首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flow and transport in channels with submerged vegetation   总被引:3,自引:0,他引:3  
This paper reviews recent work on flow and transport in channels with submerged vegetation, including discussions of turbulence structure, mean velocity profiles, and dispersion. For submerged canopies of sufficient density, the dominant characteristic of the flow is the generation of a shear-layer at the top of the canopy. The shear-layer generates coherent vortices by Kelvin-Helmholtz (KH) instability. These vortices control the vertical exchange of mass and momentum, influencing both the mean velocity profile, as well as the turbulent diffusivity. For flexible canopies, the passage of the KH vortices generates a progressive wave along the canopy interface, termed monami. The KH vortices formed at the top of the canopy penetrate a distance δ e into the canopy. This penetration scale segregates the canopy into an upper layer of rapid transport and a lower layer of slow transport. Flushing of the upper canopy is enhanced by the energetic shear-scale vortices. In the lower layer turbulence is limited to length-scales set by the stem geometry, and the resulting transport is significantly slower than that of the upper layer.  相似文献   

2.
Saltmarsh vegetation significantly influences tidal currents and sediment deposition by decelerating the water velocity in the canopy. In order to complement previous field results, detailed profiles of velocity and turbulence were measured in a laboratory flume. Natural Spartina anglica plants were installed in a 3 m length test section in a straight, recirculating flume. Different vegetation densities, water depths and surface velocities were investigated. The logarithmic velocity profile, which existed in front of the vegetation, was altered gradually to a skimming-flow profile, typical for submerged saltmarsh vegetation. The flow reduction in the denser part of the canopy also induced an upward flow (the current was partially deflected by the canopy). The skimming flow was accompanied by a zone of high turbulence co-located with the strongest velocity gradient. This gradient moved upward and the turbulence increased with distance from the edge of the vegetation. Below the skimming flow, the velocity and the turbulence were low. The structure of the flow in the canopy was relatively stable 2 m into the vegetation. The roughness length (z0) of the vegetation depends only on the vegetation characteristics, and is not sensitive to the current velocity or the water depth. Both the reduced turbulence in the dense canopy and the high turbulence at the top of the canopy should increase sediment deposition. On the other hand, the high turbulence zone just beyond the vegetation edge and the oblique upward flow may produce reduced sedimentation; a phenomenon that was observed near the vegetation edge in the field.  相似文献   

3.
乌梁素海沉水植物群落光谱特征及冠层水深影响分析   总被引:1,自引:0,他引:1  
沉水植物对于改善富营养化水体和重建水生生态系统起着至关重要的作用.应用遥感技术可以实时、大面积监测沉水植物的分布和生长情况,而冠层水深直接影响沉水植物在湖泊、河流中的准确遥感解译.本研究基于实测光谱数据,分析了乌梁素海沉水植物光谱特征,并研究了冠层水深对乌梁素海沉水植物反射光谱的影响,建立了乌梁素海沉水植物冠层水深反演模型.结果表明:1)挺水植物在短波红外1662 nm和2223 nm附近分别有一个反射峰,这是挺水植物区别于沉水植物和漂浮藻类的重要波段; 0深度沉水植物(WDC=0)与漂浮藻类的光谱反射率非常接近,但是在绿波段(550~690 nm)有明显差异,因此,可以利用绿波段和短波红外波段的光谱特征来区分挺水植物、沉水植物和漂浮藻类.2)沉水植物群落的光谱反射率随冠层水深的增加而降低,在700~900 nm波段范围内变化最为明显,且在700~735 nm波段附近,沉水植物群落光谱反射率与冠层水深呈显著负相关.3)在建立的单波段/波段比沉水植物冠层水深反演模型中,波段比反演模型要优于单波段反演模型,波段比反演模型的决定系数R2 0.70,均方根误差13.70 cm,平均相对误差28%,反演精度较好,适用于10~60 cm沉水植物冠层水深的反演.4)利用波段响应函数,将实测光谱反射率积分到Landsat-8 OLI波段上,建立OLI了冠层水深反演模型,其中,波段比幂函数模型反演效果最好,R2为0.49,均方根误差为18.17 cm,平均相对误差40.05%.可用于精确大气校正后乌梁素海沉水植物冠层水深的反演.  相似文献   

