首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent decades, softwater lakes across Canada have experienced a wide array of anthropogenic influences, with acidification and climate warming of particular concern. Here, we compare modern and pre-industrial sedimentary diatom assemblages from 36 softwater lakes located on the Canadian Shield in south-central Ontario to determine whether lake acidification or reduced calcium availability was the main stressor responsible for recent declines in Ca-sensitive cladoceran taxa. Regional surveys of south-central Ontario water chemistry have identified the pH recovery of many formerly acidified lakes, and our fossil diatom-inferred pH analyses indicate that modern lakewater pH in the 36 study lakes is similar to (or higher than) pre-industrial levels, with diatom assemblages from both time periods dominated by taxa with similar pH preferences. In addition, modern diatom assemblages compared to pre-industrial assemblages contained higher relative abundances of planktonic diatom taxa (e.g. Asterionella formosa and the Discostella stelligera complex) and lower relative abundances of heavily silicified diatoms (e.g. Aulacoseira taxa) and benthic fragilarioid taxa. These taxonomic shifts are consistent with warming-induced changes in lake properties including a longer ice-free period, decreased wind speed and/or increased thermal stability. We conclude that recent changes observed within the cladoceran assemblages of these lakes are not a response to acidification, but are likely a consequence of Ca declines. In addition, our data suggest that regional climate warming is now responsible for the diatom changes observed in this region.  相似文献   

2.
The Holocene diatom and pollen records from Kelly’s Lough have been analysed to determine the timing and extent of the acidification in this upland lake. The pollen data during the early Holocene reflect the typical vegetation changes that occur in sediments throughout Ireland during this period. The diatom record begins by being dominated by circumneutral and acidophilous benthic forms. Later tychoplanktonic Aulacoseira species begin to expand and dominate indicating increased water transparency following the stabilization of catchment soils. Peatland development in the catchment is evident from approximately 6,450 cal year BP. The main change in the diatom assemblages at this time is the decline of Aulacoseira species and expansion of periphytic species. At around 1,450 cal year BP, loss-on-ignition (LOI) values, Calluna pollen and microscopic charcoal all increase suggesting the initiation of a major phase of peat erosion and an increased inwash of organic matter to the lake. Lake acidity changed significantly although the initial acidification is very subtle as indicated by the diatom-inferred pH record. Changes in the diatom assemblages might be largely the result of increasing erosion and inwash of organic matter from the catchment to the lake leading to reduced water transparency and more acidic conditions. The diatom flora remains relatively stable until the mid-twentieth century when more acidibiontic species increase. These diatom changes result in the reconstructed pH curve showing a moderate recent acidification from pH 5.7 to 5.1. About half of the total change in pH took place by around the late 1960s. The lowest diatom-inferred pH value occurs in the late 1970s, and parallels the peak in SO2 emissions in Ireland. Acidic conditions seem to have prevailed in Kelly’s Lough throughout its entire history and alkalinity has been low or absent for much of the time. However, soil acidification and inwash of organic acids from peatlands are not a sufficiently effective mechanism to explain the low pH levels found today in Kelly’s Lough. The effect of acid deposition on the waters of Kelly’s Lough is clear and it has probably caused these already naturally acid waters to acidify further.  相似文献   

3.
Relationships between sedimentary diatom assemblages and lakewater pH values from 36 lakes and experimentally acidified Lake 223, in the Experimental Lakes Area, were analyzed. The relationships were used to assign diatoms in the 36 lakes into pH preference groupings. Based on their regional distribution Cyclotella stelligera and Tabellaria flocculosa strain IIIp were categorized as pH indifferent, in comparison to other areas were they have been categorized as acidophilic. Two models were then applied to calculate transfer coefficients which were used to calculate diatom-inferred pH values for Lake 223. Index B and a multiple linear regression of the pH groupings yielded similar correlations (r2 0.82 and 0.84 respectively, p=0.0001). The multiple linear regression inferred a pH of 5.36 for acidified Lake 223 compared to a measured pH of 5.46.  相似文献   

