首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
2004年12月26日印度尼西亚苏门答腊岛西北近海发生ML9级强烈地震。地震的强度是100a来全球非常罕见的。地震引起了巨大海啸,浪高近10m,波及到东南亚、南亚和东非地区10多个国家,造成近30万人遇难。地震使印度尼西亚、泰国的部分岛屿发生了地形变化。海啸在受灾国留下了大片的盐碱地。苏门答腊板块边缘的一个长距离破裂带通过长时间积累,蓄积了巨大能量。这些能量在2004-12-26集中释放出来。导致了这次地震海啸的发生。地震海啸灾害本身规模巨大,发生异常突然,再加上受灾地区人员密集,缺乏海啸灾害逃生的知识和经验。印度洋沿岸国家没有海啸预警系统,是造成这次灾害巨大伤亡的原因。中国从台湾-海南岛一线的海区,存在地震海啸的可能性。因此应不断完善海啸预警系统,提高沿海地区建设工程的防灾抗灾标准,加强防波堤建设以及采取恢复红树林等生物工程措施,预防潜在的海啸灾害。  相似文献   

2.
While earthquakes generate about 90% of all tsunamis, volcanic activity, landslides, explosions, and other nonseismic phenomena can also result in tsunamis. There have been 53 000 reported deaths as a result of tsunamis generated by landslides and volcanoes. No death tolls are available for many events, but reports indicate that villages, islands, and even entire civilizations have disappeared. Some of the highest tsunami wave heights ever observed were produced by landslides. In the National Geophysical Data Center world-wide tsunami database, there are nearly 200 tsunami events in which nonseismic phenomena played a major role. In this paper, we briefly discuss a variety of nonseismic phenomena that can result in tsunamis. We discuss the magnitude of the disasters that have resulted from such events, and we discuss the potential for reducing such disasters by education and warning systems.  相似文献   

3.
A tsunameter (soo-NAHM-etter) network has been established in the Pacific by the National Oceanic and Atmospheric Administration. Named by analogy with seismometers, the NOAA tsunameters provide early detection and real-time measurements of deep-ocean tsunamis as they propagate toward coastal communities, enabling the rapid assessment of their destructive potential. Development and maintenance of this network supports a State-driven, high-priority goal of the U.S. National Tsunami Hazard Mitigation Program to improve the speed and reliability of tsunami warnings. The network is now operational, with excellent reliability and data quality, and has proven its worth to warning center decision-makers during potentially tsunamigenic earthquake events; the data have helped avoid issuance of a tsunami warning or have led to cancellation of a tsunami warning, thus averting potentially costly and hazardous evacuations. Optimizing the operational value of the network requires implementation of real-time tsunami forecasting capabilities that integrate tsunameter data with numerical modeling technology. Expansion to a global tsunameter network is needed to accelerate advances in tsunami research and hazard mitigation, and will require a cooperative and coordinated international effort.  相似文献   

4.
海啸作为五大海洋自然灾害之一,严重威胁着人类生命财产安全。近些年来,国内外学者对地震海啸进行了大量研究,主要针对海啸的生成、传播、爬高和淹没的数值模拟,以及古海啸沉积物进行研究,但是对于海啸地震震源机制的研究还比较欠缺,尤其是缺乏对震级小于6.5的海啸地震的研究。针对我国的地震海啸研究现状,强调震级小于6.5地震引发海啸的问题不容忽视。本文归纳整理了全球766次地震海啸,利用三角图分类基本法则对海啸地震震源机制解进行分类,并对其中341个发生在1976年后的海啸地震进行震源机制解分析,对其中633次海啸浪高进行统计学方法分析研究。本文认为逆冲型、正断型、走滑型和奇异型机制地震均能引发海啸,逆冲型地震引发的海啸占比最大,震级小于6.5级地震引发的海啸的浪高也有高达10 m的情况,也能产生巨大破坏性。逆冲型、正断型、奇异型地震可直接引起海底地形垂向变化,进而引发海啸,而走滑型地震引发海啸则可能有两种原因,一种是走滑型地震并非纯走滑型而是带有正断或逆冲分量从而引发海啸,另外一种是走滑型地震引发海底滑坡导致海底地形变化进而产生海啸。从海啸地震震源深度分析,能产生海啸的地震震源深度97%以上都是浅源地震,主要集中在30 km深度以内,但是也有中深源地震海啸。本文综合海啸地震的震源特点、我国地理位置以及以往海啸发生的情况,认为未来我国沿海地区威胁性的地震海啸主要集中在马尼拉海沟和台湾海峡区域,在今后海啸预警方面需要格外重视这些区域,通过建立完善海啸预警系统来减少损失。  相似文献   

