首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
刘勇强  薛传东 《云南地质》2006,25(4):394-395
煤矿开采对水资源的影响十分复杂,可使含水层结构和构造破坏,引起地下水补、径、排关系变化,加上煤矿疏排水的延续、水-岩作用以及所处化学环境的改变,。引起地下水质和量的变化。同时,地表水与地下水、矿坑排水发生直接的水力联系,破坏了正常的水环境,并引起泉水干涸、地表塌陷、井筒破坏、土地荒漠化等灾害。因此,煤矿区的水资源保护问题理应引起高度重视。  相似文献   

2.
青鹏煤矿位于重庆市沙坪坝区青木关镇及壁山县壁城镇,已开采50余年.随着开采水平的延深,矿井地下水流场发生了相应的变化,改变了地下水原有的补、径、排条件.2012年2月,青鹏煤矿-200m水平-22103运输巷施工过程中,碛头煤层(M2)顶板裂隙突水造成局部淹井事故.通过地面及井下水文地质调查以及采取地表水、泉水、矿井水样进行水质分析,指出矿井突水水源由须家河组裂隙水、采空区积水和嘉陵江组灰岩岩溶裂隙水的越流补给3部分组成.为矿井防治水提供了水文地质依据.  相似文献   

3.
针对华昱矿区面临的生产、生活用水匮乏,水资源复用率低,严重制约矿区可持续发展的问题,提出将矿井水资源纳入区域水资源进行统一配置利用是解决该问题的关键。通过对五家沟煤矿、元宝湾煤矿和南阳坡煤矿22组矿井水水样进行水质分析,确定了区内矿井水的水质类型,将总硬度、氟化物、硫酸盐、亚硝酸盐、总铁和矿化度作为评价指标,构建水质评价模糊综合矩阵对区内矿井水水质进行评价。根据区内煤矿自身涌水和生产用水的实际情况,提出了“多井联动调配+井上下协同净化+分质供水+梯级利用+全复用”的水处理新模式。结果表明,区内矿井水为含悬浮物和高矿化度矿井水,矿井水水质级别为Ⅴ级,水质极差水样有20组,该类水样占比为90.90%,经深度处理后产水水质均达到了《地下水质量标准》(GB/T14848—2017)中的Ⅰ类标准,水资源利用新模式实施后,满足了各矿井不同用水的供水需求,实现了煤矿间的多井联动调配和零排放。  相似文献   

4.
济南岩溶泉域是济南市重要饮用水源地,泉水又是济南市市民消闲和吸引游客的亮丽景观。但是多年来开采地下水已引起泉水出现间歇性断流。本文在对水资源规划分析基础上,设计了4个地下水资源开采方案:现状方案、增加补给量方案、减少开采量方案和增补减开联合方案。运用地下水流数值模型模拟了4个方案对泉群地下水水位及泉水流量动态变化的影响,最终确定了泉域地下水可持续开采方案,为泉水持续喷涌和地下水开发利用提供了科学依据。  相似文献   

5.
刘佩贵  束龙仓  王雪  陶月赞 《水文》2007,27(5):55-57
为保证矿区安全开采,采矿本身要求排出大量的矿井水,这不可避免地使附近的地下水水位下降,并可能影响到已有地下水水源地的供水安全,产生供、排水矛盾。本文以淮北市徐楼铁矿为例,用数值法分析评价矿坑排水对城市供水安全造成的影响,并对越流系数的不确定性进行了定量分析。分析结果表明:矿坑排水对徐楼水源地引起的水位附加降深最大值为0.0244m,仅为水源地设计开采水位降幅(6.0m)的0.41%,对附近地下水水源地的供水安全造成的影响较小,不会影响到水源地的正常运行。  相似文献   