4.
Diatoms were examined in three lacustrine sediment records from Alert, northern Ellesmere Island, and from Isachsen, Ellef Ringnes Island. Diatom assemblages changed markedly since the mid-19th century following relatively stable community composition that spanned centuries to millennia. Three different assemblages, primarily composed of Fragilaria pinnata, Diadesmis spp., or Pinnularia spp., dominated the pre-1850 period at the three sites, but were replaced with different, more diverse assemblages in recent sediments. These species shifts occurred in the mid- to late-19th century in the Isachsen sites, and in the mid- to late-20th century in our Alert site. This difference in timing appears to be a result of the different sensitivities of lakes and ponds to environmental change, rather than of site-specific chemical properties. Reconstructions of pH using diatom inference models indicated increases from 0.5 to 0.8 pH units at these sites over this period of assemblage change. The diatom-inferred pH record from Alert showed agreement with measured climate data from Alert over the last 30 years. These marked community changes suggest that these sensitive high arctic sites have recently crossed important ecological thresholds due to environmental change, most likely related to recent warming.  相似文献   

5.
This paper has two aims: (1) to show for the first time how a natural typology can be established using palaeoecological methods; and (2) to show how it can be used in lake restoration studies with respect to the definition of recovery targets for acidified lakes. By defining the characteristic reference assemblages for low alkalinity site types rather than for a specific site it allows success to be measured more broadly, unconstrained by the specific composition of the pre-acidification flora. We analyse statistically the pre-acidification diatom assemblages of sediment cores from 121 low alkalinity lakes in the UK in order to assess whether a reference typology for such lakes can be defined on the basis of their diatom floras. We use samples dating to ~1850 AD to represent pre-acidification conditions. The results show that three main clusters can be identified, two dominated by benthic taxa (Clusters 1 and 3) and one dominated by planktonic taxa (Cluster 2). Cluster 1 is characterised by taxa such as Brachysira vitrea, Cymbella microcephala and Fragilaria spp., Cluster 2 by Cyclotella comensis, C. radiosa, Asterionella formosa, Aulacoseira subarctica and Achnanthes minutissima and Cluster 3 by Eunotia incisa, Frustulia rhomboides var. saxonica, Fragilaria virescens var. exigua, and Cymbella perpusilla. Although environmental data for 1850 AD are not available it is apparent from the contemporary distribution of the taxa in the different clusters that Cluster 2 represents the most alkaline pre-acidification conditions. Some sites in this cluster have been acidified, but some, especially the larger, deeper lakes have been enriched. Cluster 1 includes sites that contain diatoms with relatively high pH optima (pH 6.4–7.4) whereas Cluster 3 sites contain diatoms with the lowest pre-acidification pH conditions in the data-set. Sites in this cluster also have the lowest base cation concentrations at the present day and include the sites in the UK that have been most affected by acid deposition.  相似文献   

6.
Surface sediments from 23 lakes on Svalbard were analysed for diatoms. About 182 taxa were found but samples generally have a low richness, with the majority of sites dominated by benthic genera such as Fragilaria, Navicula, and Achnanthes. Centric Cyclotella species occur at only three sites. Modern relationships between diatom abundance and water chemistry and other environmental variables were explored numerically and a preliminary transfer function for pH was developed. Lakes fell into three groups on the basis of their diatom assemblages: (1) high pH, high cation, high conductivity sites characterised by Amphora libyca, (2) shallow sites with relatively high nutrient values characterised by Fragilaria species, and (3) more acid and dilute sites with high amounts of snow cover in the catchments characterised by small Achnanthes species and Navicula digitulus. Five sediment cores representing the recent past were also analysed for diatoms. Three shallow sites were dominated by Fragilaria species throughout the period represented by the cores and no shifts in inferred pH were found. At two deeper sites (Arresjøen, Birgervatnet) major assemblage shifts are found which are unrelated to independent evidence for atmospheric contamination. Early (ca. 1200 AD) changes found at both sites are possibly related to the onset of the ‘Little Ice Age’. Later changes are neither synchronous nor similar in nature and might be best explained as individual responses to the recovery from the ‘Little Ice Age’ and subsequent climatic warming.  相似文献   