5.
The National Tsunami Hazard Mitigation Program (NTHMP) Steering Committee consists of representatives from the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), the U.S. Geological Survey (USGS), and the states of Alaska, California, Hawaii, Oregon, and Washington. The program addresses three major components: hazard assessment, warning guidance, and mitigation. The first two components, hazard assessment and warning guidance, are led by physical scientists who, using research and modeling methods, develop products that allow communities to identify their tsunami hazard areas and receive more accurate and timely warning information. The third component, mitigation, is led by the emergency managers who use their experience and networks to translate science and technology into user-friendly planning and education products. Mitigation activities focus on assisting federal, state, and local officials who must plan for and respond to disasters, and for the public that is deeply affected by the impacts of both the disaster and the pre-event planning efforts. The division between the three components softened as NTHMP scientists and emergency managers worked together to develop the best possible products for the users given the best available science, technology, and planning methods using available funds.  相似文献   

6.
7.
This paper explores the size and arrival of tsunamis in Oregon and Washington from the most likely partial ruptures of the Cascadia subduction zone (CSZ) in order to determine (1) how quickly tsunami height declines away from sources, (2) evacuation time before significant inundation, and (3) extent of felt shaking that would trigger evacuation. According to interpretations of offshore turbidite deposits, the most frequent partial ruptures are of the southern CSZ. Combined recurrence of ruptures extending ~490 km from Cape Mendocino, California, to Waldport, Oregon (segment C) and ~320 km from Cape Mendocino to Cape Blanco, Oregon (segment D), is ~530 years. This recurrence is similar to frequency of full-margin ruptures on the CSZ inferred from paleoseismic data and to frequency of the largest distant tsunami sources threatening Washington and Oregon, ~M w 9.2 earthquakes from the Gulf of Alaska. Simulated segment C and D ruptures produce relatively low-amplitude tsunamis north of source areas, even for extreme (20 m) peak slip on segment C. More than ~70 km north of segments C and D, the first tsunami arrival at the 10-m water depth has an amplitude of <1.9 m. The largest waves are trapped edge waves with amplitude ≤4.2 m that arrive ≥2 h after the earthquake. MM V–VI shaking could trigger evacuation of educated populaces as far north as Newport, Oregon for segment D events and Grays Harbor, Washington for segment C events. The NOAA and local warning systems will be the only warning at greater distances from sources.  相似文献   

8.
In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years.  相似文献   

9.
综述海啸沉积特征,认为岸上细粒海啸沉积物具有以下特点:(1)地层层序上向上变细、减薄;(2)水流方向的重复反向(即重复的双向水流);(3)含有撕裂的碎屑;(4)较差的分选性;(5)向陆地延伸更远;但将以上任何单一特征看成是海啸沉积的特征性依据都是不恰当的,需要将以上特征结合起来判断,才能作为海啸沉积的依据。而有关岸上巨砾的海啸或是风暴来源,至今仍争论不清,但较一致认为巨砾堤坝复合体是风暴成因。浅水碎屑海啸岩通常为夹在低能稳定状态的背景沉积粉砂—黏土层内的一套独特砂层,可以根据海啸能量的增加到衰减分为Tna—Tnd四个不同单元;而地震海啸岩通常具有震积岩—海啸岩的沉积序列;碳酸盐海啸岩则显示了与海啸入射流和回流相关的冲刷—充填结构。深海的海啸沉积作用机制仍然不清。尽管海啸传播阶段可以产生地中海A型均质岩,但深海海啸岩可能主要与海啸回流有关,如目前讨论最多的K—T撞击海啸岩。尽管目前的研究促进了对海啸的认识,但存在诸如海啸沉积机制仍然不明确,海啸沉积识别依然困难等许多问题,海啸沉积学的进一步发展将为解决这些问题提供坚实基础。  相似文献   

