首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Karst topography in Florida is developed on the Tertiary limestones of the Floridan aquifer Post-depositional diagenesis and solution have made these limestones highly permeable, T=ca. 50,000 m2/d. Zones of megaporosity have formed at unconformities, and dissolution has enlarged joints and fractures Erosion of the overlying clastic Miocene Hawthorn group strata on one flank of a structural arch has exposed the limestone The elevated edge of the Hawthorn cover forms the Cody scarp Ubiquitous solution pipes have previously formed at joint intersections and are now filled Downwashing of the fill deeper into solution cavities in the limestone and subsidence of the overlying unconsolidated sediments causes surface collapse a subsidence doline or sinkhole This process may penetrate up to 60 m of the semi-consolidated Hawthorn cover, as occurred when the Winter Park sinkhole developed Dense clusters of solution pipes may have formed cenotes which are now found on the exposed limestone terrain Groundwater moves laterally as diffuse flow except where input or outflow is concentrated. At sinking streams, vertical shafts, and springs, karst caves have formed, but only the major sinking streams form through-flowing conduit systems Shaft recharge dissipates diffusely. Spring discharge is concentrated from diffuse flow In both cases, conduits taper and merge into a zone of megaporosity  相似文献   

2.
The proposed site for a new solid waste disposal facility was identified by a municipal government in a north Florida area characterized by Miocene Hawthorn Group sedimentary sequences and active karst development. An evaluation of the sinkhole potential and subsurface stability was conducted with a total of 300 electrical resistivity Wenner array sounding traverses with electrode spacings extending to 30 m. Data were interpreted to identify vertical sequences of the Hawthorn Group confining layer, and the underlying Ocala Limestone. Electrical evidence identified an intermediate, discontinuous limestone layer present in limited areas, but absent in much of the area investigated. No evidence was detected to identify breeches within the confining layer over the Floridan Aquifer within the Ocala Limestone. The data were combined with lithologic logs from deep boreholes to prepare a series of continuous and interconnecting fence diagrams to portray the geologic configuration throughout the proposed site. The results demonstrate the value of electrical resistivity measurements to augment borehole data in economical investigations of sinkhole potential in karstic terrains.  相似文献   

3.
Abrupt ground subsidence occurred along FM 442, approximately 3 miles east of Boling, in Wharton County, Texas, in August 1983 The subsidence created a depression of approximately 250 feet in diameter with a maximum depth of about 25 feet. Roadway collapse, pavement breakage, and inundation of the sinkhole by subsurface waters forced the closure of FM 442 to thru-traffic The vicinity of the sinkhole is underlain, by alluvial deposits of the Colorado River drainage basin and unconsolidated Miocene, Pliocene, and Pleistocene sediments to a depth of about 500 feet. The sediments consist largely of sand, silts, clays, and gravels. The Boling Salt Dome and its associated caprock occur directly beneath the section of unconsolidated sediments Major and minor axes of the dome are about 5 miles and 35 miles, respectively, and the sinkhole occurred approximately 1 mile east-northeast of the dome's center An investigation was conducted in the immediate area of the sinkhole to determine the cause of the subsidence and also to determine the feasibility of dewatering the sinkhole Four monitoring wells were installed around the perimeter to evaluate the potential recharge from shallow sand units Two 300-foot holes were drilled and geophysically logged to determine the stratigraphy adjacent to the sinkhole, and two slope indicators were installed in order to evaluate further earth movements A total of six million gallons of saline water were removed and disposed of from the sinkhole Based on information provided by the geologic and dewatering investigation, the Texas State Department of Highways and Public Transportation elected to fill the existing sinkhole and reconstruct the roadway A total of 3,500 cubic yards of rock borrow and 26,000 cubic yards of soil borrow were placed in the depression Construction began in February 1984, and the roadway was completed in May A monitoring program to evaluate subsequent earth movements will continue into 1985  相似文献   