7.
As a result of reductions in sulfate deposition and changing climate, dissolved organic carbon (DOC) concentrations have increased in many lakes situated in forests of northeastern North America and northern Europe since the 1990s. Although this increase is well documented, the associated ecological implications remain unclear. In particular, DOC strongly influences the vertical temperature structure of lakes, with increasing DOC often leading to a shallower epilimnion. We investigated the effect of increased DOC concentrations on lake thermal structure using fossil diatom records from six remote Maine lakes. Sedimentary diatom profiles from three pairs of small (<0.5 km2) lakes were compared, with each pair containing one lake with a documented significant increase in DOC and the other experiencing no change in DOC since the early 1990s. Lake thermal structure was inferred from changes in the relative abundance of Discostella stelligera and Aulacoseira species, two diatom taxa that are associated with changes in thermal stratification. The three lakes without increasing DOC showed no change in diatom-inferred mixing depth over the past few decades. Of the lakes with documented increases in DOC, two showed the highest turnover in diatom community structure over time. Profiles from both of these lakes also indicated directional change in diatom-inferred mixing depth over the past 20 years, but the direction of change differed. This study demonstrates that recent increases in DOC have the potential to alter the physical and biological structure of lakes, but that these responses may differ across lakes.  相似文献   

8.
Banks Island (N.W.T.) has become a focal point for climate change studies in the Canadian Arctic. However, long-term climatic and environmental data are very sparse from this large island, as they are for the entire southwestern region of the Canadian Arctic Archipelago. In this paleolimnological study, diatom species assemblage shifts documented in cores collected from a pond and a lake on Banks Island were interpreted to represent a response to climate warming commencing in the nineteenth century. We found that, although the timing and overall nature of the species changes in the two cores were consistent, the signal was muted in the deeper site likely as a result of differences in ice cover extent and duration between lakes and ponds. A high-resolution study was also conducted from a second pond, at sub-decadal resolution, that only spanned the last ∼60 years. In the deeper lake site, Fragilaria construens and F. pinnata dominated the assemblages, similar to those noted in other high Arctic regions where lakes are characterized by extended ice cover. In contrast, Denticula kuetzingii dominated the shallower ponds and, in the case of the pond core representing the longer time period, this taxon increased in the post-1850 sediments, likely coincident with climate warming. In all cores, diatom assemblages became more diverse and Achnanthes species (particularly A. minutissima) increased from ∼1850 to the present, similar to changes documented in other Arctic regions. Beta diversity values calculated for the diatom species changes indicated that assemblage shifts in the Banks Island cores were of similar magnitude to those recorded in other Arctic regions with high species turnover, such as Ellesmere Island. A diatom-based Total Nitrogen (TN) transfer function previously developed for Banks Island was applied to the three 210Pb dated cores as an exploratory tool for inferring past changes in nitrogen concentrations. In both the lake and pond cores, diatom-inferred TN concentrations tended to increase in the more recent sediments, as may be expected with warming; however these trends were not very distinct.  相似文献   

9.
Lakes perched on hill-tops have very small catchments. Their water chemistry is largely influenced by the chemical composition of precipitation and by the underlying bedrock geology. They are ideal sites for testing the hypothesis that land-use and associated soil changes are a major cause of recent lake acidification. On this hypothesis, hill-top lakes in SW Norway are predicted not to show any recent lake acidification because, by their very nature, the chemistry of such lakes is little influenced by land-use or soil changes.Palaeolimnological analyses of diatoms and chrysophytes show that prior to ca. 1914 the two hill-top lakes investigated were naturally acid with reconstructed lake-pH values of at least 4.8–5.1. Since ca. 1914 lake pH values declined to ca. 4.5–4.7. These results contradict the land-use hypothesis. All the available palaeolimnological evidence (diatoms, chrysophytes, pollen, sediment geochemistry, carbonaceous particles) is consistent with the acid-deposition hypothesis.In the absence of any evidence to support the land-use hypothesis as a primary cause of recent lake acidification and in the light of several independent refutations, it is perhaps time to put the land-use hypothesis for recent lake acidification to rest.  相似文献   

