首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Long-term variations of monthly average maximum and minimum temperature (TMAX and TMIN) and precipitation records in southern Brazil are investigated for the 1913–2006 period. These variations are carefully analyzed for seasonal and annual indices, taken as regional averages. For this purpose, the serial correlation and trend of the indices are investigated using the run and Mann–Kendall tests. The significant trends are obtained from linear least-square fits. The annual and seasonal TMIN indices show significant warming trends with magnitudes (1.7°C per 100 years for annual index) comparable to those reported by the Intergovernmental Panel on Climate Change, but lower than those found for the southern Brazil in another previous work. Regarding the two other variables, the indices show significant trends only for summer, being a cooling trend of 0.6°C per 100 years for the TMAX and an increasing trend of 93 mm per 100 years over an average summer precipitation of 367 mm. Concerning the decadal analysis, the 1920s present the lowest annual, autumn, and spring TMIN and the 1990s, the highest ones. The 1970s is the decade with the lowest summer TMAX, and the 1940s the decade with the highest one. The driest decade is the 1940s and the wettest, the 1980s.  相似文献   

2.
In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80–2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20–2.48 °C) was found in the southern, southeastern and northeastern parts during 1971–2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (?0.75 mm per year) and post-monsoon rainfall (?0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011–2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.  相似文献   

3.
Climate change trend in China, with improved accuracy   总被引:5,自引:0,他引:5  
We have found that a spatial interpolation of mean annual temperature (MAT) in China can be accomplished using a global ordinary least squares regression model since the relationship between temperature and its environmental determinants is constant. Therefore the estimation of MAT does not very across space and thus exhibits spatial stationarity. The interpolation of mean annual precipitation (MAP), however, is more complex and changes spatially as a function of topographic variation. Therefore, MAP shows spatial non-stationarity and must be estimated with a geographically weighted regression. A statistical transfer function (STF) of MAT was formulated using minimized residuals output from a high accuracy and high speed method for surface modeling (HASM) with an ordinary least squares (OLS) linear equation that uses latitude and elevation as independent variables, abbreviated as HASM-OLS. The STF of MAP under a BOX-COX transformation is derived as a combination of minimized residuals output by HASM with a geographically weighted regression (GWR) using latitude, longitude, elevation, impact coefficient of aspect and sky view factor as independent variables, abbreviated as HASM-GWR-BC. In terms of HASM-OLS and HASM-GWR-BC, MAT had an increasing trend since the 1960s in China, with an especially accelerated increasing trend since 1980. Overall, our data show that MAT has increased by 1.44 °C since the 1960s. The warming rates increase from the south to north in China, except in the Qinghai-Xizang plateau. Specifically, the 2,100 °C?·?d contour line of annual accumulated temperature (AAT) of ≥10 °C shifted northwestward 255 km in the Heilongjiang province since the 1960s. MAP in Qinghai-Xizang plateau and in arid region had a continuously increasing trend. In the other 7 regions of China, MAP shows both increasing and decreasing trends. On average, China became wetter from the 1960s to the 1990s, but drier from the 1990s to 2000s. The Qinghai-Xizang Plateau and Northern China experienced more climatic extremes than Southern China since the 1960s.  相似文献   

4.
Jing Yang  Dao-Yi Gong 《Climatic change》2010,100(3-4):807-815
Based on daily rainfall data from 1960 to 2007, this study investigated the difference in rainfall trends between seven mountain stations and 21 nearby plain stations in eastern China for the months June–August. The amount and frequency of light rain (≤2.5 mm/day) over the mountain areas showed a greater decreasing trend than over the surrounding plain regions. The trend of light-rainfall frequency at mountain stations is ??4.8%/decade, approximately double that at plain stations (??2.3%/decade). The trend in light-rainfall amount at mountain stations is ??5.0%/decade, approximately three times that at plains station (??1.4%/decade). Reduced wind speed may explain the enhanced decrease in light rainfall over mountain areas through the weakened orographic lifting. Further study is needed to determine whether the precipitation difference between mountain and plain (urban) regions is exacerbated by air pollution in East China through its indirect effects and influence on regional air stability and wind speed.  相似文献   

