首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
西北太平洋浪流相互作用对有效波高的影响研究   总被引:1,自引:0,他引:1  
西北太平洋强流区会对海浪的特征和分布产生显著的影响,尤其是研究台风过程中海流与海浪的相互作用具有重要的研究意义。本文以ROMS海洋模式和SWAN海浪模式为基础,构建了浪流耦合模式系统,对2013年10月6-17日间的台风“丹娜丝”、“百合”、“韦帕”过程中西北太平洋浪流相互作用中海流对有效波高的影响进行了研究。通过对比模式模拟有效波高与浮标观测资料,发现耦合后的有效波高比非耦合结果更接近观测值,耦合模式中海流的存在对有效波高的分布有明显的影响。研究表明,特别是在有效波高峰值处,海流引起的有效波高增大最大可达1 m。海浪浪向及流向的空间分布以及中国近海浮标处浪向与流向的时间序列表明,流向与浪向反向时,海流的影响造成有效波高增大;二者同向时,有效波高减小。海流对有效波高的调整会沿着海浪传播的方向传播相当一段距离。在西北太平洋的海浪场计算中,引入海流的耦合模式计算结果对改善强流区海浪预报具有重要意义,并且海流的模拟精度对于高精度的海浪预报非常重要。  相似文献   

2.
仇颖  阳德华  李爽 《海洋科学》2019,43(11):103-110
Langmuir环流影响着海洋上层的能量输入,对海洋上混合层的形成和加深起着重要作用,对于海洋上混合层具有重要意义。近年来许多学者采用大涡模拟(LES)方法对Langmuir环流进行机制研究,并通过在雷诺平均模型中参数化Langmuir环流效应,将Langmuir环流过程引入到三维海洋环流或海洋耦合模式中,提出了一系列混合参数化方案。本文回顾了Langmuir环流在雷诺平均模式参数化中的研究进展,主要可分为以下几种方案:一种方法是用Langmuir数在KPP垂直混合参数化方案中引入湍流特征速度增强因子,并不断发展Langmuir数的定义;一种是在Mellor-Yamada2.5湍流闭合模型中增加斯托克斯漂流剪切效应项,此外还有通过修改模式中混合长方程来加入Langmuir效应等。通过在雷诺平均模式中应用的结果来看,现有的参数化方案在一定程度上改善了混合层深度和SST的模拟,肯定了Langmuir环流在加深混合等方面的作用,但仍存在一些问题需要在今后的研究中进一步改进。  相似文献   

3.
《Ocean Modelling》2011,39(3-4):267-279
Near-surface enhancement of turbulent mixing and vertical mixing coefficient for temperature owing to the effect of surface wave breaking is investigated using a two-dimensional (2-D) ocean circulation model with a tidal boundary condition in an idealized shelf sea. On the basis of the 2-D simulation, the effect of surface wave breaking on surface boundary layer deepening in the Yellow Sea in summer is studied utilizing a 3-D ocean circulation model. A well-mixed temperature surface layer in the Yellow Sea can be successfully reconstructed when the effect of surface wave breaking is considered. The diagnostic analysis of the turbulent kinetic energy equation shows that turbulent mixing is enhanced greatly in the Yellow Sea in summer by surface wave breaking. In addition, the diagnostic analysis of momentum budget and temperature budget also show that surface wave breaking has an evident contribution to the turbulent mixing in the surface boundary layer. We therefore conclude that surface wave breaking is an important factor in determining the depth of the surface boundary layer of temperature in the Yellow Sea in summer.  相似文献   

4.
A down-scaled operational oceanographic system is developed for the coastal waters of Korea using a regional ocean modeling system(ROMS).The operational oceanographic modeling system consists of atmospheric and hydrodynamic models.The hydrodynamic model,ROMS,is coupled with wave,sediment transport,and water quality modules.The system forecasts the predicted results twice a day on a 72 h basis,including sea surface elevation,currents,temperature,salinity,storm surge height,and wave information for the coastal waters of Korea.The predicted results are exported to the web-GIS-based coastal information system for real-time dissemination to the public and validation with real-time monitoring data using visualization technologies.The ROMS is two-way coupled with a simulating waves nearshore model,SWAN,for the hydrodynamics and waves,nested with the meteorological model,WRF,for the atmospheric surface forcing,and externally nested with the eutrophication model,CE-QUAL-ICM,for the water quality.The operational model,ROMS,was calibrated with the tidal surface observed with a tide-gage and verified with current data observed by bottom-mounted ADCP or AWAC near the coastal waters of Korea.To validate the predicted results,we used real-time monitoring data derived from remote buoy system,HF-radar,and geostationary ocean color imager(GOCI).This down-scaled operational coastal forecasting system will be used as a part of the Korea operational oceanographic system(KOOS) with other operational oceanographic systems.  相似文献   