10.
This paper describes an investigation of the subfault distribution along the Japan–Kuril–Kamchatka subduction zone for the implementation of a far-field tsunami forecast algorithm. Analyses of seismic data from 1900 to 2000 define the subduction zone, which in turn is divided into 222 subfaults based on the fault characteristics. For unit slip of the subfaults, a linear long-wave model generates a database of mareograms at water-level stations along the subduction zone and at warning points in the North Pacific. When a tsunami occurs, an inverse algorithm determines the slip distribution from near-source water-level records and predicts the waveforms at the warning points using the pre-computed mareograms. A jackknife resampling scheme uses combinations of input water-level records to provide a series of waveform predictions for the computation of the confidence-interval bounds. The inverse algorithm is applied to hindcast two major tsunamis generated from the Japan–Kuril–Kamchatka source and the computed tsunami heights show good agreement with recorded water-level data.  相似文献   

11.
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a State/Federal partnership created to reduce tsunami hazards along U.S. coastlines. Established in 1996, NTHMP coordinates the efforts of five Pacific States: Alaska, California, Hawaii, Oregon, and Washington with the three Federal agencies responsible for tsunami hazard mitigation: the National Oceanic and Atmospheric Administration (NOAA), the Federal Emergency Management Agency (FEMA), and the U.S. Geological Survey (USGS). In the 7 years of the program it has, 1. established a tsunami forecasting capability for the two tsunami warning centers through the combined use of deep ocean tsunami data and numerical models; 2. upgraded the seismic network enabling the tsunami warning centers to locate and size earthquakes faster and more accurately; 3. produced 22 tsunami inundation maps covering 113 coastal communities with a population at risk of over a million people; 4. initiated a program to develop tsunami-resilient communities through awareness, education, warning dissemination, mitigation incentives, coastal planning, and construction guidelines; 5. conducted surveys that indicate a positive impact of the programs activities in raising tsunami awareness. A 17-member Steering Group consisting of representatives from the five Pacific States, NOAA, FEMA, USGS, and the National Science Foundation (NSF) guides NTHMP. The success of the program has been the result of a personal commitment by steering group members that has leveraged the total Federal funding by contributions from the States and Federal Agencies at a ratio of over six matching dollars to every NTHMP dollar. Twice yearly meetings of the steering group promote communication between scientists and emergency managers, and among the State and Federal agencies. From its initiation NTHMP has been based on the needs of coastal communities and emergency managers and has been results driven because of the cycle of year-to-year funding for the first 5 years. A major impact of the program occurred on 17 November 2003, when an Alaskan tsunami warning was canceled because real-time, deep ocean tsunami data indicated the tsunami would be non-damaging. Canceling this warning averted an evacuation in Hawaii, avoiding a loss in productivity valued at $68M.  相似文献   

12.
The major earthquake measuring 8.1 on the Richter scale which struck the west coast of Mexico on Thursday 19 September 1985, generated a small tsunami. A major aftershock on 21 September, with a magnitude of 7.5 also produced a small tsunami. Both tsunamis propagated across the Pacific and were recorded by several tide stations in Central America, Colombia, Ecuador, French Polynesia, Samoa, and Hawaii. No reports of damage were received from any of the stations, and only minor damage due to the first tsunami was reported from the source region.A survey was made by the International Tsunami Information Center (ITIC) of the coastal area affected, from Manzanillo to Zihuatanejo. Tsunami runup measurements were taken and interviews with local residents in the coastal areas were conducted.A source mechanism study of the tsunamis was undertaken using seismic and geologic data and empirical relationships. Earthquake and tsunami energies were estimated and the tsunami genertion areas defined.The earthquake energies were estimated to be 5.61 × 1024 erg for the 19 September event and 9.9 × 1023 erg for the 21 September event. Tsunami energies were estimated to be 0.7 × 1020 erg for the first event and 0.56 × 1020 erg for the second event. The source area of the first tsunami was determined to be approximately one-half of the earthquake source area, or approximately 7500 km2, while the source area of the second tsunami was estimated to be equal to the earthquake area.The relatively small tsunamis generated by these large earthquakes are attributed to the shallow angle of subduction of the Cocos plate underneath the North American plate for this particular region, and to the small vertical component of crustal displacements. However, the angle of subduction increases further south and local earthquakes from that area have the potential of producing large tsunamis on the west coast of Mexico.This paper was presented at the 4th International Symposium on Natural and Man-made Coastal Hazards held in Ensenada, Mexico, August 1988.  相似文献   