10.
Paleolimnological analyses were used to infer limnological changes during the past ~ 300 yrs in the west basin of Peninsula Lake, a small (853 ha) Precambrian Shield lake in Ontario, Canada, that has been subjected to moderate cultural disturbances (forest clearance, cottage and resort development). This study represents a pioneering attempt to use sedimentary chironomid assemblages and weighted-averaging models to quantify past hypolimnetic anoxia (expressed as the anoxic factor, AF). Impacts of forest clearance and human land-use on deepwater oxygen availability and surface water quality were assessed by comparing chironomid-inferred AF and diatom-inferred total phosphorus concentration ([TP]) to changes in terrestrial pollen and historical data. This study also discusses the ability of chironomids to quantitatively infer changes in AF.Pre-disturbance chironomid assemblages were stable and dominated by taxa indicative of oxygen-rich hypolimnetic conditions (e.g., Protanypus, Heterotrissocladius, Micropsectra type), while diatoms indicated oligotrophic lake status (diatom inferred [TP] = 5-7 g·l-1). Chironomids characteristic of lower oxygen availability (e.g., Chironomus, Procladius) increased following land-clearance, road construction, establishment of a grist mill and lakeshore development beginning ca. 1870. Increased abundances of Tanytarsus s. lat., a multigeneric group of mainly littoral chironomids, since 1900, indicated that littoral chironomids may have comprised a greater proportion of fossil assemblages during periods of eutrophication and prolonged anoxia. Abundances of meso-eutrophic diatom taxa (e.g., Fragilaria crotonensis, Asterionella formosa, Aulacoseira ambigua, A. subarctica) increased concurrent with European settlement (ca. 1870) and diatom-inferred [TP] doubled (~ 6-12 g·l-1), further indicating that naturally-oligotrophic Precambrian Shield lakes were extremely sensitive to initial land-clearance activities.Recent increases in oligotrophic diatom taxa (e.g., Cyclotella stelligera) indicate a shift to more oligotrophic conditions since ca. mid-1960s, with greatest changes since ca. 1980. The chironomids Heterotrissocladius and Micropsectra type also increased at this time suggesting greater deepwater oxygen availability. These recent water-quality improvements, possibly in response to enhanced nutrient removal from detergents and sewage, climate-related reductions in external phosphorus loads, and catchment (but not lake) acidification and reforestation, suggest that habitat for commercially-valuable cold-water fishes has improved in recent decades despite greater recreational lake-use.Paleolimnological assessment of trophic status changes in Peninsula Lake using fossil diatom and chironomid assemblages were in good agreement. Diatom inferences of [TP] and chironomid inferences of AF both suggest that Peninsula Lake was historically oligotrophic, became oligo-mesotrophic after European settlement, and returned to oligotrophy in recent yrs. Chironomid inferences of [TP] consistently underestimated the trophic status of Peninsula Lake, possibly due to its relatively large hypolimnion. These results suggest that AF represents a useful tool for quantitatively reconstructing the past trophic status of deeper, stratified lakes.  相似文献   