4.
A small but stratigraphically significant exposure of Quaternary sandy sediments (Widdington Sands) was observed and recorded in the early 1970s in northwest Essex. These data are here re-examined and re-evaluated, yielding new insights into early proto-Thames aggradation following the marine recession of the Norwich Crag Formation (MIS 74–71, about 2 Ma). As the proto-Thames trajectory shifted south eastwards, a period of landscape stability ensued in the early Middle Pleistocene (MIS 19–13) during which the Valley Farm Soil was formed. This and the succeeding Barham Soil can be recognised in the stratigraphy, the second palaeosol heralding the arrival of glaciation in the Anglian Stage (MIS 12, 480–420 ka). These pedogenic signatures are enclosed within palaeokarstic features in the form of infilled sinkhole pipes. A large doline has functioned as a sediment trap preserving pre-truncation structures including reverse ring faults. These confirm basal support removal leading to upward migration of a dissolution cavity and roof collapse within the sinkhole pipe. The process and timing of subsidence can thus be defined more clearly than for similar features found in comparable Kesgrave aggradations of the Middle Thames. The likely glacitectonic origin of the planar sub-till surface is examined and discussed. Dating of Early Pleistocene fluvial activity is constrained by estimating the height of a former terrace surface whose elevation points to a correlation with the higher Stoke Row Member (MIS 64, 1.8 Ma), suggesting the oldest known proto-Thames activity within southern East Anglia.  相似文献   

5.
More than 4,000 sinkholes have formed since the 1980s within a 60-km-long and 1-km-wide strip along the western coast of the Dead Sea (DS) in Israel. Their formation rate accelerated in recent years to >400 sinkholes per year. They cluster mostly in specific sites up to 1,000 m long and 200 m wide, which align parallel to the general direction of the fault systems associated with the DS Rift. The abrupt appearance of the sinkholes reflects changes to the groundwater regime around the shrinking DS. The eastward retreat of the shoreline and the lake-level drop (1 m/year in recent years) cause an eastward and downward migration of the fresh/saline groundwater interface. Consequently, a subsurface salt layer, which was previously enveloped by saline groundwater, is gradually being invaded and submerged by relatively fresh groundwater, and cavities form due to the rapid dissolution of the salt. Collapse of the overlying sediments into these cavities results in sinkholes at the surface. An association between sinkhole sites and land subsidence is revealed by interferometric synthetic aperture radar (InSAR) measurements. On a broad scale (hundreds of meters), subsidence occurs due to compaction of fine-grained sediments as groundwater levels decline along the retreating DS shoreline. At smaller scales (tens of meters), subsidence appears above subsurface cavities in association with the sinkholes, serving in many cases as sinkhole precursors, a few weeks to more than a year before their actual appearance at the surface. This paper overviews the processes of sinkhole formation and their relation to land subsidence.  相似文献   

6.
The Mount Lyell copper deposits are located in the middle Cambrian Mount Read volcanic belt of western Tasmania and consist of more than 24 separate copper–gold–silver orebodies. The dominant copper mineralisation style is disseminated pyrite–chalcopyrite subvertical pipes with subordinate chalcopyrite–bornite ± other copper phases, massive pyrite and base metal sulfides. A zonation in mineralisation style within the pipes is defined from chalcopyrite–magnetite at depth to chalcopyrite–pyrite at intermediate levels, to chalcopyrite–bornite at the shallowest level. Alteration is developed broadly symmetrically around the ore zones and zoned from quartz–chlorite–phengite ± biotite at depth to quartz–muscovite at intermediate levels, and a quartz–muscovite–pyrophyllite–zunyite assemblage at the shallowest levels. This is interpreted to be a result of a fluid that evolved from hot, reduced and neutral conditions at depth to cool, oxidised and acidic conditions at the shallowest level. The chalcopyrite–bornite deposits occur at the top of the hydrothermal system and are associated with intensely silicified rock and muscovite/pyrophyllite alteration. The close relationship of these deposits with the top of the pipes suggests they are part of a single mineralising event. Where the chalcopyrite–bornite deposits are juxtaposed with the Owen Group, rather than a simple chalcopyrite–bornite mineralogy, there are numerous other copper phases, which represent higher oxidation states and collectively suggest variable and fluctuating fluid conditions during deposition. It is proposed that these deposits are formed by an interaction of the reduced hydrothermal fluid with an oxidised fluid generated at very shallow levels within and during deposition of the Owen Group. Mineralisation within the middle Owen Group sandstones and clasts of altered rock within the middle and upper Owen Group sediments marks the end of the hydrothermal system. Around the entire edge of the Mt Lyell field, there is a variation in the white mica composition from proximal muscovite to distal phengite that represents the neutralisation of the hydrothermal fluid by fluid–wall rock interaction.  相似文献   