5.
Compared to the 50-year mean climatological value (1961–2010), the precipitation of middle-eastern Inner Mongolia exhibited a significant decrease during the past 10 years (2001–2010). To identify the climatic causes, a comprehensive investigation was conducted by inspecting climatic factors from this 50-year period, which appear to work together in connecting closely to the precipitation. Significant positive correlations with precipitation were found in sea level pressure (SLP) difference between the area of (30° N–20° S; 50–160° E) and the northeastern Pacific Ocean, between the Northern Atlantic and the northeastern Pacific Oceans, and sea surface temperature difference between the northeastern and northwestern Pacific in the previous year, while negative connections were found in the 500-hPa temperature difference between the Antarctic and the belt region around 60° S. During the period of 2001–2010, East Asia was prevailingly controlled by a huge high, which was regarded as one of unfavorable factors for producing rain or snow. Other factors were the enlarged 500 hPa temperature differences between the Antarctic and the zones around 60° S and the Equator, the negative SLP difference between the East Asia, northern Atlantic, and Pacific Oceans. Finally, the unique wind flows and associated moisture transports also played a key role in the precipitation reduction for the first decade of the twenty-first century.  相似文献   

6.
The Peace–Athabasca Delta in northern Alberta, Canada, is a dynamic wetland ecosystem. Climatic, hydrologic, biological, and historical data are synthesized to elucidate how the ecosystem has changed over the past 300 years. Annual temperature is now higher than it has been in the past 300 years. For much of the 1700s, the Delta was colder in winter and had a lower flood frequency than that of the last 30 years. The 1800s were characterized by long and cold winters, 4–12 year-long episodes of high or low water, and repeated human epidemics. The early twentieth century was relatively moist and cool. Since mid-twentieth century the Delta has experienced periods of both intense warmth and cold, desiccation and recharge. Since the mid-1960s, local and regional mean annual temperatures have increased 0.30°C to 0.48°C per decade while winter temperatures have increased 0.68°C to 0.92°C per decade; annual snowfall has decreased 12 to 41 cm per decade while winter snowfall has decreased 12 to 34 cm per decade. Major events in the past 45 years include climatic changes favoring a warmer, drier ecosystem; cultural and socioeconomic changes; building of the Bennett Dam; prevention of the Athabasca River mainstem avulsion in 1972; the Cree Creek avulsion of 1982; large fluctuations in water, vegetation, and wildlife; and the development of the Alberta Tar Sands. Increased rates of basin desiccation and wildfire activity and upstream land disturbances may combine to alter the Delta’s biotic composition. There appears to be no relevant historical analogue of the present Delta.  相似文献   

7.
Frost-free season was an important index for extreme temperature, which was widely discussed in agriculture and applied meteorology research. The frost-free season changed, which was associated with global warming in the past few decades. In this study, the changes in three indices (the last frost day in spring, the first frost day in autumn, and the frost-free season length) of the frost-free season were investigated at 73 meteorological stations in the Tibetan Plateau from 1960 to 2010. Results showed that the last frost day in spring occurred earlier, significantly in 39 % of the 73 stations. For the regional average, the last frost day in spring occurred earlier, significantly at the rate of 1.9 days/decade during the last 50 years. The first frost day in autumn occurred later, significantly in 31 % of the stations, and the regional average rate was 1.5 days/decade from 1960 to 2010. The changing rate of the first frost day in autumn below 3,000 m was 1.8 times larger than the changing rate above 3,000 m. In addition, the first frost day in autumn above 3,000 m fluctuated dramatically before the early 1990s and then it was later sharply after the early 1990s. The frost-free season length increased significantly at almost all stations in the Tibetan Plateau from 1960 to 2010. For the regional average, the frost-free season lengthened at the rate of 3.1 days/decade. The changing rate of the frost-free season length below 3,000 m was more significant than the changing rate above 3,000 m. Eight indices of large-scale atmospheric circulation were employed to investigate the potential cause of the frost-free season length change in the Tibetan Plateau during the past 50 years. There was a significant relationship between the frost-free season length and the Northern Hemisphere Polar Vortex indices. The weakening cold atmospheric circulation might be an essential factor to the Tibetan Plateau warming since 1960.  相似文献   