11.
Macrophytes are a critical component of lake ecosystems affecting nutrient and contaminant cycling, food web structure, and lake biodiversity. The long-term (decades to centuries) dynamics of macrophyte cover are, however, poorly understood and no quantitative estimates exist for pre-industrial (pre-1850) macrophyte cover in northeastern North America. Using a 215 lake dataset, we tested if surface sediment diatom assemblages significantly differed among lakes that have sparse (<10% cover; group 1), moderate (10–40% cover; group 2) or extensive (>40% cover; group 3) macrophyte cover. Analysis of similarity indicated that the diatom assemblages of these a priori groups of macrophyte cover were significantly different from one another (i.e., difference between: groups 1 and 3, R statistic = 0.31, P < 0.001; groups 1 and 2, R statistic = 0.049, P < 0.01; groups 3 and 2, R statistic = 0.112, P < 0.001). We then developed an inference model for macrophyte cover from lakes classified as sparse or extensive cover (145 lakes) based on the surface sediment diatom assemblages, and applied this model using the top-bottom paleolimnological approach (i.e., comparison of recent sediments to pre-disturbance sediments). We used the second axis of our correspondence analysis, which significantly divided sparse and extensive macrophyte cover sites, as the independent variable in a logistic regression to predict macrophyte cover as either sparse or extensive. Cross validation, using 48 randomly chosen sites that were excluded from model development, indicated that our model accurately predicts macrophyte cover 79% of the time (r 2 = 0.32, P < 0.001). When applied to the top and bottom sediment samples, our model predicted that 12.5% of natural lakes and 22.4% of reservoirs in the dataset have undergone a ≥30% change in macrophyte cover. For the sites with an inferred change in macrophyte cover, the majority of natural lakes (64.3%) increased in cover, while the majority of reservoirs (87.5%) decreased in macrophyte cover. This study demonstrates that surface sediment diatom assemblages from profundal zones differ in lakes based on their macrophyte cover and that diatoms are useful indicators for quantitatively reconstructing changes in macrophyte cover.  相似文献   

12.
McNearney Lake is an acidic (pH=4.4) lake in the Upper Peninsula of Michigan with low acid neutralizing capacity (ANC=-38 eq L-1) and high SO inf4 sup2- and aluminium concentrations. Oligotrophy is indicated by high Secchi transparency and by low chlorophyll a, total phosphorus, and total nitrogen concentrations. The lake water is currently acidic because base cations are supplied to the lake water at a low rate and because SO inf4 sup2- from atmospheric deposition was not appreciably retained by the lake sediments or watershed and was present in the water column.This interdisciplinary paleolimnological study indicates that McNearney Lake is naturally acidic and has been so since at least 4000 years B.P., as determined from inferred-pH techniques based on contemporary diatom-pH relationships. Predicted pH values ranged from 4.7 to 5.0 over the 4000-year stratigraphy. Considerable shifts in species composition and abundance were observed in diatom stratigraphy, but present-day distributions indicate that all abundant taxa most frequently occur under acidic conditions, suggesting that factors other than pH are responsible for the shifts. The diatom-inferred pH technique as applied to McNearney Lake has too large an uncertainly and is not sensitive enough to determine the subtle recent changes in lakewater pH expected from changes in atmospheric deposition because: (1) McNearney Lake has the lowest pH in the contemporary diatom data set in the region and confidence intervals for pH predictions increase at the extremes of regressions; (2) other factors in addition to pH may be responsible for the diatom species distribution in the lake and in the entire northern Great Lakes region; (3) McNearney Lake has a well-buffered pH as a consequence of its low pH and high aluminium concentrations and is not expected to exhibit a large pH change as a result of changes in atmospheric deposition; and (4) atmospheric deposition in the region is modest and would not cause a pH shift large enough to be discernable in McNearney Lake.Elevated atmospheric deposition is indicated in recent sediments by Pb, V, and polycyclic aromatic hydrocarbon accumulation rates and to a lesser extent by those of Cu and Zn; however, these accumulation rates are substantially lower than those observed for acidified lakes in the northeastern United States. Although atmospheric loadings of materials associated with fossil fuel combustion have recently increased to McNearney Lake and apparently are continuing, the present study of the diatom subfossil record does not indicate a distinct, recent acidification (pH decrease).Order of the first two authors is alphabetical  相似文献   