13.
Sugimoto  T.  Murakami  H.  Kozuki  Y.  Nishikawa  K.  Shimada  T. 《Natural Hazards》2003,29(3):587-602
This study presents a tsunami human damage prediction method employing numerical calculation and GIS (Geographical Information System) for Usa town, Tosa City, Shikoku Island, Japan. Sometime near the end of the first half of the twenty-first century, a huge earthquake is predicted to occur along the Nankai trough and costal areas facing the Pacific ocean of Shikoku Island. Much damage due to the resultant tsunamis will be caused, therefore, it is necessary to predict the extent of human damage for every town in high-risk areas.The number of tsunami victims was estimated by population in areas of maximum inundation. The number of deaths as a result of tsunami was estimated by a method which employed accumulated death toll of every area in terms of time and space, taking into account consideration of time necessary to begin to seek refuge after an earthquake, tsunami inundation depth on land, flow velocity and evacuation speed. As a result of this study a rapid decrease in death toll by early evacuation was shown quantitatively for the first time.Thus, with the method presented here, it is possible to estimate the extent of tsunami human damage on coastal regions, and may be useful as a tsunami human damage countermeasure.  相似文献   

14.
The National Tsunami Hazard Mitigation Program is a multi-faceted approach that encompasses tsunami identification, alert and warning systems and a comprehensive approach to tsunami risk reduction. This paper describes efforts to promote land use planning and development practices that reduce tsunami risk by local elected government and administrative officials. Seven Principles of Tsunami Risk Reduction are presented that range from risk assessment to site planning criteria.Regional Administrator, California Governors Office of Emergency Services and Manager, California Integrated Seismic Network, Earthquake and Tsunami Program  相似文献   

15.
The earthquakes and tsunami on November 15, 2006 and January 13, 2007, near Simushir Island are described. Long-term and short-term precursors of the phenomena are discussed. A joint analysis of the seismological and geodetic data provided reliable interpretation of the source mechanisms of the earthquakes. The actions of the tsunami warning personnel are analyzed. Extensive experimental data on the tsunami occurrence at different sites of the Pacific Ocean are presented. The tsunami of November 15, 2006, was numerically modeled using coseismic vertical displacements of the ocean bottom calculated from GPS data. The observed and calculated data on the maximal tsunami run up are compared.  相似文献   

16.
Real-Time Tsunami Forecasting: Challenges and Solutions   总被引:8,自引:0,他引:8  
A new method for real-time tsunami forecasting will provide NOAAs Tsunami Warning Centers with forecast guidance tools during an actual tsunami event. PMEL has developed the methodology of combining real-time data from tsunameters with numerical model estimates to provide site- and event-specific forecasts for tsunamis in real time. An overview of the technique and testing of this methodology is presented.  相似文献   

17.
Flood occurrence has always been one of the most important natural phenomena, which is often associated with disaster. Consequently, flood forecasting (FF) and flood warning (FW) systems, as the most efficient non-structural measures in reducing flood loss and damage, are of prime importance. These systems are low cost and the time required for their implementation is relatively short. It is emphasized that for designing the components of these systems for various rivers, climatic conditions and geographical settings different methods are required. One of the major difficulties during implementing these systems in different projects is the fact that sometimes the main functions of these systems are ignored. Based on a systematic and practical approach and considering the components of these systems, it would be possible to extract the most essential key functions of the system and save time, effort and money by this way. For instance, in a small watershed with low concentration and small lead time, the main emphasis should be on predicting and monitoring weather conditions. In this article, different components of flood forecasting and flood warning systems have been introduced. Then analysis of the FF and FW system functions has been undertaken based on the value engineering (VE) technique. Utilizing a functional view based on function analysis system technique (FAST), the total trend of FF and FW functions has been identified. The systematic trend and holistic view of this technique have been used in optimizing FF and FW systems of the Golestan province and Golabdare watersheds in Iran as the case studies.  相似文献   