8.
Northeast China (NEC) is one of the major agricultural production areas in China and also an obvious region of climate warming. We were motivated to investigate the impacts of climate warming on the northern limits of maize planting. Additionally, we wanted to assess how spatial shifts in the cropping system impact the maize yields in NEC. To understand these impacts, we used the daily average air temperature data in 72 weather stations and regional experiment yield data from Jilin Province. Averaged across NEC, the annual air temperature increased by 0.38 °C per decade. The annual accumulated temperature above 10 °C (AAT10) followed a similar trend, increased 66 °C d per decade from 1961 to 2007, which caused a northward expansion of the northern limits of maize. The warming enabled early-maturing maize hybrids to be sown in the northern areas of Heilongjiang Province where it was not suitable for growing maize before the warming. In the southern areas of Heilongjiang Province and the eastern areas of Jilin Province, the early-maturing maize hybrids could be replaced by the middle-maturing hybrids with a longer growing season. The maize in the northern areas of Liaoning Province was expected to change from middle-maturing to late-maturing hybrids. Changing the hybrids led to increase the maize yield. When the early-maturing hybrids were replaced by middle-maturing hybrids in Jilin Province, the maize yields would increase by 9.8 %. Similarly, maize yields would increase by 7.1 % when the middle-maturing hybrids were replaced by late-maturing hybrids.  相似文献   

9.
Crop production would decline in the Midwestern United States from climate change following a regional nuclear conflict between India and Pakistan. Using Agro-IBIS, a dynamic agroecosystem model, we simulated the response of maize and soybeans to cooler, drier, and darker conditions from war-related smoke. We combined observed climate conditions for the states of Iowa, Illinois, Indiana, and Missouri with output from a general circulation climate model simulation that injected 5 Tg of elemental carbon into the upper troposphere. Both maize and soybeans showed notable yield reductions for a decade after the event. Maize yields declined 10–40 % while soybean yields dropped 2–20 %. Temporal variation in magnitude of yield for both crops generally followed the variation in climatic anomalies, with the greatest decline in the 5 years following the 5 Tg event and then less, but still substantial yield decline, for the rest of the decade. Yield reduction for both crops was linked to changes in growing period duration and, less markedly, to reduced precipitation and altered maximum daily temperature during the growing season. The seasonal average of daily maximum temperature anomalies, combined with precipitation and radiation changes, had a quadratic relationship to yield differences; small (0 °C) and large (?3 °C) maximum temperature anomalies combined with other changes led to increased yield loss, but medium changes (?1 °C) had small to neutral effects on yield. The exact timing of the temperature changes during the various crop growth phases also had an important effect.  相似文献   

10.
Changes in daily climate extremes in the arid area of northwestern China   总被引:3,自引:0,他引:3  
There has been a paucity of information on trends in daily climate and climate extremes, especially for the arid region. We analyzed the changes in the indices of climate extremes, on the basis of daily maximum and minimum air temperature and precipitation at 59 meteorological stations in the arid region of northwest China over the period 1960–2003. Twelve indices of extreme temperature and six indices of extreme precipitation are examined. Temperature extremes show a warming trend with a large proportion of stations having statistically significant trends for all temperature indices. The regional occurrence of extreme cool days and nights has decreased by ?0.93 and ?2.36 days/decade, respectively. Over the same period, the occurrence of extreme warm days and nights has increased by 1.25 and 2.10 days/decade, respectively. The number of frost days and ice days shows a statistically significant decrease at the rate of ?3.24 and ?2.75 days/decade, respectively. The extreme temperature indices also show the increasing trend, with larger values for the index describing variations in the lowest minimum temperature. The trends of Min Tmin (Tmax) and Max Tmin (Tmax) are 0.85 (0.61) and 0.32 (0.17)?°C/decade. Most precipitation indices exhibit increasing trends across the region. On average, regional maximum 1-day precipitation, annual total wet-day precipitation, and number of heavy precipitation days and very wet days show insignificant increases. Insignificant decreasing trends are also found for consecutive dry days. The rank-sum statistic value of most temperature indices exhibits consistent or statistically significant trends across the region. The regional medians after 1986 of Min Tmin (Tmax), Max Tmin (Tmax), warm days (nights), and warm spell duration indicator show statistically more larger than medians before 1986, but the frost days, ice days, cool days (nights), and diurnal temperature range reversed. The medians of precipitation indices show insignificant change except for consecutive dry days before and after 1986.  相似文献   