13.
Late-glacial lake sediments containing the Laacher See Tephra (LST, 11 000 yr B.P.) have been analyzed for their pollen and diatom content at three sites at varying distances from the volcano and on different bedrock geologies. The aim was to test the null hypothesis that this major volcanic eruption had no effect on terrestrial pollen or aquatic diatom assemblages. The pollen spectra at all sites show a short-lived increase in grass pollen following the LST. Partial redundancy analysis and associated Monte Carlo permutation tests suggest, however, that the LST had no statistically significant effect at two sites but it had a statistically significant impact on the pollen assemblages at the site nearest (60 km) to the volcano.The diatom assemblages at the three sites changed individualistically after the LST deposition, with increases inAchnanthes minutissima at one site, an expansion ofAulacoseira species at another, and an increase ofAsterionella formosa andFragilaria brevistriata at the third site. Partial redundancy analysis and associated permutation tests suggest a statistically significant change in diatoms in relation to the LST and associated changes in sediment lithology at the one site situated on acidic bedrock. No significant impacts were found at the sites on volcanic or calcareous rocks. Due to the interaction between tephra and sediment lithology, it is not possible to conclude if the statistically significant diatom changes were a direct result of the LST deposition or an indirect result of lithological changes following LST deposition.This is the first paper in a series of papers published in this issue on high-resolution paleolimnology. These papers were presented at the Sixth International Paeolimnology Symposium held 19–21 April, 1993 at the Australian National University, Canberra, Australia. Dr A. F. Lotter and Dr. M. Sturm served as guest editors for these papers.  相似文献   

14.
We inferred late Holocene lake-level changes from a suite of near-shore gravity cores collected in Lake 239 (Rawson Lake), a headwater lake in the Experimental Lakes Area, northwestern Ontario. Results were reproduced across all cores. A gravity core from the deep central basin was very similar to the near-shore cores with respect to trends in the percent abundance of the dominant diatom taxon, Cylcotella stelligera. The central basin, however, does not provide a sensitive site for reconstruction of lake-level changes because of the insensitivity of the diatom model at very high percentages of C. stelligera and other planktonic taxa. Quantitative estimates of lake level are based on a diatom-inferred depth model that was developed from surficial sediments collected along several depth transects in Lake 239. The lake-level reconstructions during the past ~3,000 years indicate that lake depth varied on average by ±2 m from present-day conditions, with maximum rises of ~3–4 m and maximum declines of ~3.5–5 m. The diatom-inferred depth record indicates several periods of persistent low levels during the nineteenth century, from ~900 to 1100 AD, and for extended periods prior to ~1,500 years ago. Periods of inferred high lake levels occurred from ~500 to 900 AD and ~1100 to 1650 AD. Our findings suggest that near-shore sediments from small drainage lakes in humid climates can be used to assess long-term fluctuations in lake level and water availability.  相似文献   

15.
The surface sediment diatom and chrysophyte assemblages from 33 Sudbury lakes were added to our published 72 lake data set to expand and refine the diatom and chrysophyte-based inference models that we had earlier developed for this region. Our calibration data set now includes 105 lakes, representing gradients for multiple environmental variables (e.g., lakewater pH, metals, and transparency). The revised models are based on the weighted averaging calibration and regression approach and include bootstrap error estimates. The pH model was the strongest (r2 boot = 0.75, RMSE boot = 0.50). The chrysophyte-inferred pH model (r2 boot = 0.79, RMSE boot = 0.48) that we developed was as robust as the diatom pH model. Diatom and chrysophyte inferred pH models were then applied to top (surface sediments representing current conditions) and bottom (generally from > 30 cm deep representing pre-industrial conditions) sediment diatom and chrysophyte assemblages of 19 Killarney area lakes near Sudbury. The top and bottom inferred pH results were compared to early-1970s measured pH data. These data suggest that, although many of the poorly buffered Killarney lakes had experienced acidification, marked pH recovery has occurred in many lakes within the last 25 years. Despite the stunning pH recovery, the present-day diatom and chrysophyte assemblages are significantly different from assemblages present during pre-industrial times. Our results suggest that biological recovery may require more time than chemical recovery. It is also likely that these lakes may never recover biologically because other anthropogenic stressors (e.g., climate warming and increased exposure to UV-B radiation) may now have greater influence on biological communities in Killarney/Sudbury area lakes than acidification.  相似文献   

