首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By incorporating the wave-induced Coriolis-Stokes forcing into the classical Ekman model, the wind energy input to the Ekman-Stokes layer is investigated, with an emphasis on the surface wave effects when the direction of Stokes drift deviates from that of wind stress. Theoretical analysis of the kinetic energy balance of the Ekman-Stokes layer shows that the total wind energy input consists of the direct wind energy input and the wave-induced energy input. Details of the direct wind and wave-induced energy input are discussed. Based on the ECMWF ERA-40 Re-Analysis wind stress and surface wave data, the global total wind energy input to subinertial motions in the Ekman-Stokes layer is estimated at 2.19 TW, including 0.26 TW (12%) wave-induced energy input and 1.93 TW (88%) direct wind energy input. The effect of sea-ice coverage on the energy input to the Ekman-Stokes layer is also considered. It is shown that the global total energy input could be overestimated by 0.08 TW (about 4%) without taking the sea-ice coverage into account.  相似文献   

2.
This reply corrects the estimate of the wind and wave energy inputs into the Ekman layer by using the Ekman-Stokes layer energy budget as suggested in Polton (2009). Using the data and method in Liu et al. (2007), the global wind energy input was recalculated. The estimated global total energy input to the Ekman-Stokes layer is 2.22 TW, including 1.93 TW direct wind energy input and 0.29 TW wave-induced energy input. Compared to that in Liu et al. (2007), the recalculated wave-induced energy input was increased by 0.03 TW.  相似文献   

3.
The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42, 134–149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313–351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313–351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971–5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift.  相似文献   

4.
基于Jenkins(1989)建立的包含Stokes漂流、风输入和波耗散影响的修正Ekman模型,采用Paskyabi等(2012)使用的推广的Donelan等(1987)中的谱和波耗散函数,并利用Paskyabi等(2012)中修正方法给出的包含高频波的风输入函数,在粘性不依赖于水深及粘性随深度线性变化的条件下,研究了包含高频毛细重力波的随机表面波对Stokes漂流和Song(2009)导出的波浪修正定常Ekman流解的影响。结果表明高频表面波使Stokes漂流在海表面剪切加强,对定常Ekamn流解的影响通常不能忽略,但对Ekman流场的角度偏转影响很小。最后,将考虑高频表面波尾谱影响所估算的定常Ekman流解与已有观测结果以及经典Ekman解进行了比对分析。  相似文献   

5.
A “slip law” connects the excess velocity or “slip” of a wind-blown water surface, relative to the motion in the middle of the mixed layer, to the wind stress, the wind-wave field, and buoyancy flux. An inner layer-outer layer model of the turbulent shear flow in the mixed layer is appropriate, as for a turbulent boundary layer or Ekman layer over a solid surface, allowing, however, for turbulent kinetic energy transfer from the air-side via breaking waves, and for Stokes drift. Asymptotic matching of the velocity distributions in inner and outer portions of the mixed layer yields a slip law of logarithmic form, akin to the drag law of a turbulent boundary layer. The dominant independent variable is the ratio of water-side roughness length to mixed layer depth or turbulent Ekman depth. Convection due to surface cooling is also an important influence, reducing surface slip. Water-side roughness length is a wind-wave property, varying with wind speed similarly to air-side roughness. Slip velocity is typically 20 times water-side friction velocity or 3% of wind speed, varying within a range of about 2 to 4.5%. A linearized model of turbulent kinetic energy distribution shows much higher values near the surface than in a wall layer. Nondimensional dissipation peaks at a value of about eight, a short distance below the surface.  相似文献   

6.
利用日本气象厅"best track data"热带气旋数据、QuikSCAT(Quick Scatterometer)卫星风场数据和SCUD(Surface Currents from a Diagnostic model)表层流场数据,估算了热带气旋对南海表层流和波浪的能量输入。结果显示,由于热带气旋基本都位于南海中北部,热带气旋对表层流和波浪的能量输入也集中在南海中北部;能量输入最大的月份均在8月和11月,而在9月对总能量输入贡献最大。5~12月,热带气旋对南海表层流的能量输入为1.26GW,占风对表层流总能量输入的9.87%;热带气旋对表层波浪的能量输入为11.60GW,占风对表层波浪总能量输入的5.42%。如果只考虑10°N以北区域,则热带气旋对表层流和波浪能量输入的贡献分别达到11.29%和6.87%。  相似文献   