11.
With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961–2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen’s Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3–62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.  相似文献   

12.
The aim of this research is to study the spatial and temporal variability of aridity in Iran, through analysis of temperature and precipitation trends during the 48-year period of 1961–2008. In this study, four different aridity criteria have been used to investigate the aridity situation. These aridity indexes included Lang’s index or rain factor, Budyko index or radiational index of dryness, UNEP aridity index, and Thornthwaite moisture index. The results of the analysis indicated that the highest and lowest mean temperatures occurred in July and January respectively in all locations. Among the study locations, Ahvaz with 37.1 °C and Kermanshah with 20.2 °C has the highest and lowest in July. For January, the highest was 12.4 °C for Ahvaz and the lowest was ?4.5 °C for Hamedan and Kermanshah together. The range of monthly mean temperature of study locations indicated that the maximum and minimum difference between day and night temperatures, almost in all study locations, occurred in September and January, respectively, and the highest and lowest fluctuation of temperature was observed in Kerman and Tehran. The temperature anomalies showed that the most significant increasing temperature occurred at the beginning of twenty-first century (2000–2008) in all locations. The long-term mean of monthly rainfall showed that, in most study locations, the maximum and minimum of mean precipitation occurred in winter and summer, respectively. Rasht with 1,355 mm had the highest and Yazd with 55 mm had the lowest of total precipitation compared with other locations. According to precipitation anomalies, all locations experienced dry and wet periods, but generally dry periods occurred more often especially in the beginning of twenty-first century. According to applied different aridity indexes, all the study locations often experienced semi-arid to arid climate, severe water deficit to desert climate, arid to hyperarid climate, and semi-arid climate during the study period.  相似文献   

13.
Using a continuous multi-decadal simulations over the period 1981–2010, subseasonal to seasonal simulations of the Climate Forecast System version 2 (CFSv2) over Iran against the Climatic Research Unit (CRU) dataset are evaluated. CFSv2 shows cold biases over northern hillsides of the Alborz Mountains with the Mediterranean climate and warm biases over northern regions of the Persian Gulf and the Oman Sea with a dry climate. Magnitude of the model bias for 2-m temperature over different regions of Iran varies by season, with the least bias in temperate seasons of spring and autumn, and the largest bias in summer. The model bias decreases as temporal averaging period increases from seasonal to annual. The forecast generally produces dry and wet biases over dry and wet regions of Iran, respectively. In general, 2-m temperature over Iran is better captured than precipitation, but the prediction skill of precipitation is generally high over western Iran. Averaged over Iran, observations indicated that 2-m temperature has been gradually increasing during the studied period, with a rate of approximately 0.5 °C per decade, and the upward trend is well simulated by CFSv2. Averaged over Iran, both observations and simulation results indicated that precipitation has been decreasing in spring, with averaged decreasing trends of 0.8 mm (observed) and 1.7 mm (simulated) per season each year during the period 1981–2010. Observations indicated that the maximum increasing trend of 2-m temperature has occurred over western Iran (nearly 0.7 °C per decade), while the maximum decreasing trend of annual precipitation has occurred over western and parts of southern Iran (nearly 45 to 50 mm per decade).  相似文献   