16.
The representative quality of fossil diatom assemblages in the recent sediment of a lake is compared with its contemporary diatom flora. In April 1986 experimental liming of the catchment of a small acidified lake, Loch Fleet (Galloway, U.K.), produced immediate changes in water quality. Lakewater pH rose from a mean of approximately 4.5 to 6.5, and in the two year period following liming a consistently higher pH was maintained. The marked response of diatom species to changing water quality provided a means of tracing events from living communities to the fossil assemblages. Diatom periphyton and plankton were sampled during a 20 month period and archived material was used to characterise earlier diatom communities. A comparison is made between living diatom communities and diatom assemblages collected by sediment traps and from sediment cores taken during the same period.Following liming, the diatom communities were found to respond within days or weeks to the changes in water quality. There is an initial change from acidobiontic communities, dominated byTabellaria quadriseptata, to dominance by the acidophilous speciesEunotia incisa andPeronia fibula. However, in the epipsammic community the acidobiontic speciesTabellaria binalis fo.elliptica remains abundant after liming. Approximately one year after liming the abundances of species such asAchnanthes minutissima andBrachysira vitrea increase in the epilithon, epiphyton and epibryon, whilst in the epipsammonT. binalis fo.elliptica is replaced by smallEunotia spp. andAchnanthes altaica. During the latter part of 1987 and in 1988, despite a stable pH, fluctuating patterns of species abundances are seen in the epilithon, epiphyton and epibryon whilst the species composition of the epipsammon remains relatively stable. Spring blooms of the planktonic speciesSynedra acus andAsterionella formosa occur during 1988 and 1989 respectively.Sediment trapping, which began in April 1987, records shifts in species composition corresponding with those seen in the epilithon, epiphyton and epibryon and with the blooms of planktonic species. The signal from the smaller, and probably less easily transportable, epipsammic community is not so clearly discernible. Although the fundamental record of the sediment traps is one from living diatom communities, the appearance of taxa extinct during the post-liming period reflects a low, but significant level of sediment resuspension.In contrast to the rapid response of living communities and their record in sediment traps, sediment cores do not begin to reflect changes in diatom composition until about 14 months after the initial liming. The first appearance of circumneutral taxa in significant abundance occurs only approximately 17 months after liming. The delayed reaction of sediment assemblages cannot be attributed principally to a slow rate of transport from the littoral to the profundal zone. Time-averaging processes within the sediment appear to be the main cause of the lag in core response. In contrast, blooms of planktonic species are quickly reflected in the stratigraphy of cores, but indicate that a considerable degree of downward mixing occurs. Comparison of the time trajectories of whole species assemblages in living communities, sediment traps and core surface sediments shows that the direction of change is similar in all three, but that the magnitude of change is attenuated in sediment assemblages.  相似文献   

17.
Twenty high Arctic lakes and ponds were sampled for water chemistry and modern diatom assemblages in two distinct physiographic sectors of Sirmilik National Park, Nunavut, Canada. Sites on southwestern Bylot Island were warmer, more alkaline, less dilute, and had higher concentrations of nutrients, DOC and Chl-a (mesotrophic to oligo-mesotrophic), whereas sites on Qorbignaluk Headland on northern Baffin Island were deeper, very dilute, mostly oligotrophic and had lower pH. Diatom assemblages differed markedly between these two regions as a consequence of limnological differences between them. Paleolimnological records, spanning > 200 years and dated by 210Pb activity, were produced from each region to compare biological responses to recent warming inferred from glaciological studies on Bylot Island and regional syntheses for the Arctic. Diatom assemblages began to change around AD 1900 at both sites. At Qorbignaluk Headland, marked shifts in diatom community composition occurred during the twentieth century, with large increases in the abundance of planktonic diatoms. At Bylot Island, diatom community changes began around the same time, and involved modest decreases in planktonic diatoms and increases in inferred specific conductance, likely because of a decrease in the areal extent of the small lake as a response to warming. The study confirms that responses of freshwater ecosystems to climate warming vary depending on local physiographic factors.  相似文献   