7.
The creek Jerstedter Bach is part of the Ringelheimer Mulde along the northern rim of the Harz Mountains in Northern Germany, a trough structure comprising steeply dipping limestones. The limestones are well karstified and drain parts of the region efficiently via sub-surface flow. As the entire region is intensively used by agriculture, contamination of the fast-flowing karst aquifer is a potential problem. During 2006, a small sinkhole (Windmühlenweg) developed alongside the Jerstedter Bach close to the city of Goslar. The sinkhole enlarged rapidly, with a small cave within the gravel cover diverting part of the creek to the subsurface karst catchment. Geophysical methods (gravimetry, geoelectrics) were used around the sinkhole to determine its extent and possible evolution. A negative Bouguer anomaly was found over the sinkhole, indicating more voids further downstream. The geoelectric survey helped to identify the old meandering course of the small river, which was straightened during the cultural land reform in the twentieth century.  相似文献   

8.
Amongst all the perceptible igneous manifestations (volcanic tuffs and agglomerates, minor rhyolitic flows and andesites, dolerite dykes and sills near the basin margins, etc.) in the Vindhyan basin, the two Mesoproterozoic diamondiferous ultramafic pipes intruding the Kaimur Group of sediments at Majhgawan and Hinota in the Panna area are not only the most conspicuous but also well-known and have relatively deeper mantle origin. Hence, these pipes constitute the only yet available ‘direct’ mantle samples from this region and their petrology, geochemistry and isotope systematics are of profound significance in understanding the nature of the sub-continental lithospheric mantle beneath the Vindhyan basin. Their emplacement age (∼ 1100 Ma) also constitutes the only reliable minimum age constrain on the Lower Vindhyan Group of rocks. The Majhgawan and Hinota pipes share the petrological, geochemical and isotope characteristics of kimberlite, orangeite (Group II kimberlite) and lamproite and hence are recognised as belonging to a ‘transitional kimberlite-orangeite-lamproite’ rock type. The namemajhagwanite has been proposed by this author to distinguish them from other primary diamond source rocks. The parent magma of the Majhgawan and Hinota pipes is envisaged to have been derived by very small (<1%) degrees of partial melting of a phlogopite-garnet lherzolite source (rich in titanium and barium) that has been previously subjected to an episode of initial depletion (extensive melting during continent formation) and subsequent metasomatism (enrichment). There is absence of any subduction-related characteristics, such as large negative anomalies at Ta and Nb, and therefore, the source enrichment (metasomatism) of both these pipes is attributed to the volatile- and K-rich, extremely low-viscosity melts that leak continuously to semi-continuously from the asthenosphere and accumulate in the overlying lithosphere. Lithospheric/crustal extension, rather than decompression melting induced by a mantle plume, is favoured as the cause of melting of the source regions of Majhgawan and Hinota pipes. This paper is a review of the critical evaluation of the published work on these pipes based on contemporary knowledge derived from similar occurrences elsewhere.  相似文献   

9.
Several unfavorable environmental and engineering geologic conditions exist in Fargo, North Dakota. Dominantly, the behavior of smectitic clays within the proglacial Lake Agassiz sediments of the Sherack and Brenna Formations creates subsoil instability beneath engineered structures in the Fargo area and slope instability within cutbank meanders of the Red River of the North. Unfavorable engineering geologic conditions encountered include: the elastic deformation of clayey glaciolacustrine soils, shrink-swell properties, inadequate bearing capacities, and mass movements. These conditions are responsible for structural failures including the Fargo Grain Elevator in 1955 and the Northern Pacific railroad grade. Bank failures along the Red River are common due to the inherent instability of Brenna Formation smectitic clays which are subject to plastic deformation in the subsurface, with resultant block failure of overlying Sherack Formation. Recent alluvial sediments due to typical fluvial action and the continued seasonal saturation of cutbank meanders within the floodplain also add to soil instability.  相似文献   