6.
黄河流域中上游矿区煤?水矛盾突出,煤炭开采对地下水环境造成一定的破坏。基于此,以鄂尔多斯盆地北部侏罗纪煤田榆神府矿区为研究区,在野外调查、数据分析、室内测试的基础上,分析研究区矿井水的量质特征,揭示煤炭高强度开采对地下水环境的影响,并开展矿井水生态利用研究。结果表明:研究区矿井富水系数在0.23~2.28,平均为0.91,评估2020年区内矿井排水量高达4.70亿m3,受采掘活动影响,浅埋煤层开采区地下水位下降趋势明显;区内矿井水出现不同程度的污染组分超标现象,主要超标指标为化学需氧量(COD)、Na+、SO4 2?、溶解性总固体(TDS),未处理的矿井水外排将会污染区内地下水环境;研究区浅层地下水超限的水质指标主要为NO3-N,与矿井水超限水质指标差别较大,反映出浅层地下水水质受采矿活动影响较小;提出矿井水浅层回灌和矿井水生态灌溉2种模式开展研究区矿井水的生态利用,矿井水回灌对矿井水中的溶解性有机碳、色度具有较好的去除效果,回灌后出水满足Ⅲ类地下水限值;浅埋煤矿矿井水具有作为矿区生态修复灌溉用水的较好潜力,中深埋煤矿和深埋煤矿矿井水不适宜作为灌溉用水。研究结果为我国西部煤矿区水资源保护和生态修复提供重要依据。   相似文献   

7.
酸性矿井水在我国鲁西南、山西、内蒙、云南和贵州等煤矿区普遍存在,酸性矿井水其pH往往在2~5之间,高SO42?、HB、TDS、Fe、Mn。这些物质进入地下水、地表水或土壤后,会对其造成严重危害。文章选择山西阳泉市典型废弃煤矿区山底河流域为研究区,通过水文地质调查,水文地质钻探,水文地质剖面等方法阐述山底流域地层岩性,水文地质条件概况,得出受煤矿开采影响,与天然条件下相比山底河流域的地表水和地下水的补给、径流、排泄条件均发生了根本变化。补给通过破坏产生的导水裂隙带运移,以垂向运动为主;径流通过坑道,导水裂隙带运移,以横向运动为主;排泄以矿坑排水和泉水溢出方式为主。并简述山底河流域煤矿酸性矿井水试验站观测站分布情况与水化学特征。   相似文献   

8.
煤矿酸性矿井水除铁研究煤矿酸性矿井水(下称酸性水)主要来自于高流煤层的开采.煤层的开采,提供了氧化过程中所必须的氧,地下水渗人并与残留煤的接触,使煤层和顶底板中的硫铁矿、有机流在氧存在的条件下,经过化学的、生物的作用形成游离的硫酸,使矿井水呈酸性。其...  相似文献   

9.
张黎  霍永盛 《地下水》2010,32(4):165-168
通过对大众煤矿的水文地质条件,含、隔水层特征,地下水动态及含水层间的水力联系等因素的分析,认为现矿井在中、浅部开采,以二1煤底板岩溶水充水为主,今后随着采掘深度的不断延伸延深,下伏太原组灰岩水和奥灰水将可能成为矿井主要充水水源,这对有效地防治矿井透水,消除或降低淹井事故的发生,具有重要的现实意义。为矿井开采水害防治提供了参考资料和决策依据。  相似文献   

10.
王兆馨 《地质论评》1982,28(5):453-460
孔隙水是我国干旱、半干旱地区工农业供水和城市供水的重要水源。北方地区地下水资源中以第四系松散岩层中的地下水资源所占比重最大,其中又以浅层地下水居多,约达孔隙水资源的80%—90%。从大区域来看,用于大面积农田供水的地下水开采量所占的比重最大,可占总开采量的80%以上。这充分说明浅层地下水在农田供水中的重要作用。因而研究平原地区浅层地下水  相似文献   

11.
Based on discussion about the features of karst groundwater resources distribution of karst water system in Heilongdong Springs and causes of spring groups cutoff and according to current karst groundwater resources and exploitation distribution conditions of coal resources, this paper put forward the measures for protecting groundwater resources, i.e. intensifying plugging of underground coal mine gushing water points, grouting in advance to reinforce the small faults and weak lower confining bed of coal seam and leave sufficient waterproof coal pillars based on adjustment of the water sources for centralized water supply and water supplying and draining and countermeasures of improving use ratio of mine water and replacement of direct exploitation to realize resuming flow of spring groups and sustainable development of groundwater resources and exploitation of coal resources  相似文献   