7.
本文采用Boussinesq近似,利用地转动量近似(GMA)方法,研究了大气Ekman层的三维非线性动力学特征,得到了Ekman层中三维风速分布的解析解,着重讨论了热成风对Ekman层水平风速分布的影响,对传统的求垂直速度的方法进行了改进。  相似文献   

8.
Effects of Stokes production on summer ocean shelf dynamics   总被引:1,自引:0,他引:1  
A two-dimensional numerical model,which is configured on the basis of Princeton ocean model(POM),is used to study the effect of Stokes production(SP) of the turbulent kinetic energy on a density profile and Ekman transport in an idealized shelf region in summer.The energy input from SP is parameterized and included into the Mellor-Yamada turbulence closure submodel.Results reveal that the intensity of wind-driven upwelling fronts near the sea surface is weakened by the SP-associated turbulent kinetic energy input.The vertical eddy viscosity coefficient in the surface boundary layer is enhanced greatly owing to the impact of SP,which decreases the alongshore velocity and changes the distribution of upwelling.In addition,the SP-induced mixing easily suppresses the strong stratification and significantly increases the depth of the upper mixed layer(ML) under strong winds.  相似文献   

9.
利用海浪模式WWIII(Wave Watch III)2008年的模拟结果对海面Stokes漂流、Stokes输运、Stokes深度以及全球Langmuir数的年平均分布特征和季节平均分布特征分别进行了详细的研究与分析。结果表明,海面Stokes漂流和Stokes输运均呈现高纬度偏大的特征,以南极绕极流海域最为突出。全球大部分海域Stokes漂流影响深度在20 m以内,呈现大洋东部偏大,西部偏小的分布特征。全球大部分海域的混合作用是剪切不稳定性和Langmuir湍效应并存的状态,甚至有些海域是以Langmuir湍效应为主。因此,在进行大尺度的海洋数值模拟时,应该考虑波浪导致的混合效应。  相似文献   

10.
南大洋凯尔盖朗海台区的流场结构及季节变化   总被引:4,自引:0,他引:4  
利用冰-海耦合等密面模式模拟了南大洋凯尔盖朗海台区的环流及其季节变化.对模拟结果的分析表明,该海区的南极绕极流具有非常显着的条带状分布和非纬向性特征.南极绕极流流经凯尔盖朗海台时,在海台的南部、中部和北部表现出不同的形式,其南部的一个分支贴近南极大陆,与西向的陆坡流之间有强的相互作用.海台以北的南极绕极流的变化以年周期为主,海台以南的变化以半年周期为主,其时间变化规律与这里的风应力的变化规律是一致的.  相似文献   

11.
A coupled ice-ocean isopycnal numerical model of the Southern Ocean is established tostudy the circulation and its seasonal variability in the region around the Kerguelen Plateau. An analysis of the simulated results shows significant stripe-like structure and non-zonal feature of the Antarctic Cir-cumpolar Current (ACC) in this region. ACC begins to bifurcate and to turn its direction before meeting the plateau. The southernmost branch of ACC is near to the Antarctic coast and displays its strong interaction with the westward Antarctic Slope Current. The northern branch of ACC has a tendency of annual variations while the southern one varies in a semiannual cycle. The variation phases of both branches are coincident with that of the wind stress in this region.  相似文献   

12.
由于航海、海上开发作业等对海洋上风和海浪的预报提出越来越高的要求,而海浪、风暴潮等海洋水文要素的数值计算和预报,迫切需要解决海洋上风场的精确计算。但是,复杂的海面结构,大气稳定度的影响以及风、浪之间动量的交换等,使海上风的理论计算遇到很多困难,至今大部分工作是依靠统计方法。利用天气预报的形势场计算地转风或梯度风,以及它与海面摩擦、大气稳定度的经验订正关系。  相似文献   