10.
为了查明金佛山各洞穴之间的地下水力联系,探讨岩溶地下水系统结构特征,于2016年12月进行了多元示踪试验。将罗丹明B作为示踪剂,从药池坝附近消水洞(S01)投入,验证消水洞与北坡水源(水房泉)(S02)之间存在水力联系。结果显示,示踪剂历时曲线为多峰型,推测地下过水通道可能由单管道型演变为多管道型通道;将荧光素钠投入金佛洞地下水流动处(S05)和将罗丹明B、荧光增白剂投入羊口洞地下水流动处(S03),利用高分辨率荧光光度计,于燕子洞(S04)在线监测。结果显示,金佛洞、羊口洞分别与燕子洞之间存在水力联系,且示踪剂历时曲线均为跳跃型,推测地下过水通道可能为发育有一定规模溶潭的多管道型。   相似文献   

11.
As no evidence for thrusting has yet been reported from the Indo-Gangetic plain so, the Himalayan Frontal Thrust (HFT) has been considered to be the southern most limit of the Siwaliks to the Indo-Gangetic plain. The present study highlights the thrusting activities between the Gandak and Kosi megafan area in the Middle Gangetic plain. As these thrust sheets are concealed beneath thick sediment cover, direct surficial studies of the discontinuity planes are not possible. Further, the topographic breaks formed by the backward erosion of the uplifted thrust faces resemble normal faults with hanging walls to south. Due to gradual decreasing upliftment and/or erosion from north to south, the area shows a step like topographic appearance. Ground penetrating radar (GPR) studies reveal the concealed thrust planes beneath the sediments and the topographic breaks looking like normal faults are interpreted to be the relief created by backward erosion of the thrust sheets along with the overlying sediments. Out of four GPR profiles taken using 100 MHz antennae, three are across the topographic breaks along which most of the terminal fans are formed and one across the basement fault to study its subsurface nature. Initially GPR failed to strike any subsurface discontinuities at the topographic breaks. However, at certain distance to the south of the topographic breaks, GPR was able to strike the northerly dipping subsurface discontinuity planes. By combining the seismological signatures (distribution of earthquake epicenters) with geomorphology, these discontinuities are identified as thrusts. The GPR profiles show a gradual decrease of dip of the thrust planes from north to south across the area. Hence, by the geomorphology, seismological behavior, topography, orientation and continuity, other topographic breaks can be compared with the proven thrusts. GPR study on the basement fault revealed that the NE–SW trending basement faults are not active in the area. The compression between the South Muzaffarpur fault and the peninsular shield led to the generation of the N–S trending extensional Hathauri–Simariaghat fault with downthrown block towards east. Due to depth penetration limit, the GPR study was confined within 15 m depth. The presence of the discontinuity planes up to the base of the GPR profiles indicate their continuity at least up to the base of Holocene sediments. Although this study brought out the presence of concealed thrusts to the south of the HFT, more detailed work is needed further to study their depth extension, relation to the basement and their implication in Himalayan tectonics in a broad manner. At present, we consider these thrusts to be the splays of the HFT. For confirmation, we propose to carryout detail seismic surveys in future research work.  相似文献   