18.
Atmospheric deposition of reactive nitrogen (Nr) has enriched oligotrophic lakes with nitrogen (N) in many regions of the world and elicited dramatic changes in diatom community structure. The lakewater concentrations of nitrate that cause these community changes remain unclear, raising interest in the development of diatom-based transfer functions to infer nitrate. We developed a diatom calibration set using surface sediment samples from 46 high-elevation lakes across the Rocky Mountains of the western US, a region spanning an N deposition gradient from very low to moderate levels (<1 to 3.2 kg Nr ha−1 year−1 in wet deposition). Out of the fourteen measured environmental variables for these 46 lakes, ordination analysis identified that nitrate, specific conductance, total phosphorus, and hypolimnetic water temperature were related to diatom distributions. A transfer function was developed for nitrate and applied to a sedimentary diatom profile from Heart Lake in the central Rockies. The model coefficient of determination (bootstrapping validation) of 0.61 suggested potential for diatom-inferred reconstructions of lakewater nitrate concentrations over time, but a comparison of observed versus diatom-inferred nitrate values revealed the poor performance of this model at low nitrate concentrations. Resource physiology experiments revealed that nitrogen requirements of two key taxa were opposite to nitrate optima defined in the transfer function. Our data set reveals two underlying ecological constraints that impede the development of nitrate transfer functions in oligotrophic lakes: (1) even in lakes with nitrate concentrations below quantification (<1 μg L−1), diatom assemblages were already dominated by species indicative of moderate N enrichment; (2) N-limited oligotrophic lakes switch to P limitation after receiving only modest inputs of reactive N, shifting the controls on diatom species changes along the length of the nitrate gradient. These constraints suggest that quantitative inferences of nitrate from diatom assemblages will likely require experimental approaches.  相似文献   

19.
A 72-lake diatom training set was developed for the Irish Ecoregion to examine the response of surface sediment diatom assemblages to measured environmental variables. A variety of multivariate data analyses was used to investigate environmental and biological data structure and their inter-relationships. Of the variables used in determining a typology for lakes in the Irish Ecoregion, alkalinity was the only one found to have a significant effect on diatom assemblages. A total of 602 diatom taxa were identified, with 233 recorded at three or more sites with abundances ≥1%. Generally diatom data displayed a high degree of heterogeneity at the species level and non-linear ecological responses. Both pH and total phosphorus (TP) (in the ranges of 5.1–8.5 and 4.0–142.3 μg l−1 respectively) were shown to be the most significant variables in determining the surface sediment diatom assemblages. The calibration models for pH and TP were developed using the weighted averaging (WA) method; data manipulation showed strong influences on model performances. The optima WA models based on 70 lakes produced a jack-knifed coefficient of determination (r 2 jack) of 0.89 with a root mean squared error (RMSEP) of 0.32 for pH and r 2 jack of 0.74 and RMSEP of 0.21 (log10 μg l−1) for TP. Both models showed strong performances in comparison with existing models for Ireland and elsewhere. Application of the pH and TP transfer functions developed here will enable the generation of quantitative water quality data from the expanding number of palaeolimnological records available for the Irish Ecoregion, and thus facilitate the use of palaeolimnological approaches in the reconstruction of past lake water quality, ecological assessment and restoration.  相似文献   

20.
We identified, enumerated, and interpreted the diatom assemblages preserved in the surface sediments of 59 lakes located between Whitehorse in the Yukon and Tuktoyaktuk in the Northwest Territories (Canada). The lakes are distributed along a latitudinal gradient that includes several ecoclimatic zones. It also spans large gradients in limnological variables. Thus, the study lakes are ideal for environmental calibration of modern diatom assemblages. Canonical correspondence analysis, with forward selection and Monte Carlo permutation tests, showed that maximum lake depth and summer surface-water temperature were the two environmental variables that accounted for most of the variance in the diatom data. The concentrations of sodium and calcium were also important explanatory variables. Using weighted-averaging regression and calibration techniques, we developed a predictive statistical model to infer lake surface-water temperature, and we evaluated the feasibility of using diatoms as paleoclimate proxies. This model may be used to derive paleotemperature inferences from fossil diatom assemblages at appropriate sites in the western Canadian Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号