首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Spercheios river basin—coastal marine area is a complex natural and interdependent ecosystem, highly affected by human activities and interventions. Such sensitive systems are even more vulnerable to alterations of the hydrological cycle components and it is likely to be rapidly and severely affected by climate change. In order to examine the climate change impacts on water resources of the study area, the interaction between the hydrology of the river basin and the hydrodynamic of the coastal marine area was examined using two models. Based on the results, although the irrigation needs decrease for the years 2050 and 2100 due to corresponding decrease in cultivated areas, temperature increase and precipitation decrease are both expected to influence the water resources of the Spercheios river basin, which will directly affect the Maliakos Gulf hydrodynamics. The necessity to adopt a holistic approach which will treat river basins and coastal marine areas as an integrated whole, with regard to environmental, socio-economic and political framework, is evident.  相似文献   

2.
Worldwide, evidences of water cycle alteration and fresh water resources depletion are frequently reported with various magnitudes. This alteration in the hydrologic cycle is often regarded as a signal of the actual climate change. However, the debate on climate change seems to have preferentially focused on global-scale patterns such that the rich knowledge gathered in the domain is virtually less integrated to decision making at the watershed level. Indeed, the watershed apprehension of climate change is probably an imperative for sustainable water resources planning. The scope of the present study aligns with that imperative as it aims at conciliating patterns of climate change with observations of hydrologic alterations at the watershed level. Specifically, the paper describes the interplay between land-cover changes and the terrestrial water cycle disturbances under climate change at the global level. Thereafter, it reports a watershed-level analysis of streamflow, land-cover, PET and precipitation alteration. Specially, the case study focused on the Brazos River basin, located in the USA and shared by the states of Texas and New Mexico. From both regional and watershed prospects, signals of hydrologic alteration during the time period 1955–2014 are highlighted and then implications of climate change are discussed. The results show an overall longitudinal gradient of precipitation changes and a latitudinal gradient of PET changes across the Brazos watershed. However, these gradients of changes seem to be driven by regional climate components which extend beyond the physical boundary of the Brazos watershed. Mann–Kendall’s analysis of discharge time series (annual average, minimum and maximum) at 10 different stations exhibits meaningful contrasts from upstream to downstream. An assessment of land-cover changes shows critical patterns of landscape change across the watershed. The analyses depicted signals of urbanization sprawl and land-cover degradation. Specially, the significant statistical relationships observed between the time series of maximum green vegetation fraction (MGVF) and streamflow also indicate that the origin of the observed hydrologic alteration is anthropogenic. Ultimately, the results are discussed within the scope of climate change.  相似文献   

3.
气候与土地利用变化对水文水资源的影响研究   总被引:27,自引:0,他引:27  
水资源短缺和水患灾害已成为全球关心的重大问题。气候与土地利用变化对流域水资源和旱涝的影响以及由此产生的社会经济后果已引起人类社会的广泛关注。深入综合地开展这方面的研究对国民经济建设和可持续发展规划决策有重要的意义。通过分析总结已进行的有关研究工作 ,对该领域的研究进展作了简要回顾 ,讨论了现有工作的不足和今后的研究内容和方法。  相似文献   

4.
汾河上游土地利用变化及其水文响应研究   总被引:4,自引:1,他引:3  
以河岔水文站以上的汾河流域为研究区,采用土地利用转移矩阵和SWAT模型模拟方法,就汾河上游土地利用变化对水文过程的影响进行研究. 流域从1995-2000年,以耕地向林地和草地转变为主;从2000-2010年,城市建设用地不断增加,主要是对耕地的占用. 结果显示,在相同气候背景、不同土地利用情景(1995、2000年2010年)下,流域1992-2000年多年平均产水量微弱增加(分别为85.69 mm、85.75 mm和85.82 mm),主要因为耕地持续减少,草地和城市建设用地不断增加. 但是各年产水量的大小关系不完全一致,枯水年和平水年与丰水年存在差异,而土壤水分呈现一致的减少状况. 子流域水平上,降水条件同样影响水文过程对土地利用变化的响应程度. 以上结果表明,汾河流域在退耕还林还草政策等影响下,土地利用发生变化并且直接影响流域的水文过程,但是流域水文过程对土地利用变化的响应还受到降水的影响.  相似文献   