4.
为重建湖泊水生植被,改善太湖局部水域水质,在太湖康山湾示范区两个大型围隔进行了两种类型水生植物重建.通过2010年8月-2011年8月的现场采样及分析测定发现,人工控制条件下,浮叶植物荇菜和菱以及沉水植物马来眼子菜的重建效果较好,在其生长季节具有较高的覆盖度;研究表明,控制风浪及提高透明度是恢复水生植被的前提;植被重建区沉水植物氮、磷含量与浮叶植物差别不大,但浮叶植物重建区水体氮、磷浓度的控制比沉水植物重建区好;从经济及水环境效益角度来看,太湖敞水区的沿岸带由于风浪的控制比较困难,恢复水生植被时,应选择浮叶植物荇菜、菱、沉水植物马来眼子菜等抗风浪能力强的物种.本研究为太湖敞水区沿岸带的生态恢复方案制定提供了理论依据.  相似文献   

5.
Diagnosing vertical motion in the Equatorial Atlantic   总被引:2,自引:0,他引:2  
Estimating the vertical velocity (w) in the oceanic upper-layers is a key issue for understanding the cold tongue development in the Eastern Equatorial Atlantic. In this methodological paper, we develop an expanded and general formulation of the vertical velocity equation based on the primitive equation (PE) system, in order to gain new insight into the physical processes responsible for the Equatorial and Angola upwellings. This approach is more accurate for describing the real ocean than simpler considerations based on just the wind-driven patterns of surface layer divergence. The w-sources/forcings are derived from the PE w-equation and diagnosed from a realistic ocean simulation of the Equatorial Atlantic. Sources of w are numerous and express the high complexity of terms related to the turbulent momentum flux, to the circulation and to the mass fields, some of them depending explicitly on w and others not. The equatorial upwelling is found to be mainly induced by the (i) the zonal turbulent momentum flux, (ii) the curl of turbulent momentum flux and (iii) the imbalance between the circulation and the pressure fields. The Angola upwelling in the eastern part of the basin is controlled by strong curl of turbulent momentum flux. A strong cross-regulation is evidenced between the w-forcings independent of w and dependent on w, which suggests an equatorial balanced-dynamics. The w-forcing depending on w represents the negative feedback of the ocean to the w-forcing independent of w: in the equatorial band, this adjustment is led by non-linear processes and by vortex stretching outside.  相似文献   

6.
ABSTRACT

The presence of aquatic vegetation in riverine and lacustrine environments alters the mean and turbulent flow structure and thus impacts the fate and transport of sediment and contaminants. Turbulent flows through Vallisneria natans (V. natans) and Potamogeton malaianus (P. malaianus) were investigated in a laboratory flume. The impact of plant morphology on mean velocity profile and turbulence distribution was analysed and discrepancies in flow alteration caused by different types of macrophyte were highlighted. Results show that a dense canopy of submerged macrophyte leads to a velocity profile featuring a counter velocity gradient in the lower part of the canopy. Negative Reynolds stress and its local maximum were observed there. Discrepancies in flow structure caused by different morphologies of both tested plants were further identified. With smaller frontal area in the lower part of the canopy, P. malaianus causes a much bigger gradient and local maximum in the velocity profile, and thus a larger local stress maximum than V. natans. The mean velocity gradient around the top of canopy, the Reynolds stress and the turbulence kinetic energy at the canopy interface are smaller than for the flow through the V. natans canopy. Larger reduction of the mean velocity within the V. natans canopy makes the suspended sediment of fine particles more easily deposited than in the P. malaianus canopy.  相似文献   

7.
This paper analyzes variations of vertical velocity w simulated by the 1/10° Ocean General Circulation Model for the Earth Simulator (OFES). Strong w-variability is found in the deep oceans. When w is WKBJ-normalized, the standard deviation averaged over the Southern Ocean increases with depth and is larger than 8 × 10 − 3 cm/s throughout the water column below 1,500 m. Evidences are presented that link this w-variability to internal waves generated by quasi-steady currents over topography. The aliasing errors in lag-3-day correlations suggest a bottom generation of near-inertial waves. A scale analysis indicates that vertically propagating waves that can be resolved by the OFES model are waves with frequencies of the order of inertial frequency and wavelengths comparable to the order of the grid size. The vertical energy flux associated with these waves is substantial. When integrated globally, the vertical energy flux is upward in the upper 4 km and reaches maximum values of about 0.8 TW at about 1 to 2 km depth. Thus, the w-variability in the 1/10° OFES integration points not only to a strong bottom generation of near-inertial internal waves in the deep Southern Ocean but also to the possibility that the power provided by internal waves generated by non-tidal currents over topography can be comparable to the power provided by internal waves generated by tidal flows over topography.  相似文献   