12.
矿井涌水量预测对煤矿安全开采具有重要的指导依据。本文将锦东煤矿作为研究对象,利用地下水数值模拟软件MODFLOW建立数值模型,并对其进行识别验证,在合理可靠的模型基础上,对未开采和开采两种方案进行预测,对矿井涌水量组成进行分析。计算结果表明,锦东煤矿开采条件下,矿井涌水量为6 130 m3/d,主要由第四系潜水蒸发量、各泉集河溢流损失量和地下水储存量三部分组成。  相似文献   

13.
人类活动影响下娘子关岩溶水系统地球化学演化   总被引:17,自引:5,他引:12  
王焰新  高旭波 《中国岩溶》2009,28(2):103-102
娘子关泉是我国北方最大的岩溶泉之一,也是阳泉市工农业生产和人民生活的重要供水水源。地下水地球化学演化分析表明,在地下水由补给区向排泄区运移过程中,除固有的水岩相互作用外,由于受采矿活动和地表水入渗补给的影响,岩溶水由低离子含量的HCO3-SO4或HCO3型水逐渐成为SO4型、SO4-HCO3型和SO4-HCO3-Cl型水。在泉群集中排泄区,区域流动系统与局部流动系统的地下水发生混合作用,最终形成了水质相对良好的HCO3-SO4型或SO4-HCO3型岩溶泉水。在此过程中,地下水对方解石和白云石也由最初的溶解作用演变为沉淀再结晶。尽管石膏呈持续溶解现象,但在采煤活动严重影响区域,石膏的沉淀也可能出现。地球化学模拟表明,在岩溶含水层中,地下水首先以方解石(白云石)的溶解为主;随着石膏溶解数量的增加,方解石(白云石)的溶解开始受到抑制,进而发生沉淀,石膏的溶解成为控制地下水水化学的主导过程。当矿坑水混入时,地下水相对石膏过饱和,地下水对碳酸盐岩含水介质的溶蚀能力得到增强。随着水岩反应的演进,铁氢氧化物大量沉淀,通过共沉淀和吸附作用去除了地下水中的重金属类污染物。   相似文献   

14.
中国煤矿水害基本特征及其主要影响因素   总被引:9,自引:1,他引:8  
分析了中国煤矿水害发生发展的基本规律,研究了中国煤矿水害的基本特征及其产生原因。较为系统地论述了我国煤矿水害防治技术存在的主要问题、技术难关以及生产企业对矿井水害防治技术的基本需求。重点分析了深部煤炭资源开发过程中高承压水底板突出机理及其防治技术和废弃矿井老空水突出机理与防治技术。提出了中国煤矿水害防治技术和矿井水文地质安全保障体系建设的发展趋势。   相似文献   

15.
在分析区域地质、水文地质条件及水化学同位素的基础上,研究了山西娘子关泉域岩溶水的SO42-、硫同位素分布特征。研究表明:(1)泉域西北、西南地区岩溶水的SO42-主要来源于石膏的溶解;(2)泉域中部汇流区岩溶水的SO42-含量高而δ34S值低,其中的SO42-主要来源于煤系矿坑水,这是因为温河、桃河及南川河沿岸的岩溶水接受了被矿坑水污染的河水的渗漏补给以及部分地区受到钻孔串层污染;(3)娘子关泉群中城西泉水中的SO42-主要来源于煤系矿坑水,而五龙泉和集泉站水中的SO42-主要来源于石膏的溶解;(4)泉域东北部及东部河流沿岸以外的地区,岩溶水中的SO42-主要来源于大气降水、石膏溶解,并受到所处地层岩性的影响。   相似文献   

16.
Disruption of coal strata during mining accelerates pyrite oxidation by exposing greater surface areas of the reactive mineral to weathering. Acidic water in a coal mine in the Niangziguan spring watershed is related to this process and is characterized by low pH (min. 2.52) and high sulfate (max. 4100 mg/I), iron (max. 257 mg/I), and hardness (max. 2274.45 mg/I). However, it is possible that the kind of acidic coal mine water is subsequently neutralized because of the dissolution of calcite present in the coal strata. The hydrochemical characters of the alkaline coal mine water produced are high pH (max. 8.18), sulfate (max. 542 mg/I), and hardness (max. 1183.56 mg/I) and lower iron (min. 0.12 mg/I). Experiments were conducted to further understand the mechanism of the formation of both acidic and alkaline waters in the spring watershed coal mines by modeling natural conditions with simplification, and the results of the experiments have shown that they are basically successful. The high sulfate (max. 223.82 mg/I) and hardness (max. 435.53 mg/I) of the Niangziguan springs are related to the influence of the neutralized acid coal mine water as demonstrated by analysis of water temperature, total dissolved solid, Q-mode cluster analysis, and sulfur isotopes. The influence of the neutralized acid coal mine water on the pH and iron in the springs is not obvious because of the neutralization effect of calcite in aquifer, the buffer effect of groundwater, and the precipitation of iron. Some measures to prevent the formation of acid and alkaline coal mine water are presented.  相似文献   