18.
A few years ago the Canadian Hydrographic Service initiated a major upgrade toall tide gauges and tsunami stations on the coast of British Columbia (B.C.). Thisprogram was undertaken to address shortcomings of the earlier digital systems andwas driven by concerns about emergency response continuity in the year 2000. By1999, thirteen tide gauge stations had been installed and were operational. Three ofthese stations (Tofino, Winter Harbour, and Langara) were selected for use as tsunamiwarning stations. Several years of continuous, high quality data have now been collectedat these stations and used for analysis of long waves in the tsunami frequency band.Careful examination of these data revealed two weak tsunamis recorded by severalB.C. stations: a distant tsunami of June 23, 2001 generated by the Peru Earthquake(Mw = 8.4), and a local tsunami of October 12, 2001 induced by the Queen Charlotte Earthquake (Mw = 6.3$). Spectral characteristics of these two tsunamis are compared with the spectral characteristics of long waves generated by a strong storm (October, 2000) and of ordinary background oscillations. The topographic admittance functions (frequency responses) constructed for all stations showed that most of them (in particular, Winter Harbour, Tofino, Bamfield, Port Hardy, and Victoria) have strong resonance at periods from 2.5 to 20 min, indicating that these locations are vulnerable to relatively high-frequency tsunamis. The Winter Harbour station also has two strong resonant peaks with periods of 30 and 47 min and with amplification factors of about 7. The estimated source functions show very clear differences between long waves associated with the seismic source (typical periods 10–30 min) and those generated by a storm, which typically have shorter periods and strong energy pumping from high-frequencies due to non-linear interaction of wind waves.  相似文献   

19.
Co-seismic phenomena along the south coastline included liquefaction, subsidenceand tsunami. Construction on areas composed of fluvial and alluvial sediments aswell as unconsolidated fill increased the risk by creating potential for amplificationof seismic waves. Cyclic mobility liquefaction was common along the coastline, andlevel-ground liquefaction was observed. Flow liquefaction is held forth as a possibilityin the Deirmendere submarine landslide. Damage to structures was markedly more in areas of unconsolidated sediments. One or more tsunami struck immediately after the event; the uniformity of tsunami impact indicating a wave coming from 310° suggests that submarine faulting was the major source of tsunami. Over 800,000 m2 of subsidence resulted from sediment slumping, fault controlled subsidence, and possibly post-liquefaction sediment compaction. After a brief period of post-event abandonment, reclamation and use of coastal areas is well underway. This creates a tension between human desires pushing for quick and inexpensive re-inhabitation of the coastal areas, and the needs for zoning and building codes for risk reduction. In this high-risk area suchcontrary cultural mandates cannot yield ideal results. It is suggested that an alternativemodel of immediate post-event creation of parks and natural areas that would yield benefit is preferable in coastal areas rather than the enforcement approach currently favored.  相似文献   

20.
海底滑坡海啸的颗粒流耦合模型   总被引:1,自引:0,他引:1  
海底滑坡的运动可能引发海啸,破坏离岸设施,威胁海岸带安全。国内外关于海底滑坡引发海啸的研究方兴未艾。采用Mih颗粒流模型控制具弱黏聚力的砂土滑坡运动,利用两相流模型计算岩土体-水体相互作用及RNG湍流模型控制水体运动,构建了基于颗粒流模型的海底滑坡海啸全耦合数值分析方法。通过简单水槽水下滑坡案例进行了海底滑坡海啸全过程研究。数值分析再现了变形滑体的不均一运动、密度分异流动、水滑机制和以波谷为典型特征的涌浪波等典型海底滑坡及海啸现象,这表明数值模型具有有效性。许多海域(包括中国南海北部)都存在弱黏聚力和无黏聚力的水下滑坡,该数值方法值得推广和进一步研究完善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号