14.
利用塔克拉玛干沙漠及古尔班通古特沙漠及其周边地区(包括平原和山区)76个气象站1961-2010年的逐日地面观测资料,对比分析了两个沙漠及其周边地区气温和降水变化特征。结果表明:塔克拉玛干沙漠及其周边地区年平均气温明显高于古尔班通古特沙漠及其周边地区,但是升温速率低于古尔班通古特沙漠,两大沙漠及其周边地区年平均气温的差值在缩小,塔克拉玛干沙漠周边山区上升速率接近或者大于大部分平原地区,而古尔班通古特沙漠周边山区上升速率与平原地区相比总体偏小,塔克拉玛干沙漠及其周边地区年平均气温的突变时间在1989-1993年,古尔班通古特沙漠及其周边地区的突变时间在1994-1995年,同时均存在8~9a振荡周期;古尔班通古特沙漠及其周边地区年降水量是塔克拉玛干沙漠及其周边地区的2.5倍,增加速率高于塔克拉玛干沙漠及其周边地区,增加相对幅度小于塔克拉玛干沙漠及其周边地区,两大沙漠及其周边地区年降水量的差值进一步加大但加大的速度在减缓,塔克拉玛干沙漠及其周边地区的突变时间在1984年,古尔班通古特沙漠及其周边地区的突变时间在1983-1986年,塔克拉玛干沙漠及其周边地区存在5a、7~8a和18a的振荡周期,古尔班通古特沙漠及其周边地区存在2~4a、6~8a、18a的振荡周期。  相似文献   

15.
西北太平洋热带气旋强度变化的统计特征   总被引:14,自引:9,他引:14  
用中国气象局整编的1949-2003年共55年的《台风年鉴》和《热带气旋年鉴》资料,依据平均值与标准差的数学涵义,给出了TC突然增强、缓慢增强、强度稳定、缓慢减弱和突然减弱的标准,分析了西北太平洋热带气旋(TC)强度变化的年代际、年际、月际、日变化和区域分布的基本特征。结果表明:(1)1960年代以前,T℃的年平均增强或减弱幅度较小。(2)在TC出现较为频繁的夏秋季节,8月份TC强度变幅较小。TC在14时(北京时,下同)最易发展,20时最易减弱;08时TC增强速度最快,02时最慢;02时TC减弱速度最快, 20时最慢。(3)TC频数和增强TC频数的高值区位于海南岛以东的南海北部中国近海区域和菲律宾以东洋面,减弱类TC频数极值区在吕宋岛及其东部海域、海南岛以西的北部湾、广东沿岸。(4)TC突然增强不出现在30°N以北的中高纬地区和0—5°N的低纬地区。TC突然减弱多出现在125°E以西的中国近海大范围海域,在0~5°N的低纬地区基本不出现。  相似文献   

16.
甘肃省40年来气温和降水时空变化   总被引:7,自引:0,他引:7       下载免费PDF全文
对甘肃省1960—2003年气温和降水序列进行长期变化趋势分析的基础上,根据地统计学原理对20世纪60年代和90年代甘肃省气温和降水时空演变特征进行了探讨。结果表明:气温序列具有显著上升趋势;降水序列具有减少趋势,但不显著。20世纪60年代和90年代气温由空间自相关引起的空间变异分别占总空间变异的25%和32%,60年代和90年代降水由空间自相关引起的空间变异性分别占78%和80%。比较两个年代气温和降水的空间格局变化,甘肃省绝大部分地区气温升高,包括陇南南部、陇东、陇中东部、河西走廊平原区、北山山区的局部地区和祁连山区部分地区;除河西走廊平原区局部地区、北山中山区降水量有所增加外,大部分地区降水量有所减少。  相似文献   

17.
Climate change constitutes a major challenge for high productivity in wheat, the most widely grown crop in Germany. Extreme weather events including dry spells and heat waves, which negatively affect wheat yields, are expected to aggravate in the future. It is crucial to improve the understanding of the spatiotemporal development of such extreme weather events and the respective crop-climate relationships in Germany. Thus, the present study is a first attempt to evaluate the historic development of relevant drought and heat-related extreme weather events from 1901 to 2010 on county level (NUTS-3) in Germany. Three simple drought indices and two simple heat stress indices were used in the analysis. A continuous increase in dry spells over time was observed over the investigated periods from 1901–1930, 1931–1960, 1961–1990 to 2001–2010. Short and medium dry spells, i.e., precipitation-free periods longer than 5 and 8 days, respectively, increased more strongly compared to longer dry spells (longer than 11 days). The heat-related stress indices with maximum temperatures above 25 and 28 °C during critical wheat growth phases showed no significant increase over the first three periods but an especially sharp increase in the final 1991–2010 period with the increases being particularly pronounced in parts of Southwestern Germany. Trend analysis over the entire 110-year period using Mann-Kendall test revealed a significant positive trend for all investigated indices except for heat stress above 25 °C during flowering period. The analysis of county-level yield data from 1981 to 2010 revealed declining spatial yield variability and rather constant temporal yield variability over the three investigated (1981–1990, 1991–2000, and 2001–2010) decades. A clear spatial gradient manifested over time with variability in the West being much smaller than in the east of Germany. Correlating yield variability with the previously analyzed extreme weather indices revealed strong spatiotemporal fluctuations in explanatory power of the different indices over all German counties and the three time periods. Over the 30 years, yield deviations were increasingly well correlated with heat and drought-related indices, with the number of days with maximum temperature above 25 °C during anthesis showing a sharp increase in explanatory power over entire Germany in the final 2001–2010 period.  相似文献   