12.
Diamond-bearing kimberlites in the Fort à la Corne region, east–central Saskatchewan, consist primarily of extra-crater pyroclastic deposits which are interstratified with Lower Cretaceous (Albian and Cenomanian) marine, marginal marine and continental sediments. Approximately 70 individual kimberlite occurrences have been documented. The Star Kimberlite, occurring at the southeastern end of the main Fort à la Corne trend, has been identified as being of economic interest, and is characterized by an excellent drill core database. Integration of multi-disciplinary data-sets has helped to refine and resolve models for emplacement of the Star Kimberlite. Detailed core logging has provided the foundation for sedimentological and volcanological studies and for construction of a regionally consistent stratigraphic and architectural framework for the kimberlite complex. Micropaleontologic and biostratigraphic analysis of selected sedimentary rocks, and U–Pb perovskite geochronology on kimberlite samples have been integrated to define periods of kimberlite emplacement. Radiometric age determination and micropaleontologic evidence support the hypothesis that multiple kimberlite eruptive phases occurred at Star. The oldest kimberlite in the Star body erupted during deposition of the predominantly continental strata of the lower Mannville Group (Cantuar Formation). Kimberlites within the Cantuar Formation include terrestrial airfall deposits as well as fluvially transported kimberlitic sandstone and conglomerate. Successive eruptive events occurred contemporaneous with deposition of the marginal marine upper Mannville Group (Pense Formation). Kimberlites within the Pense Formation consist primarily of terrestrial airfall deposits. Fine- to medium-grained cross-stratified kimberlitic (olivine-dominated) sandstone in this interval reflects reworking of airfall deposits during a regional marine transgression. The location of the source feeder vents of the Cantuar and Pense kimberlite deposits has not been identified. The youngest and volumetrically most significant eruptive events associated with the Star Kimberlite occur within the predominantly marine Lower Colorado Group (Joli Fou and Viking Formations). Kimberlite beds, which occur at several horizons within these units, consist of subaerial and marine fall deposits, the latter commonly exhibiting evidence of wave-reworking. Black shale-encased resedimented kimberlite beds, likely deposited as subaqueous debris flows and turbidites, are particularly common in the Lower Colorado Group. During its multi-eruptive history, the Star Kimberlite body is interpreted to have evolved from a feeder vent and overlying positive-relief tephra ring, into a tephra cone. Initial early Joli Fou volcanism resulted in formation of a feeder vent (200 m diameter) and tephra ring. Subsequent eruptions, dominated by subaerial deposits, partly infilled the crater and constructed a tephra cone. A late Joli Fou eruption formed a small (70 m diameter) feeder pipe slightly offset to the NW of the early Joli Fou feeder vent. Deposits from this event further infilled the crater, and were deposited on top of early Joli Fou kimberlite (proximal to the vent) and sediments of the Joli Fou Formation (distal to the vent). The shape of the tephra cone was modified during multiple marine transgression and regression cycles coeval with deposition of the Lower Colorado Group, resulting in wave-reworked kimberlite sand along the fringes of the cone and kimberlitic event deposits (tempestites, turbidites, debris flows) in more distal settings.  相似文献   

13.
Geophysical methods—seismic refraction (SRFR), electrical resistivity tomography (ERT), and microgravity—were applied to the Dead Sea (DS) sinkhole problem in the Ein Gedi area at the earlier stage of the sinkhole development (1998–2002). They allowed determining the sinkhole formation mechanism and localizing the sinkhole hazardous zones. The SRFR method permitted to delineate the underground edge of a salt layer at the depth of 50 m. The salt edge was shaped like the sinkhole line on the surface. It was concluded that the sinkhole development is linked to the salt edge. Geoelectrical quasi-3D mapping based on the ERT technique detected large resistivity anomalies with 250–300 m2 diameter and 25–35 m deep. The Ein Gedi area has been also mapped by the use of Microgravity method. The residual Bouguer gravity anomaly map shows negative anomalies arranged along the edge of the salt layer. Those gravity anomalies overall are very similar in plan to the resistivity distribution in this area. The results of forward modeling indicate that both high resistivity and residual gravity anomalies are associated with a subsurface decompaction of the soil mass and deep cavity at the sinkhole site. Following monitoring of the sinkhole development carried out by the Geological Survey of Israel confirmed our suggestions. The drilling of numerous boreholes verified the location of the salt edge. Geographical Information System (GIS) database testifies that during 2003–2009 new sinkholes are continuing to develop along the salt edge within a narrow 50–100 m wide strip oriented approximately in north–south direction (slightly parallel to the shoreline). No promotion in west–east direction (perpendicularly to the DS shoreline) was observed in Israel. Collapse of sinkholes and their clustering have been occurred within the area of high resistivity anomaly and negative residual gravity anomaly. Similar studies carried out at the Ghor Al-Haditha area (Jordan) have shown that sinkholes there are also arranged along the winding line conforming to the salt edge. In this area sinkholes are slowly moved to the Dead Sea direction. Results of geophysical studies in numerous DS sites indicate similar sinkhole development. It allowed generating of the sinkhole formation model based on ancient (10,000–11,000-year old) salt belt girding the Dead Sea along its shores  相似文献   