17.
刘晓宇 《地下水》2019,(3):17-19,85
矿井采煤对地下水环境的影响主要为对具有供水意义的含水层水位及水量产生影响,确定采煤引起地下水水位降及漏失量是煤矿地下水环境影响评价的关键。以纳林河矿区某大型矿井为例,运用Visual MODFLOW建立模拟区地下水流数值模型,利用实测流场和长观孔的动态观测资料识别和验证数值模型,利用模型来预测采煤对第四系-白垩系含水层水位及水量的影响。模拟结果显示:前25年采煤引起地下水最大水位降为3.6 m,引起地下水的漏失量最大为141.87万m^3/a,占矿井涌水量的29.88%;利用矿化度法确定的越流量占矿井涌水量的6.39%~34.89%,模拟结果基本合理,可作为矿井采煤对地下水环境影响的研究依据。  相似文献   

18.
针对采煤对松散含水层地下水扰动程度评价方法适用性不足等问题,以神东补连塔井田为研究背景,通过分析采煤对地下水动力场的影响规律,得出矿井水(矿井排水与采空区储水)的形成是导致大气降水、地表水与地下水转化关系和转化量发生改变的主要原因;并从松散含水层生态水位变化、含水层损伤以及水量损失的角度,提出了采煤对地下水扰动程度的3个评价指标,结果显示,截至2012年补连塔井田松散含水层地下水生态水位扰动指标基本均大于1,采扰比达92%,说明采煤对生态水位影响较大;由于采动裂隙直接发育至松散含水层内部,导致井田范围内8%面积的含水层完全损伤而失去地下水调蓄能力;而在重复利用矿井水并开发地下水库储水功能的条件下,补连塔矿地下水量损失减少至8.5%,说明矿井水的充分利用对减少地下水资源损失意义重大。   相似文献   

19.
于翠翠 《中国岩溶》2017,36(4):533-540
应用地下水模拟软件GMS建立山东济南明水泉域的三维地下水流数值模拟模型,对泉域内岩溶地下水进行数值模拟和水平衡分析,评价了泉域岩溶地下水资源总量和在保持泉水常年喷涌条件下的岩溶地下水可采资源量。在此基础上,应用时间序列分析法对泉水水位动态进行了预测。结果表明:明水泉域多年(2003-2014年)地下水补给量为1.23×108 m3·a-1,排泄量为1.36×108 m3·a-1,均衡差为-1.30×108 m3·a-1;模型预测未来20年泉水最低水位为55.65 m,最高水位为68.72 m,平均泉流量为34.6×104 m3·d-1。   相似文献   

20.
煤矿开采不当会对水资源与水环境造成破坏,尤其在生态环境相对脆弱地区更是如此。针对目前矿井涌水量预测大多以单一工作面或煤矿为评价单元,对沟域内煤矿群同时长期开采的地下水环境影响重视不够。选择头道河则沟域为研究区,以地下水勘查、井田勘探资料为依据,构建了头道河则完整沟域的地下水三维非稳定流数值模型,根据地下水、地表水监测数据和煤矿群开采涌水量的长观资料进行模型的识别与验证,以9#煤矿为典型矿区,分析综采和条带充填2种不同开采方式下矿井涌水量及其对水环境的影响。研究结果表明:(1)综采状态下,矿井涌水量增加0.70×104 m3/d,导致地下水溢出量减少0.20×104 m3/d,引发矿区及区域地下水水位下降0.21~17.92 m;条带充填开采状态下,矿井涌水量增加0.11×104 m3/d,导致地下水溢出量减少0.04×104 m3/d,引发矿区及区域地下水水位下降0.01~0.44 m。(2)煤矿按综采方式开采,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号