5.
A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change impacts based on two scenarios (A1B and A2) from CGCM3 experiment. The annual precipitation change was estimated to be 0.1–9.3% increase for A1B scenario, and ?3.3 to 3.3% decrease/increase for the A2 scenario. Difference in the mean temperature between the present and the 2080s were predicted to be 0.6–2.2°C and 0.6–3.0°C under A1B and A2 scenarios, respectively. The water balance showed that 42% of precipitation is converted into evaporation, 48% into streamflow, and 10% into deep seepage loss. The impacts of climate change on water balance reflected dramatic fluctuations in hydrologic events leading to high evaporation losses, and decrease in streamflow, while groundwater flow appeared unaffected. A study on the changes in monthly water balance provided insights into the hydrologic changes within the forest watershed system which can be used in mitigating the effects of climate change.  相似文献   

6.
喀斯特流域是由独特的地貌、水系结构及水文动态过程组成的地域综合体。因此,影响喀斯特流域枯水资源的因素复杂多样,除气候等条件外,流域的植被类型、土地利用类型、岩组类型、地貌类型等也是影响喀斯特流域枯水资源的重要因素。本文选取了19个典型喀斯特流域为研究对象,以1991至1995年水文数据和遥感数据为基础,通过实地调查,制定基于GIS和RS为基础的喀斯特流域枯水资源影响因素信息提取方法,提取各个喀斯特流域单元中枯水水资源影响因素,通过关联度分析,得出不同的自然因素对枯水资源的贡献率,即岩组类型因素> 土地利用类型因素> 地貌类型因素> 植被类型因素。在各自然因素中,白云岩、半喀斯特低中山、草地与枯水资源的关系最为密切。   相似文献   

7.
Koiliaris River watershed is a Critical Zone Observatory that represents severely degraded soils due to intensive agricultural activities and biophysical factors. It has typical Mediterranean soils under the imminent threat of desertification which is expected to intensify due to projected climate change. High frequency hydro-chemical monitoring with targeted sampling for Rare Earth Elements (REE) analysis of different water bodies and geochemical characterization of soils were used for the identification of hydrologic and geochemical pathways. The high frequency monitoring of water chemical data highlighted the chemical alterations of water in Koiliaris River during flash flood events. Soil physical and chemical characterization surveys were used to identify erodibility patterns within the watershed and the influence of soils on surface and ground water chemistry. The methodology presented can be used to identify the impacts of degraded soils to surface and ground water quality as well as in the design of methods to minimize the impacts of land use practices.  相似文献   

8.
内蒙古西部额济纳盆地土地荒漠化发展态势及其成因   总被引:2,自引:0,他引:2  
为了查明额济纳盆地荒漠化的发展趋势及其成因,通过野外调查、遥感解译、样品测试及资料收集对比,从环境地质学的角度对额济纳盆地荒漠化的发展态势和成因进行了分析研究。结果表明:目前额济纳盆地土地荒漠化呈发展态势,环境在进一步恶化。认为荒漠化过程主要受区域地质环境条件变化的影响,全球气候变化、青藏高原隆升所引起的西北地区的干旱化趋势,是研究区荒漠化发生发展的决定性因素,盆地内的构造沉积背景决定着荒漠化的类型,水环境的变化直接影响着额济纳荒漠化的发生和发展速度。同时,当前人为因素对地质环境的影响很大,人类对水资源和土地资源的不合理利用,加速了荒漠化的发展速度。  相似文献   