8.
To increase the safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel has become a valuable tool. One recent successful forward looking approach is based on the excitation and registration of tunnel surface‐waves. For further development and for finding optimal acquisition geometries it is important to study the propagation characteristics of tunnel surface‐waves. 3D seismic finite difference modelling and analytic solutions of the wave equation in cylindrical coordinates reveal that at higher frequencies, i.e., if the tunnel‐diameter is significantly larger than the wavelength of surface‐waves, these surface‐waves can be regarded as Rayleigh‐waves confined to the tunnel wall and following helical paths along the tunnel axis. For lower frequencies, i.e., when the tunnel surface‐wavelength approaches the tunnel‐diameter, the propagation characteristics of these surface‐waves are similar to S‐waves. We define the surface‐wave wavelength‐to‐tunnel diameter ratio w to be a gauge for separating Rayleigh‐ from S‐wave excitation. For w > 1.2 tunnel surface‐waves behave like S‐waves, i.e. their velocity approaches the S‐wave velocity and the particle motion is linear and perpendicular to the ray direction. For w < 0.6 they behave like Rayleigh‐waves, i.e., their velocity approaches the Rayleigh‐wave velocity and they exhibit elliptical particle motion. For 0.6 < w < 1.2 a mixture of both types is observed. Field data from the Gotthard Base Tunnel (Switzerland) show both types of tunnel surface‐waves and S‐waves propagating along the tunnel.  相似文献   

9.
Measurements of near-bed shear stress were undertaken in the shallow subtidal zone at Durras Beach, NSW, Australia using a sideways-looking acoustic velocity meter installed within the wave boundary layer. The wave climate was swell-dominated and wave conditions comprised shoaling and breaking waves as well as surf bores. The sediment at the field site was medium-grained sand, and observations of bedform geometry were conducted using a pencilbeam-sonar system. Using frequency-filtering techniques, the measured stresses were partitioned into terms representing turbulent (Reynolds) stress, stresses due to gravity and infragravity-scale oscillatory motions, and wave-turbulence-mean current cross-terms. Gravity wave-orbital scale motions contributed the largest fraction of the stresses, comprising 24% on average, followed by long-wave advection of vertical orbital motion (16%). The presence of wave orbital-scale motions near or at the water/sediment interface was likely due to the porous nature of the seabed, facilitating interfacial flow. Shear stresses did not scale with bed roughness but exhibited a linear relationship with the relative wave height. This indicates that for the experimental conditions, surf zone processes overwhelmed bed roughness effects on shear stress and friction. Calculations of the wave friction factor, fw, showed that in a natural surf zone, this was a factor 3–4 larger than conventional predictions. © 2020 John Wiley & Sons, Ltd.  相似文献   

10.
Velocity measurements with vertical resolution 0.02 m were conducted in the lowest 0.5 m of the water column using acoustic Doppler current profiler (ADCP) at a test site in the western part of the East China Sea. The friction velocity u * and the turbulent kinetic energy dissipation rate ε wl(ζ) profiles were calculated using log-layer fits; ζ is the height above the bottom. During a semidiurnal tidal cycle, u * was found to vary in the range (1–7) × 10−3 m/s. The law-of-the-wall dissipation profiles ε wl(ζ) were consistent with the dissipation profiles ε mc(ζ) evaluated using independent microstructure measurements of small-scale shear, except in the presence of westward currents. It was hypothesized that an isolated bathymetric rise (25 m height at a 50-m seafloor) located to the east of the measurement site is responsible for the latter. Calculation of the depth integrated internal tide generating body force in the region showed that the flanks of the rise are hotspots of internal wave energy that may locally produce a significant turbulent zone while emitting tidal and shorter nonlinear internal waves. This distant topographic source of turbulence may enhance the microstructure-based dissipation levels ε mc(ζ) in the bottom boundary layer (BBL) beyond the dissipation ε wl(ζ) associated with purely locally generated turbulence by skin currents. Semi-empirical estimates for dissipation at a distance from the bathymetric rise agree well with the BBL values of ε mc measured 15 km upslope.  相似文献   