5.
Based on the theoretical spectral model of inertial internal wave breaking(fine structure) proposed previously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior below the surface mixed layer in the ocean general circulation model(OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes(including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial internal wave breaking mixing scheme(F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al.( T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numerical results of F-scheme by using WOA09 data and an OGCM(LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation(AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.  相似文献   

6.
Multiple linear regression(MLR) method was applied to quantify the effects of the net heat flux(NHF),the net freshwater flux(NFF) and the wind stress on the mixed layer depth(MLD) of the South China Sea(SCS) based on the simple ocean data assimilation(SODA) dataset.The spatio-temporal distributions of the MLD,the buoyancy flux(combining the NHF and the NFF) and the wind stress of the SCS were presented.Then using an oceanic vertical mixing model,the MLD after a certain time under the same initial conditions but various pairs of boundary conditions(the three factors) was simulated.Applying the MLR method to the results,regression equations which modeling the relationship between the simulated MLD and the three factors were calculated.The equations indicate that when the NHF was negative,it was the primary driver of the mixed layer deepening;and when the NHF was positive,the wind stress played a more important role than that of the NHF while the NFF had the least effect.When the NHF was positive,the relative quantitative effects of the wind stress,the NHF,and the NFF were about 10,6 and 2.The above conclusions were applied to explaining the spatio-temporal distributions of the MLD in the SCS and thus proved to be valid.  相似文献   

7.
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.  相似文献   

8.
The seasonal variation of mixing layer depth(MLD) in the ocean is determined by a wind stress and a buoyance flux.A South China Sea(SCS) ocean data assimilation system is used to analyze the seasonal cycle of its MLD.It is found that the variability of MLD in the SCS is shallow in summer and deep in winter,as is the case in general.Owing to local atmosphere forcing and ocean dynamics,the seasonal variability shows a regional characteristic in the SCS.In the northern SCS,the MLD is shallow in summer and deep in winter,affected coherently by the wind stress and the buoyance flux.The variation of MLD in the west is close to that in the central SCS,influenced by the advection of strong western boundary currents.The eastern SCS presents an annual cycle,which is deep in summer and shallow in winter,primarily impacted by a heat flux on the air-sea interface.So regional characteristic needs to be cared in the analysis about the MLD of SCS.  相似文献   

9.
本文通过理想化的外部强迫以及海洋站点实测数据驱动普林斯顿海洋模式来研究海洋热力学效应和斯托克斯漂流对上混合层数值模拟的影响。在Mellor-Yamada湍流闭合方案中,经常出现夏季海表面温度偏暖和混合层深度偏浅的模拟误差。实验表明,斯托克斯漂流在冬季和夏季均能增强湍流动能,加深混合层深度。这种效应可以改善夏季的模拟结果,但与观测数据相比,将增大冬季混合层深度的模拟误差。斯托克斯漂流可以通过增强湍动能来加深混合层深度。结果表明,将斯托克斯漂流与冷皮层和暖层对上部混合层的热效应相结合,可以正确地模拟混合层深度。在夏季,海洋冷皮层和暖层通过“阻挡结构”和双温跃层结构模拟出更真实的上混合层变化。在冬季,海洋热力学效应通过增强上层海洋层结平衡了斯托克斯漂流的影响,并且由斯托克斯漂流引起的过度混合被校正。  相似文献   

10.
Simulation of the ocean surface mixed layer under the wave breaking   总被引:6,自引:4,他引:2  
A one-dimensional mixed-layer model, including a Mellor-Yamada level 2.5 turbulence closure scheme, was implemented to investigate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic energy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corresponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the temperature gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.  相似文献   

11.
台风条件下朗缪尔环流对上层海洋混合的影响研究进展   总被引:1,自引:1,他引:0  
回顾了近10年来台风条件下朗缪尔环流影响上层海洋混合的研究进展,朗缪尔致湍流对海洋上混合层的形成和加深的重要作用已形成了基本共识,但对于朗缪尔致湍流对海洋上混合层的混合作用机制和程度仍然存在诸多不确定性。观测表明台风条件下台风眼附近的混合层平均湍流动能受到了较强的抑制,可能与台风不同位置朗缪尔致湍流的特征变异有关;台风条件下,现有的朗缪尔致湍流参数化方案在上层混合过程模拟中还有显著误差。在今后研究中,通过改进斯托克斯漂流剖面的计算方法,优化表征台风条件下海面状况的朗缪尔致湍流参数化计算方案,是进一步揭示台风条件下朗缪尔环流对海洋上层混合的影响机理的必要途径。  相似文献   