9.
《China Geology》2021,4(3):498-508
The surface watershed and groundwater basin have fixed recharge scale, which are not only the basic unit for hydrologic cycle research but also control the water resources formation and evolution and its corresponding eco-geological environment pattern. To accurately identify the boundary of the surface watershed and groundwater basin is the basis for properly understanding hydrologic cycle and conducting the water balance analysis at watershed scale in complicated geologic structure area, especially when the boundary are inconsistent. In this study, the Dalinuoer Lake located in the middle of the Inner Mongolian Plateau which has complicated geologic structure was selected as the representative case. Based on the multidisciplinary comprehensive analysis of topography, tectonics, hydrogeology, groundwater dynamics and stable isotopes, the results suggest the following: (1) The surface watershed ridge and groundwater basin divide of Dalinuoer Lake are inconsistent. The surface watershed was divided into two separate groundwater systems almost having no groundwater exchange by the SW-NE Haoluku Anticlinorium Fault which has obvious water-blocking effect. The surface drainage area of Dalinuoer Lake is 6139 km2. The northern regional A is the Dalinuoer Lake groundwater system with an area of 4838 km2, and the southern regional B is the Xilamulun Riverhead groundwater system with an area of 1301 km2. (2) The groundwater in the southern of regional A and the spring-feeding river are the important recharge sources for the Dalinuoer Lake, and it has greater recharge effects than the northern Gonggeer River system. (3) It is speculated that the trend of Haoluku Anticlinorium Fault is the boundary of the westerlies and the East Asian summer Monsoon (EASM) climate systems, which further pinpoints the predecessor’s understanding of this boundary line. At present, the Dalinuoer Lake watershed is proved to have gone through a prominent warming-drying trend periods, which leads to the precipitation reduction, temperature rise, human activities water usage increasement. So the hydrological cycle and lake eco-environment at watershed scale will still bound to be change, which may pose the potential deterioration risk on the suitability of fish habitat. The results can provide basic support for better understanding water balance evolution and lake area shrinkage cause as well as the ecological protection and restoration implementation of Dalinuoer Lake watershed.© 2021 China Geology Editorial Office.  相似文献   

10.
Urbanisation and climate change can have adverse effects on the streamflow and water balance components in river basins. This study focuses on the understanding of different hydrologic responses to climate change between urban and rural basins. The comprehensive semi-distributed hydrologic model, SWAT (Soil and Water Assessment Tool), is used to evaluate how the streamflow and water balance components vary under future climate change on Bharalu (urban basin) and Basistha (rural basin) River basins near the Brahmaputra River in India based on precipitation, temperature and geospatial data. Based on data collected in 1990–2012, it is found that 98.78% of the water yield generated for the urban Bharalu River basin is by surface runoff, comparing to 75% of that for the rural Basistha basin. Comparison of various hydrologic processes (e.g. precipitation, discharge, water yield, surface runoff, actual evapotranspiration and potential evapotranspiration) based on predicted climate change scenarios is evaluated. The urban Bharalu basin shows a decrease in streamflow, water yield, surface runoff, actual evapotranspiration in contrast to the rural Basistha basin, for the 2050s and 2090s decades. The average annual discharge will increase a maximum 1.43 and 2.20 m3/s from the base period for representative concentration pathways (RCPs) such as 2.6 and 8.5 pathways in Basistha River and it will decrease a maximum 0.67 and 0.46 m3/s for Bharalu River, respectively. This paper also discusses the influence of sensitive parameters on hydrologic processes, future issues and challenges in the rural and urban basins.  相似文献   