13.
夏季北黄海南部定点高分辨率实测海流分析   总被引:10,自引:2,他引:8  
对夏季北黄海南部一定点高分辨率连续ADCP(Acoustic Doppler Current Profiler)海流实测资料,使用调和分析方法分解成3部分:不随时间变化的定常余流,周期性潮流和剩余流,再将潮流分解为正压潮流和斜压潮流。通过对实测海流中各组分的分析,结合同时期卫星反演海面风场资料,温度、盐度断面调查资料,得到以下结论:夏季该站点上层定常余流的主导动力控制因素是风应力,上层表现出明显的Ekman风海流特征,中、下层流速方向与表层流向基本成反向,体现出"上进下出"的垂向空间结构,定常流速最大位于近表层,可以达到5cm/s以上;各层的潮流类型均为正规半日潮流,主要半日潮潮流椭圆长轴的方向基本上呈东南-西北方向,其椭率在近底层达到最大值,中、上层较小;从能量角度分析该站点各海流组分,潮流与剩余流所占能量较大,平均起来看,潮流能量占测量海流能量的77%,而定常余流仅占0.6%,该点的斜压潮流较弱,平均斜压潮流能量仅占正压潮流能量的5%。  相似文献   

14.
Effect of Stokes drift on upper ocean mixing   总被引:1,自引:0,他引:1  
Stokes drift is the main source of vertical vorticity in the ocean mixed layer. In the ways of Coriolis - Stokes forcing and Langmuir circulations, Stokes drift can substantially affect the whole mixed layer. A modified Mellor-Yamada 2. 5 level turbulence closure model is used to parameterize its effect on upper ocean mixing conventionally. Results show that comparing surface heating with wave breaking, Stokes drift plays the most important role in the entire ocean mixed layer, especially in the subsurface layer. As expected, Stokes drift elevates both the dissipation rate and the turbulence energy in the upper ocean mixing. Also, ilffluence of the surface heating, wave breaking and wind speed on Stokes drift is investigated respectively. Research shows that it is significant and important to assessing the Stokes drift into ocean mixed layer studying. The laboratory observations are supporting numerical experiments quantitatively.  相似文献   

15.
Based on the satellite altimetry dataset of sea level anomalies, the climatic hydrological database World Ocean Atlas-2009, ocean reanalysis ECMWF ORA-S3, and wind velocity components from NCEP/NCAR reanalysis, the interannual variability of Antarctic Circumpolar Current (ACC) transport in the ocean upper layer is investigated for the period 1959–2008, and estimations of correlative connections between ACC transport and wind velocity components are performed. It has been revealed that the maximum (by absolute value) linear trends of ACC transport over the last 50 years are observed in the date-line region, in the Western and Eastern Atlantic and the western part of the Indian Ocean. The greatest increase in wind velocity for this period for the zonal component is observed in Drake Passage, at Greenwich meridian, in the Indian Ocean near 90° E, and in the date-line region; for the meridional component, it is in the Western and Eastern Pacific, in Drake Passage, and to the south of Africa. It has been shown that the basic energy-carrying frequencies of interannual variability of ACC transport and wind velocity components, as well as their correlative connections, correspond to the periods of basic large-scale modes of atmospheric circulation: multidecadal and interdecadal oscillations, Antarctic Circumpolar Wave, Southern Annual Mode, and Southern Oscillation. A significant influence of the wind field on the interannual variability of ACC transport is observed in the Western Pacific (140° E–160° W) and Eastern Pacific; Drake Passage and Western Atlantic (90°–30° W); in the Eastern Atlantic and Western Indian Ocean (10°–70° E). It has been shown in the Pacific Ocean that the ACC transport responds to changes of the meridional wind more promptly than to changes of the zonal wind.  相似文献   

16.
An approximate steady solution of the wave-modified Ekman current is presented for gradually varying eddy viscosity by using the WKB method with the variation of parameters technique. The parameters involved in the solution can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water. The solution reduces to the exact solution when the eddy viscosity is taken as a constant. As illustrative examples, for a fully developed wind-generated sea with different wind speeds and a few proposed gradually varying eddy viscosities, the current profiles calculated from the approximate solutions are compared with those of the exact solutions or numerical ones by using the Donelan and Pierson wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. It is shown that the approximate solution presented has an elegant form and yet would be valid for any given gradually varying eddy viscosity. The applicability of the solution method to the real ocean is discussed following the comparisons with published observational data and with the results from a large eddy simulation of the Ekman layer.  相似文献   