14.
The central Ebro Basin comprises thick evaporite materials whose high solubility produces typically karstic landforms. The sinkhole morphology developed in the overlying alluvium has been studied using gravimetry and ground-penetrating radar (GPR) on stream terraces, as well as analyzing the evolution of sinkhole morphologies observed in aerial photographs taken in 1928, 1957, and 1985. The sinkhole morphologies give some idea of possible subsurface processes as well as an indication of the final mechanisms involve in sinkhole development. On stream terraces and cover pediments the most commonly encountered dolines are bowl-shaped in their morphology with both diffuse and scarped edges. In contrast, dolines developed in the gypsiferous silt infilled valleys have a funnel and well-shaped morphology. The diffuse-edged bowl-shaped dolines are developed through the progressive subsidence of the alluvial cover, due to washing down of alluvial particles through small voids and cracks into deeper subsurface caves, resulting in a decrease alluvial density. Future compaction of the alluvial cover will produce surface subsidences. This type of dolines are associated with negative gravity anomalies. In contrast, the scarped-edge dolines are formed by the sudden collapse of a cavity roof. The cavities and cracks formed in the gypsum karst may migrate to the surface through the alluvial deposits by piping, and they may subsequently collapse. In this instance, the cavities can be detected by both gravity and GPR anomalies where the voids are not deeper than 4–5 m from the surface. These processes forming sinkholes can be enhanced by man-induced changes in the groundwater hydrologic regime by both inflows, due to irrigation, ditch losses, or pipe leakages, and by outflows from pumping activities.  相似文献   

15.
The South-East Karst Province of South Australia is an extensive area of low relief with dolines, cenotes, uvalas, and a variety of cave types developed in the soft, porous, flat-lying Tertiary Gambier Limestone and also as syngenetic karst in the overlying calcarenite dunes of the Pleistocene Bridgewater Formation. The most spectacular surface karst features are the large collapse dolines, especially those that extend below the water table to form cenotes. Shallow swampy hollows occur in superficial Quaternary sediments. These are an enigmatic feature of the Bool Region, where all gradations appear to occur between definite karst dolines and nonkarstic hollows. Some depressions may be polygenetic—involving a combination of: (1) primary depositional hollows on coastal flats or in dune fields, (2) deflation, and (3) karst solution and subsidence. There are extensive underwater cave systems in the southern part of the province, and the bulk of the cave development there may well lie below the present water table, although these systems would have been at least partly drained during the lower sea levels of the last glacial period. Systematic variations within the province reflect differences in the parent rock types, the extent and nature of the cover and, most importantly, the hydrology—in particular the depth to the water table and its gradient.  相似文献   

16.
The Okanagan Centre section is the stratotype for marine oxygen isotope stage (MIS) 4 sediments (Okanagan Centre Drift) in the southern interior of British Columbia, Canada. Previous work suggested that these sediments record two glacial and two interglacial cycles. This study reports on detailed sedimentological and geochronological investigations of lithostratigraphic units comprising the Okanagan Centre sequence, revealing successive deposition of subaqueous and subaerial outwash, a subglacial till and glaciolacustrine sediments during MIS 4. A limiting optical age of 113 ± 8 ka defines the base of this sequence. Sedimentological, paleopedological, optical dating and tephrochronological data from sediments near the middle of the sequence reveal soil development (MIS 3) in eolian sediments deposited on a river terrace overlying a deglaciated surface. Within these sediments, identification of Mt. St. Helens set C tephra suggest sedimentation between 50 and 35k 14C a BP. Optical dating corroborates the tephrochronology and suggests that this surface formed after ~52 ± 7 ka. The record of MIS 2 glaciation is restricted to deglaciation, and overlies MIS 3 sediments above an unconformity possibly related to regional subglacial meltwater erosion. Eolian sediments containing Mt Mazama set O tephra (~7.62k cal a BP) cap the sequence.  相似文献   