11.
The present study focuses on an assessment of the impact of future water demand on the hydrological regime under land use/land cover (LULC) and climate change scenarios. The impact has been quantified in terms of streamflow and groundwater recharge in the Gandherswari River basin, West Bengal, India. dynamic conversion of land use and its effects (Dyna-CLUE) and statistical downscaling model (SDSM) are used for quantifying the future LULC and climate change scenarios, respectively. Physical-based semi-distributed model Soil and Water Assessment Tool (SWAT) is used for estimating future streamflow and spatiotemporally distributed groundwater recharge. Model calibration and validation have been performed using discharge data (1990–2016). The impacts of LULC and climate change on hydrological variables are evaluated with three scenarios (for the years 2030, 2050 and 2080). Temperature Vegetation Dyrness Index (TVDI) and evapotranspiration (ET) are considered for estimation of water-deficit conditions in the river basin. Exceedance probability and recurrence interval representation are considered for uncertainty analysis. The results show increased discharge in case of monsoon season and decreased discharge in case of the non-monsoon season for the years 2030 and 2050. However, a reverse trend is obtained for the year 2080. The overall increase in groundwater recharge is visible for all the years. This analysis provides valuable information for the irrigation water management framework.  相似文献   

12.
It is generally difficult to quantify exactly the freshwater going in or out of the coastal watersheds along the northern Adriatic Sea because, on one hand, excess water is drained and pumped into the sea to prevent flooding but, on the other hand, water is brought onto the land from far away for irrigation. Fragmentation of water authorities makes it difficult to collect all the necessary information. Climate change and increasing salinization of the coastal aquifers make it imperative, however, to better know the quantities of freshwater involved in these small basins. The water budget of a small coastal agricultural watershed along the Adriatic Sea in Italy (The Quinto Basin near Ravenna) is presented here considering different land uses. The evaporation of open water and the evapotranspiration of wetlands, pine forests, bare soil and irrigated agriculture are calculated based on the Penman–Monteith equation and the Cropwat program. The current water budget is based on average climate data from 1989 to 2008 and drainage and irrigation data. Predictions for future evapotranspiration, net irrigation and hydrologic deficit are calculated with climate data from IPCC (The Fourth Assessment Report (AR4) 200, Climate change 2007). From the study results, the soil type may determine whether or not a crop will need more or less irrigation in the future. Regulations on land use should therefore consider which crop type can be grown on a specific soil type. Water budget analysis in scenarios A1b and A2 both show an increase of water deficits in the summer and an increase of water surplus in the winter. This is explained by the fact that a larger percentage of the rain will fall in winter and not during the growth season. The open water evaporation will decrease under future climate scenarios as a result of increased relative humidity in winter and decreased wind velocity. This may have a positive effect on the water cycle. The current irrigation is very abundant, but has beneficial effects in contrasting soil salinization and saltwater intrusion into the coastal aquifer.  相似文献   

13.
Land and water resources development plans are generally adopted at watershed level. Delineation of watersheds and their prioritization within large river basins requires host of terrain parameters to be studied and analysed. Chopan watershed in Central India has been studied for sub-watershed delineation and prioritization based on drainage morphometry, land use/land cover and sediment yield index analysis using remote sensing and GIS techniques. The watershed was demarcated into five sub-watersheds on the basis of drainage flow directions, contour value, slope, elevation. Geocoded satellite data of 1989 and 2001 on 1:50 000 scale were visually interpreted to prepare land use/land cover and drainage maps which were later digitized using Arcview/ArcGIS. Linear and shape aspects of the sub-watersheds were computed and used for prioritization. The results show widespread variation in drainage characteristics, land cover changes and sediment yield rates across sub-watersheds. On the basis of morphometric, land use/land cover change and sediment yield index, sub-watersheds were grouped into low, medium and high priority. A correlation of results show that SW1 and SW5 are common sub-watersheds falling under high and low priority based on morphometric, land use change analysis and SYI. The priority list of sub-watersheds will be crucial for decision making and implementation of land and water resource conservation projects.  相似文献   