18.
Summer mean daily temperature extremes in Svalbard Lufthavn (Central Spitsbergen) in the period 1975–2010 and daily pressure patterns and directions of air circulation conducive to their occurrence were analyzed. Positive (negative) extremes of daily mean temperatures in the summer were determined as higher (lower) than or equal to the value of the 90th (10th) percentile. The annual number of selected days shows a great year-to-year variability, although the annual number of extremely low mean daily temperature (≤1.3 °C) was decreasing in the 1976–2010 period, with a rate of about 4 days per decade. At the same time, the number of days with extremely high mean daily temperatures (≤8.2 °C) was increasing with a rate of about 2 days per decade. The summer pressure patterns and the air circulation conditions have an impact on the occurrence of the air mean daily temperature extremes. Namely, anticyclones spreading east to the Svalbard Archipelago, accompanied by the Icelandic Low, cause the air inflow from the southerly direction and positive mean daily temperature extremes. A cyclonal system spreading east or southeast towards the archipelago, together with a high-pressure ridge over the North Atlantic, indicates the northern air flow and negative mean daily temperature extremes in summer. The results obtained in this study prove that the summer air temperature in the Atlantic region of the Arctic is partly controlled by air circulation, and despite the intensity and stability of the summer cyclones and anticyclones being weaker than in the winter, their position strongly determines the occurrence of mean daily temperature extremes in the summer.  相似文献   

19.
华中地区2030年前气温和降水量变化预估   总被引:3,自引:0,他引:3  
 根据区域气候模式对华中地区1961-1990年和2001-2030年的逐月平均气温和降水量的模拟值(0.5°×0.5°经纬度格点,A2情景),以1961-1990年为基准,计算并分析了该区域未来30 a(2001-2030年)的年、季平均气温和降水量的变化趋势。对气温变化而言,未来30 a华中地区年平均气温呈上升趋势,平均升温0.3℃,东部增温大于西部;春、夏季平均气温上升,分别为0.1~1.3℃、0.8~2.2℃;秋季北部地区气温下降,南部地区气温升高;冬季平均气温下降0.0~1.0℃。就降水而言,未来30 a华中地区年平均降水量大部分地区呈减少趋势,空间分布有南增北减的特点;春、夏、冬季平均降水量大部分地区减少,冬季平均降水量的减幅要大于春、夏季;秋季大部分地区平均降水量增加。  相似文献   

20.
Future climate in the Pacific Northwest   总被引:4,自引:2,他引:2  
Climate models used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) on the whole reproduce the observed seasonal cycle and twentieth century warming trend of 0.8°C (1.5°F) in the Pacific Northwest, and point to much greater warming for the next century. These models project increases in annual temperature of, on average, 1.1°C (2.0°F) by the 2020s, 1.8°C (3.2°F) by the 2040s, and 3.0°C (5.3°F) by the 2080s, compared with the average from 1970 to 1999, averaged across all climate models. Rates of warming range from 0.1°C to 0.6°C (0.2°F to 1.0°F) per decade. Projected changes in annual precipitation, averaged over all models, are small (+1% to +2%), but some models project an enhanced seasonal cycle with changes toward wetter autumns and winters and drier summers. Changes in nearshore sea surface temperatures, though smaller than on land, are likely to substantially exceed interannual variability, but coastal upwelling changes little. Rates of twenty-first century sea level rise will depend on poorly known factors like ice sheet instability in Greenland and Antarctica, and could be as low as twentieth century values (20 cm, 8) or as large as 1.3 m (50).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号