12.
Tropical cyclone ocean–wave model interactions are examined using an ESMF – (Earth System Modeling Framework) based tropical cyclone (TC) version of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®1). This study investigates Hurricane Ivan, which traversed the Gulf of Mexico (GOM) in September 2004. Several oceanic and wave observational data sets, including Acoustic Doppler Current Profilers (ADCPs), National Oceanic and Atmospheric Administration (NOAA) buoys, satellite altimeter data, and Scanning Radar Altimeter (SRA) data, allow for a unique analysis of the coupled atmosphere, ocean (Navy Coastal Ocean Model, NCOM), and wave (Simulating WAves Nearshore, SWAN) models in COAMPS-TC. To determine the feasibility of coupling NCOM to SWAN in high-wind conditions during Hurricane Ivan, near-surface currents in NCOM were first compared to near-surface ADCP observations. Recent modifications to SWAN, including new wind-to-wave energy input and wave-breaking energy dissipation source functions, as well as a new ocean surface drag coefficient formulation appropriate for high-wind conditions, significantly improved the forecast wave field properties, such as significant wave height (SWH), in TC conditions. Further results show that the ocean-to-wave model coupling, which allows for the strong, hurricane-induced, surface currents in NCOM to interact with SWAN, provided additional improvements to the forecast SWH field. Additionally, wave-to-ocean model coupling, which included the input of the Stokes Drift Current (SDC) calculated from the SWAN wave spectra to NCOM, is examined. The models indicate that the SDC was on the order of 10–25% of the near-surface Eulerian current during Ivan. Recent studies of the importance of the SDC and the resulting Langmuir turbulence on vertical ocean mixing in TCs is also discussed.  相似文献   

13.
波浪破碎过程产生的湍流动量和能量垂向输运对于加快海洋上混合层中垂向混合具有显著效果.采用二维实验室水槽中对波浪破碎过程进行模拟.对采集的波浪振幅时间序列采用希尔伯特变换定位破碎波位置,波浪的破碎率随有效波高的增加而增大,波浪谱分析得到的波浪基本周期与有效周期结果相似.实验中采用粒子图像测速技术(particle ima...  相似文献   

14.
海浪破碎对海洋上混合层中湍能量收支的影响   总被引:2,自引:1,他引:2  
海浪破碎产生一向下输入的湍动能通量,在近海表处形成一湍流生成明显增加的次层,加强了海洋上混合层中的湍流垂向混合。为了研究海浪破碎对混合层中湍能量收支的影响,文中分析了海浪破碎对海洋上混合层中湍流生成的影响机制,采用垂向一维湍封闭混合模式,通过改变湍动能方程的上边界条件,引入了海浪破碎产生的湍动能通量,并分别对不同风速下海浪破碎的影响进行了数值研究,分析了混合层中湍能量收支的变化。当考虑海浪破碎影响时,近海表次层中的垂直扩散项和耗散项都有显著的增加,该次层中被耗散的湍动能占整个混合层中耗散的总的湍能量的92.0%,比无海浪破碎影响的结果增加了近1倍;由于平均流场切变减小,混合层中的湍流剪切生成减小了3.5%,形成一种存在于湍动能的耗散和垂直扩散之间的局部平衡关系。在该次层以下,局部平衡关系与壁层定律的结论一致,即湍动能的剪切生成与耗散相平衡。研究结果表明,海浪破碎在海表产生的湍动能通量影响了海洋上混合层中的各项湍能量收支间的局部平衡关系。  相似文献   

15.
Effect of Stokes drift on upper ocean mixing   总被引:1,自引:0,他引:1  
Stokes drift is the main source of vertical vorticity in the ocean mixed layer. In the ways of Coriolis - Stokes forcing and Langmuir circulations, Stokes drift can substantially affect the whole mixed layer. A modified Mellor-Yamada 2. 5 level turbulence closure model is used to parameterize its effect on upper ocean mixing conventionally. Results show that comparing surface heating with wave breaking, Stokes drift plays the most important role in the entire ocean mixed layer, especially in the subsurface layer. As expected, Stokes drift elevates both the dissipation rate and the turbulence energy in the upper ocean mixing. Also, ilffluence of the surface heating, wave breaking and wind speed on Stokes drift is investigated respectively. Research shows that it is significant and important to assessing the Stokes drift into ocean mixed layer studying. The laboratory observations are supporting numerical experiments quantitatively.  相似文献   

16.
Intercomparison of three South China Sea circulation models   总被引:2,自引:1,他引:1  
1IntroductionTheSouthChinaSeaisthelargesttropicalmarginaldeepsealocatingbetweenthewesternPacificOceanandtheeasternIndianOcean.AsapartofAsia-Australiamaritimecontinent,monsoonisaprimaryfactorforcingtheSouthChinaSeaCurrent(SCSC)variation.Drivenbynortheasterlymonsooninwinterandsouth-westerlymonsooninsummer,respectively,theSCSCbehavesacyclonicgyreandananticy-clonicgyre,correspondingly(Wyrtki,1961;Xuetal.,1982).Owingtotheshortageandexpen-sivenessofdirectobservationsintheSCS,fur-therunder…  相似文献   