14.
Climate change is expected to have substantial impacts on flow regime in the Upper Yellow River (UYR) basin that is one of the most important biodiversity hotspots in the world. These impacts will most possibly exert negative effects on the habitat availability for riverine species. Thus, it is necessary to understand the alteration of river flow regime under climate scenarios. In this paper, we use the modified hydrological model HBV in conjunction with three general circulation models under three representative concentration pathways (RCP 2.6, 4.5, and 8.5) to address changes in flow regime under climate change for the UYR basin in the mid-term (2050s) and end-term (2080s) of the twenty-first century. Flow regime is quantified using the Indicators of hydrological alteration approach. Thereafter, the potential threats to riverine ecosystem in the UYR basin are identified based on the projected alterations of various flow characteristics and their ecological influences. The results showed that the magnitude of monthly flow would increase during the dry period. The date of the annual 1-day minimum streamflow will likely shift toward earlier time under different scenarios, and significant increases in magnitude of annual minimum flow of different durations were detected under both RCP 4.5 and 8.5 scenarios in the 2080s. In addition, assessments of the modification degree of the overall flow regime revealed that climate change would remarkably modify (medium level) the overall flow regime in the UYR basin, particularly by the end of the twenty-first century or under the high emission scenarios. Besides, destruction of habitat and reduced availability of food induced by substantially increased hydrological instability in the 2080s would make two endangered fishes more vulnerable in the UYR basin. These findings provide insights into potential adaptive countermeasures for water resource management and environmental system restoration in the Upper Yellow River.  相似文献   

15.
GIS for the assessment of the groundwater recharge potential zone   总被引:4,自引:0,他引:4  
Water resources in Taiwan are unevenly distributed in spatial and temporal domains. Effectively utilizing the water resources is an imperative task due to climate change. At present, groundwater contributes 34% of the total annual water supply and is an important fresh water resource. However, over-exploitation has decreased groundwater availability and has led to land subsidence. Assessing the potential zone of groundwater recharge is extremely important for the protection of water quality and the management of groundwater systems. The Chih-Pen Creek basin in eastern Taiwan is examined in this study to assess its groundwater resources potential. Remote sensing and the geographical information system (GIS) are used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge are derived using aerial photos, geology maps, a land use database, and field verification. The resultant map of the groundwater potential zone demonstrates that the highest recharge potential area is located towards the downstream regions in the basin because of the high infiltration rates caused by gravelly sand and agricultural land use in these regions. In contrast, the least effective recharge potential area is in upstream regions due to the low infiltration of limestone.  相似文献   

16.
Groundwater is an important component of the global freshwater supply and is affected by climate. There is a strong need to understand and evaluate the impacts of climate change over the long term, in order to better plan and manage precious groundwater resources. Turkey, located in Mediterranean basin, is threatened by climate change. The purpose of this study was, through a quantitative overview, to determine the impacts of climate change on the groundwater recharge rates in Küçük Menderes River Basin in western Turkey. According to the data of Ödemi? and Selçuk meteorological stations located in the basin, there is a significantly decreasing trend in precipitation combined with increasing trends in temperature and evaporation observed in 1964–2011. The calculations of groundwater recharge with hydrologic budget method for the observation period showed an approximately 15% decline in groundwater recharge in the basin. Thus, the combined impacts of climate change and excessive groundwater pumping, due to increasing water demand, have caused a significant decline in groundwater levels. Consequently, the proper management of the groundwater resources threatened by climate change requires effective governance to both mitigate the adverse impacts of climate change and facilitate the adaptation of sustainable integrated water management policies.  相似文献   

17.
Changes in the climatic system introduce uncertainties in the supply and management of water resources. The Intergovernmental Panel on Climate Change(IPCC) predicts an increase of 2 to 4 °C over the next 100 years. Temperature increases will impact the hydrologic cycle by directly increasing the evaporation of surface water sources. Consequently, changes in precipitation will indirectly impact the flux and storage of water in surface and subsurface reservoirs(i.e., lakes, soil moisture, groundwater, etc.). In addition, increases in temperature contribute to increases in the sea level, which may lead to sea water intrusions, water quality deterioration, potable water shortages, etc. Climate change has direct impacts on the surface water and the control of storage in rivers, lakes and reservoirs, which indirectly controls the groundwater recharge process. The main and direct impact of climate change on groundwater is changes in the volume and distribution of groundwater recharge. The impact of climate change on groundwater resources requires reliable forecasting of changes in the major climatic variables and accurate estimations of groundwater recharge. A number of Global Climate Models(GCMs) are available for understanding climate and projecting climate change.These GCMs can be downscaled to a basin scale, and when they are coupled with relevant hydrological models, the output of these coupled models can be used to quantify the groundwater recharge, which will facilitate the adoption of appropriate adaptation strategies under the impact of climate change.  相似文献   