11.
There is increasing interest in tidal wetlands as mechanisms for sustainable and long-term coastal defence. The complexities of the interaction between the deposition of suspended particulate matter (SPM) and submerged vegetation, however, is to a large extent poorly understood. Consequently, accurate parameterisation of cohesive sediment settling fluxes in these environments is a crucial requirement for the development of high-resolution numerical models of wetland morphodynamics. A novel laboratory experiment is described in which the turbulent flow structure within a canopy of the halophytic macrophyte Spartina anglica is examined, and floc characteristics quantified using a unique floc camera configuration able to measure directly the full spectral floc size (D) and settling velocity (Ws). We provide the first quantitative observations of floc characteristics from shallow (h<0.5 m), vegetated flows and investigate the potential influence that variations in vegetative density may have on flocculation, and thus depositional fluxes, in comparison to unvegetated flows.  相似文献   

12.
13.
A non-hydrostatic model in cross-sectional form with an idealized sill is used to examine the influence of sill depth (h s) and aspect ratio upon internal motion. The model is forced with a barotropic tide and internal waves and mixing occurs at the sill. Calculations using a wide sill and quantifying the response using power spectra show that for a given tidal forcing namely Froude number F r as the sill depth (h s) increases the lee wave response and vertical mixing decrease. This is because of a reduction in across sill velocity U s due to increased depth. Calculations show that the sill Froude number F s based on sill depth and across sill velocity is one parameter that controls the response at the sill. At low F s (namely F s ≪ 1) in the wide sill case, there is little lee wave production, and the response is in terms of internal tides. At high F s, calculations with a narrow sill show that for a given F s value, the lee wave response and internal mixing increase with increasing aspect ratio. Calculations using a narrow sill with constant U s show that for small values of h s, a near surface mixed layer can occur on the downstream side of the sill. For large values of h s, a thick well-mixed bottom boundary layer occurs due to turbulence produced by the lee waves at the seabed. For intermediate values of h s, “internal mixing” dominates the solution and controls across thermocline mixing.  相似文献   

14.
Summary In a recent paperHunt andTanner [3]2) investigated the waves generated by a steadily moving two-dimensional pressure distribution, which was zero ahead of the disturbance and a constantp 0, tehind it, these regions being joined smoothly by a cubic function. Only those solutions with supercritical flow in both regions were considered, these were found to lead to an asymmetric solitary wave.This result is now extended to take account of the possibility of subcritical flow in either or both the regions, that is when there is a cnoidal wave train either behind and or ahead of the main solitary wave crest.The wave profiles are determined by the iterative method employed in the previous paper. This together with the wave drag associated with each system is computed for various values ofp 0/U 2, where is the fluid density andU a typical velocity.  相似文献   

15.
Is the total evaporation from a wetland surface (including: open water evaporation, plant transpiration and wet/dry soil evaporation) similar, lower, or higher than evaporation from an open water surface under the same climatic conditions? This question has been the subject of long debate; the literature does not show a consensus. In this paper we contribute to the discussion in two steps. First, we analyse the evaporation from a wetland with emergent vegetation (Ea) versus open water evaporation (Ew) by applying the Penman–Monteith equation to identical climate input data, but with different biophysical characteristics of each surface. Second, we assess the variability of measured Ea/Ew through a literature review of selected wetlands around the globe.We demonstrate that the ratio Ea/Ew is site-specific, and a function of the biophysical properties of the wetland surface, which can also undergo temporal variability depending on local hydro-climate conditions. Second, we demonstrate that the Penman–Monteith model provides a suitable basis to interpret Ea/Ew variations. This implies that the assumption of wetland evaporation to behave similar to open water bodies is not correct. This has significant implications for the total water consumption and water allocation to wetlands in river basin management.  相似文献   

16.
We determine the rupture velocity, rupture area, stress drop and duration of four strong deep-focus earthquakes in the Philippines by back-projecting the teleseismic P waves. Four deep-focus earthquakes occurred in a totally consumed Molucca microplate; their focal depths were greater than 550 km and their moment magnitudes were between M w 6.6 and M w 7.6. By studying this deep-focus cluster, we are able to estimate the rupture velocity, rupture area and stress drop which would assist in constraining the physical mechanism for earthquakes deeper than 500 km. Since the Molucca microplate is totally consumed, little evidence is left on the surface for us to do research. This deep-focus cluster provides us the opportunity to reveal the properties of this totally consumed microplate by using seismic method for the first time. Four earthquakes in this deep-focus cluster all have multiple rupture subevents. The M w 7.3 event ruptures in two subevents, the M w 7.6 and M w 7.4 events both have three subevents. The M w 6.6 event has single peak on the amplitude as a function of time; however, its energy releases at two spatially separated areas. Our results show that this deep-focus cluster has a slow rupture velocity which is about 0.27 to 0.43 of the shear wave velocity, long-scaled duration, concentrated energy release area, and high stress drop. These source properties are similar to those of other deep earthquakes occurring in warm slabs and indicate that the totally consumed Molucca microplate possibly is a warm plate.  相似文献   