17.
The effects of wave-induced radiation stress on storm surge were simulated during Typhoon Saomai using a wave-current coupled model based on ROMS (Regional Ocean Modeling System) ocean model and SWAN (Simulating Waves Nearshore) wave model.The results show that radiation stress can cause both set-up and set-down in the storm surge.Wave-induced set-up near the coast can be explained by decreasing significant wave heights as the waves propagate shoreward in an approximately uniform direction;wave-induced set-down far from the coast can be explained by the waves propagating in an approximately uniform direction with increasing significant wave heights.The shoreward radiation stress is the essential reason for the wave-induced set-up along the coast.The occurrence of set-down can be also explained by the divergence of the radiation stress.The maximum wave-induced set-up occurs on the right side of the Typhoon path,whereas the maximum wave induced set-down occurs on the left side.  相似文献   

18.
The role of wave breaking (WB) in the ocean dynamics in the Bohai Sea, China under typhoon condition is systematically investigated utilizing a coupled wave-current model. The influences of WB on ocean dynamics and processes (mixing coefficient, temperature, mixed layer depth, and current) during the entire typhoon period (including the pre-typhoon, during-typhoon and after-typhoon stages) are comprehensively detected and discussed. Experimental results show that WB greatly enhances the turbulent mixing at about top 10 m depth under typhoon condition, the increase can be up to 10 times that of the normal weather. At the same time, WB generally strengthens the sea surface cooling by ~1.2°C at the during-typhoon stage, about 3 times that in normal weather. The mixed layer depth, is rapidly increased by ~1.6–3.6 m during typhoon due to WB, particularly, the deepening is stronger in the region from 120.5°E to 121.0°E on account of close to the typhoon eye. In addition, WB renders the current speed more uniformly within the entire depth in the Bohai Sea, the change in speed is ~0.2 m/s, whereas the alternation in current vector is generally opposite to the wind direction except for the typhoon eye region, reflecting that WB has an inhibitory effect on the typhoon-forced current change. The effects of WB on vertical mixing coefficient response to the typhoon rapidly, while the impacts of WB on temperature, and mixed layer depth present hysteretic responses to typhoon. Finally, the mechanisms and distribution characteristics of WB-induced mixing and tidal mixing are compared under typhoon condition.  相似文献   

19.
杜艳  刘国强  何宜军  韩雪 《海洋科学》2020,44(10):12-22
台风是影响中国黄东海的强天气现象,其引起的强风、巨浪和台风增水严重威胁着沿海地区人民的生命与财产安全。本文以海浪模式SWAN(Simulating Waves Nearshore)与区域海洋模式ROMS(Regional Ocean Modeling System)为基础,构建了中国黄东海海域在201509号台风“灿鸿”影响下的海浪-海洋耦合模式。通过浮标与Jason-2高度计有效波高数据验证了模式结果的准确性。进行了敏感性实验分析,对比耦合(ROMS+SWAN)与非耦合(SWAN)下以及使用不同地形数据(ETOPO1、ETOPO2、GEBCO)、不同物理参数化方案(风能输入、白冠耗散、底摩擦耗散)下的模拟结果差异。结果发现在射阳与前三岛浮标处,使用GEBCO地形数据(15弧秒间隔)下的模拟效果更好且稳定。在空间分布上,台风中心附近的浪流相互作用显著,在其前进方向右侧表现为耦合的有效波高值低于非耦合有效波高值,差值最高可达1米。选择不同风输入与耗散项方案时的模拟差异主要发生在最大波高处,选择不同的风能输入与白冠耗散项方案带来的差异接近0.4米,而底摩擦项方案选择不同带来的差异接近1米。因而在模拟实际的海况时,需要综合考虑这些因素带来的影响,才能达到SWAN海浪模型最好的海浪模拟效果。  相似文献   

20.
A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED,which has been developed through introducing wave-enhanced bottom shear stress,wave dependent surface drag coefficient,wave-induced surface mixing,SWAN,damping function of sediment on turbulence,sediment model and depth-dependent wave radiation stress to COHERENS.The COHERENS-SED is adopted to study the effects induced by wave-induced three-dimensional longshore current on suspended sediment spreading of the Huanghe River (Yellow River) mouth.Several different cases divided by setting different wave parameters of inputting boundary waves are carried out.The modeling results agree with measurement data.In terms of simulation results,it is easy to know that three-dimensional wave radiation stress plays an obvious role when inputting boundary wave height is stronger than 3 m.Moreover,wave direction also affects the sediment spreading rules of the mouth strongly too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号