17.
齐鹏  陈新平 《海洋工程》2018,36(1):55-61
将波浪辐射应力,特别是地转意义下的波浪辐射应力引入海流数值模式POM(princeton ocean model),在渤海海域进行了初步的数值研究。在目前的数值分析中仅考虑了波浪辐射应力的横向分量(也是最重要的分量)。在POM模式中引入非地转和地转意义下的波浪辐射应力两种方案,并与原模式直接运行(即不考虑波浪辐射应力)的结果进行比较。比较显示,波浪辐射应力,特别是地转意义下的波浪辐射应力对海流模式结果的影响不容忽略。在海浪场存在的条件下,由风应力和地转意义下浪致作用力共同作用产生的海流强度应比理论上Ekman漂流的强度大,尤其是在浪致作用力显著的表层,表层流将明显增强,且不会完全符合Ekman漂流理论的转向规律。  相似文献   

18.
风影响夏季长江冲淡水扩展的数值模拟研究   总被引:2,自引:1,他引:1  
基于EFDC(Environmental Fluid Dynamics Code)数值模式建立了长江口及其邻近海域的三维水动力学模型,用于研究风对夏季长江冲淡水扩展的影响。基于实测资料的验证结果表明,模型能够比较真实的反映潮汐、海流、温度和盐度的变化过程。敏感性试验的结果显示,风对夏季长江冲淡水的扩展有着非常显著的影响。在Ekman输送的作用下,长江冲淡水将向风向的右侧扩展。5 m/s风速下,东风、东南风、南风和西南风4个风向下的冲淡水明显向外海扩展,而西风、西北风、北风和东北风下的冲淡水都被限制在近岸水域。Ekman输送的强度随风速增强而增强,冲淡水向风向右侧的扩展也越来越明显。舌轴区因为层结明显,湍流活动相对较弱,对风能量的耗散相对较小,所以相同的风速增量对舌轴区表层水的加速作用最强,这导致更多的淡水经由舌轴区输送,使得淡水舌宽度随风速的增加而变窄。对长江口海域表面风的气候统计分析表明,上述数值试验结果能够很好的解释气候态下长江冲淡水扩展方向与表面风变化的关系。  相似文献   

19.
The interannual variation of the thermal structure of North Pacific subtropical mode water (NPSTMW) is investigated by means of composite analysis with respect to the wintertime Monsoon Index (MOI) which can represent the strength of the wintertime East Asian monsoon. The wind stress field over the NPSTMW formation area has significant variation over the interannual (2–4 year) and the decadal (10–20 year) bands. Changes in interannual variation are well correlated with the intensity of the wintertime East Asian monsoon. By means of composite analysis, it is found that significant differences occur in the thermal structure of the NPSTMW between stronger and weaker monsoon years. That is, colder and thicker NPSTMW is formed in years with stronger monsoons. Analysis of the heat flux through the sea surface and horizontal heat divergence in the Ekman layer shows that colder and thicker NPSTMW in stronger monsoon years can be attributed to a larger amount of heat release through the sea surface in the formation area. A larger horizontal divergence of the heat transport in the upper Ekman layer is considerably responsible for this increased heat loss.  相似文献   

20.
南大洋太平洋扇区中尺度涡旋的统计特性及其变化   总被引:1,自引:0,他引:1  
中尺度涡旋在南大洋海洋动力学中具有重要地位,其对气候变化的响应表现也引起了海洋学家与气候学家的广泛关注。本文利用涡动动能与涡旋自动探测技术两种方法对南大洋太平洋扇区的涡旋特性及其变化进行了分析。与前人结果相一致的是,高值的涡动动能主要集中在南极极锋海区,并且自西向东逐渐减弱。在过去的20年里,涡动动能在太平洋扇区的显著增强也集中在中西部海域,这里也是南极绕极流斜压性较强的海域。涡旋统计特性揭示了涡动动能的空间分布及其年际变化主要归因于涡旋振幅与旋转速度,而并非涡旋个数或者涡旋半径。这些结果进一步确认了对应于南半球环状模正位相的绕极西风异常改变了南大洋的涡旋特性,从而表现出涡旋活跃性增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号