregate carbon losses resulted in a 38% average reduction in camera-derived aggregate flux. Intensive investigation of three stations for 24–48 h each indicated that nighttime decreases in aggregate concentrations and derived aggregate flux could be registered throughout the observed water column. Nocturnal decreases in marine snow concentration are unlikely to result from diel variations in the production of marine snow either as feeding webs of zooplankton or through variations in aggregation rates of smaller particles. Moreover, measured diel variations in the intensity of surface mixing and convective overturn during one of the 24 h deployments were not intense enough to produce aggregate fragmentation and reduced aggregate flux. Nighttime increases in large crustacean zooplankton (i.e., euphausiids and the large copepod Calanus pacificus) could explain some or all of the reduction in aggregate abundance at most stations. Fragmentation and consumption of marine snow by migrating macrozooplankton could produce our observed synchronous diel cycles in marine snow concentration. This is the first empirical evidence of a diel pattern in the concentration and calculated particulate flux of large sinking particles in near-surface waters. The data presented here are consistent with the only other existing diel study, which also reported decreases in marine snow abundance at night at 270 m depths in the oceanic north Atlantic. Diel variations in the sizes and concentrations of marine snow may impact water column processes dependent upon particle availability and size, such as grazing and remineralization, and may generate a diel cycle of food availability to the benthos.  相似文献   

19.
为了评估海洋酸化和富营养化耦合作用对近海浮游生态环境的影响,本研究以天津市近岸海域浮游植物群落的生物地球化学指标为研究对象,分别采用一次性及连续培养的方式模拟自然水华及稳态条件,探究其对二氧化碳(CO2)和硝酸盐浓度变化及二者耦合作用的响应。实验条件设置如下:1)对照:二氧化碳分压p(CO2)40.53 Pa、无硝酸盐添加;2)酸化:p(CO2)101.3 Pa、无硝酸盐添加;3)加N:p(CO2)40.53 Pa、添加硝酸盐50 μmol·L–1;4)酸化加N:p(CO2)101.3 Pa、添加硝酸盐50 μmol·L–1。实验结果表明,硝酸盐加富比酸化更加显著地促进浮游植物群落总叶绿素(Chl a)生物量及颗粒有机碳(POC)和颗粒有机氮(PON)积累,酸化和加N使浮游植物群落粒径大小升高。连续培养实验表明,酸化和N加富对Chl a、生物硅(BSi)、PON浓度、PON与颗粒有机磷(POP)比值(N/P)、POC与BSi比值(C/BSi)及沉降速率有协同交互作用,对POP和POC浓度及POC与PON比值(C/N)有拮抗性交互作用。在一次性培养后,酸化显著降低了浮游植物群落的沉降速率;而在连续培养后,酸化和N加富使浮游植物群落沉降速率显著升高。这些结果表明酸化和N加富对与近岸浮游植物相关的生物地球化学循环及在不同生长阶段的种群碳沉降存在不同的潜在影响及交互效应。  相似文献   

20.
In this study at the Bermuda Atlantic Time-series Study (BATS) site we demonstrate that the polonium–lead disequilibrium system may perform better as a tracer of organic carbon export under low-flux conditions (in this case, <2.5 mmol C m?2 d?1) than under bloom conditions in an oligotrophic setting. With very few exceptions, the POC flux predictions calculated from the water-column 210Po deficit were within a factor of 2 of the POC flux caught in surface-tethered sediment traps. However, we found higher correlation between size-fractionated particulate 210Po activity and POC concentration in November 2006 (r=0.93) than in January (r=0.79) and during the spring bloom in March 2007 (r=0.80). We suggest that this is due to the ability of polonium to distinguish between bulk mass flux and organic carbon export under oligotrophic and lithogenic-driven flux regimes. Further, we found that the POC/Po ratio on particles was largely independent of size class between 10 and 100 μm (P=0.13) during each season, supporting the notion that export in this oligotrophic system is driven by sinking aggregates of smaller cells and not by large, individual cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号