17.
The paper addresses the problem of the resistance due to vegetation in an open channel flow, characterized by partially and fully submerged vegetation formed by colonies of bushes. The flow is characterized by significant spatial variations of velocity between vertical profiles that make the traditional approach based on time averaging of turbulent fluctuations inconvenient. A more useful procedure, based on time and spatial averaging (Double-Averaging Method) is applied for the flow field analysis and characterization. The vertical distribution of mean velocity and turbulent stresses at different spatial locations has been measured with a 3D Acoustic Doppler Velocimeter (ADV) for two different vegetation densities where fully submerged real bushes (salix pentandra) have been used. Velocity measurements were completed together with the measurements of drag exerted on the flow by bushes at different flow depths. The analysis of velocity measurements allows depicting the fundamental characteristics of both the mean flow field and turbulence. The experimental data show that the contribution of form-induced stresses to the momentum balance cannot be neglected. The mean velocity profiles and the spatially averaged turbulent intensity profiles allow inferring that the vegetation density is a driving parameter for the development of a mixing layer at the canopy top in the case of submerged vegetation. Moreover, the net upward turbulent momentum flux, evaluated with the methodology proposed by Lu and Willmarth (1973), appears to be damped for increased vegetation density; this finding can rationally explain the reduction of the suspended sediment transport capacity typically observed in free surface flows over a vegetated bed.  相似文献   

18.
近几年我国水电站过鱼设施设计已将过鱼对象游泳能力作为重要参考. 以我国8个水电站主要过鱼对象为研究目标,在野外实验设施条件下测试了15种鱼(四大家鱼组、裂腹鱼组和鳅组)的感应流速和爆发游泳速度. 采用多元线性回归法分别分析了各组鱼体长及水温对游泳能力的影响,并构建了优化的游泳能力预测模型. 结果表明,四大家鱼组、裂腹鱼组和鳅组的感应流速和爆发游速皆与体长呈负相关,感应流速与水温也皆呈负相关关系. 水温升高使四大家鱼组和裂腹鱼组的爆发游速能力增强,而水温对鳅组鱼的爆发游速影响不大,可能与鳅科鱼类特殊的腹部吸附行为有关. 利用绘制的鱼感应水流和爆发未疲劳的数量百分比的生存曲线进行上行及下行过鱼设施流速设计. 结果表明:当鱼感应水流的数量百分比为90 % 时,四大家鱼、裂腹鱼和鳅组幼鱼感应流速分别为3.00、1.67和3.22 BL/s,裂腹鱼和鳅组成鱼感应流速分别为1.27和2.09 BL/s;当鱼爆发未疲劳的数量百分比为90 % 时,四大家鱼、裂腹鱼和鳅组幼鱼爆发游泳速度分别为8.13、9.27和9.61 BL/s,裂腹鱼和鳅组成鱼爆发游泳速度分别为7.64和7.77 BL/s. 当以裂腹鱼或鳅成鱼为主要过鱼对象时,上行过鱼设施内流速范围建议为1.27~7.64和2.09~7.77 BL/s. 当以四大家鱼、裂腹鱼或鳅幼鱼为主要过鱼对象时,下行过鱼设施入口流速建议小于8.13、9.27和9.61 BL/s. 本研究结果可为我国水电站主要过鱼对象的过鱼设施设计提供参考依据.  相似文献   

19.
John Z. Shi  Li‐Feng Lu 《水文研究》2007,21(13):1780-1786
A model of the wave and current boundary‐layer structure was developed using the k–ε turbulent closure model. The finite‐difference method was used to solve the governing equations. Vertical logarithmic grids and equal time steps were adopted. The following modelled simulations were obtained: (1) vertical profiles of wave velocity amplitude, eddy viscosity coefficient and turbulent kinetic energy with waves only; (2) vertical profiles of wave velocity amplitude, mean current velocity, eddy viscosity coefficient and turbulent kinetic energy with waves having a following current. To test the validity and the rationality of the present model, vertical profiles of modelled wave velocity amplitude and mean velocity were compared with corresponding experimental results available in the literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号