18.
Esker aquifers are common groundwater bodies in Europe. Management of these aquifers should take account of the sustainability of groundwater-dependent ecosystems and land use in an integrated way. An unconfined esker aquifer in northern Finland was modelled with MODFLOW to determine how groundwater resources are impacted by the surrounding peatland drainage scheme and to simulate scenarios for possible drainage restoration. The impacts of groundwater abstraction and climate change were also simulated. A calibration-constrained Monte Carlo method was used to provide information on the uncertainties associated with model predictions. The results suggest that peatland drainage in the vicinity of eskers can have a significant role in lowering the water table, even though climate variability may mask these impacts. Drainage restoration by filling the ditches might have positive impacts on the aquifer water levels. Comparison of water-table changes caused by peatland drainage with the changes brought by water abstraction and climate variability helped to quantify impacts of different land-use scenarios and facilitated discussion with the local stakeholders. Based on this study, more attention should be devoted to peatland drainage schemes in integrated groundwater management of esker aquifers.  相似文献   

19.
黑河流域是我国西北地区第二大内陆河流域, 近60 a来国内外对其研究的力度和深度不断增强.从文献计量分析的角度, 透视黑河流域近几十年来的研究成果, 量化分析了论文数量、 核心研究机构、 核心作者群、 研究热点和重点、 主要发文期刊和资助项目来源, 以期为黑河流域后续研究提供参考.计量分析结果表明: 中英文发文量总体呈现增长趋势; 关注黑河流域研究的机构基本上为国内机构, 中国科学院寒区旱区环境与工程研究所在黑河研究领域处在遥遥领先的地位, 发文量占总量的1/3以上; 水资源、 遥感、 干旱区、 地下水、 气候变化、 土地利用、 生态环境等高频词反映出黑河流域研究中的热点和重点, 建立流域集成模型是近期研究的方向; 基金资助来源类型多样, 但最主要的渠道是国家自然科学基金.  相似文献   

20.
雅鲁藏布江流域气候和下垫面变化对径流的影响研究   总被引:3,自引:0,他引:3  
典型高原寒区雅鲁藏布江流域径流变化是反映该区域气候和下垫面变化的重要指标。在全球升温背景下,由于观测资料稀缺,导致缺乏针对整个流域的气候和下垫面变化对径流影响的研究。因此,本研究基于1986—2010年的气象数据和奴下水文站月尺度、动态土地利用数据等,利用改进的水文模型并结合不同的模拟策略厘清了流域1991—2010年不同时段间气候和下垫面变化对径流的影响。结果表明:在1991—2010年期间,不同时段间气候和下垫面变化对径流变化的贡献率差异较大,气候变化对径流变化的贡献率高于下垫面变化,且使径流量增加。从空间上看,气候变化对流域产流的贡献率在上游和中游都较大,在下游东北部的贡献率较小,而在该区域下垫面变化的贡献率较大。雪冰融水径流呈增加的趋势,对年径流的平均贡献率在21.1%~48.6%范围内,多年平均贡献率为33.6%;雪冰融水径流一般从4月开始增大,8月达到最大,10月达到消融末期。本研究的开展和发现既是雅鲁藏布江流域水文、水资源基础性研究的需要,具有重要的理论研究意义,同时也可为该流域的水资源保护、规划与管理提供科学理论和决策依据,具有重要的现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号