17.
Brittle and ductile deformation of alternating layers of Devonian sandstone and mudstone at Cape Liptrap, Victoria, Australia, resulted in upright folds with associated fold accommodation faults and multiple fracture sets. Structures were mapped at the Fold Stack locality at Cape Liptrap using high-resolution aerial photographs acquired by a digital camera mounted on an unmanned aerial vehicle (UAV). Subsequent photogrammetric modelling resulted in georeferenced spatial datasets (point cloud, digital elevation model and orthophotograph) with sub-cm resolution and cm accuracy, which were used to extract brittle and ductile structure orientation data. An extensive dataset of bedding measurements derived from the dense point cloud was used to compute a 3D implicit structural trend model to visualise along-strike changes of Devonian (Tabberabberan) folds at the Fold Stack locality and to estimate bulk shortening strain. This model and newly collected data indicate that first generation shallowly south-southwest plunging upright folds were gently refolded about a steeply plunging/subvertical fold axis during a Devonian low-strain north–south shortening event. This also led to the local tightening of first generation folds and possibly strike-slip movement along regional scale faults. In order to distinguish fractures associated with Devonian compression from those that formed during Cretaceous extension and later inversion, we compared the five fracture sets defined at Cape Liptrap to previously mapped joints and faults within the overlying sedimentary cover rocks of the Cretaceous Strzelecki Group (Gippsland Basin), which crop out nearby. An east-southeast trending fracture set that is not evident in the Strzelecki Group can be linked to the formation of Devonian folds. Additionally, hinge line traces extracted from the Fold Stack dataset are aligned parallel to a dominant fracture set within the overlying cover sediments. This suggests that basement structures (folds and coeval parallel faults) have an important influence on fault and joint orientations within Cretaceous cover rocks.  相似文献   

18.
Moore  J. P.  Walsh  J. J. 《Hydrogeology Journal》2021,29(8):2613-2632

Faults and fractures are a critical store and pathway for groundwater in Ireland’s limestone bedrock aquifers either directly as conductive structures or indirectly as the locus for the development of karst conduits. From the quantitative analysis of post-Devonian faults and fractures in a range of lithological sequences, this report describes the principal characteristics of Cenozoic strike-slip faults and joints, the youngest and the most intrinsically conductive fractures within Irish bedrock. Analysis of these structures in more than 120 outcrop, quarry, mine and cave locations in a range of bedrock types, provides a basis for: (1) definition of quantitative models for their depth dependency, lithological control, scaling systematics and links to preexisting structure, (2) conceptualisation of their impact on groundwater behaviour, and (3) estimation of groundwater flow parameters. The quantitative models provide constraints on fracture-controlled flow connectivity. Commonly observed decreases in sustainable flows and water strike interceptions with depth are attributed to increasing confinement and decreasing fracture connectivity and dissolution. Faults and joints have quite different end member geometries, with faults having strongly heterogeneous scale-independent properties and joints more often showing scale-dependent stratabound properties. The highest and most sustainable groundwater flows are usually associated with the complexity of structure of Cenozoic faults and of preexisting Carboniferous structures (on which conductive fracturing localises), enhanced by karstification and strongly jointed limestone bedrock particularly in the near-surface. Increased groundwater flow is promoted within bedded, rather than massive (i.e. unbedded), limestone sequences, characterised by bedding-parallel fractures and karst connecting otherwise subvertical fractures and subvertical wells.

  相似文献   

19.
Formation mechanism of large sinkhole collapses in Laibin,Guangxi, China   总被引:1,自引:1,他引:0  
On June 3, 2010, a series of karst sinkholes occurred at Jili village surrounded by Gui-Bei highway, Wu-Ping highway and Nan-Liu High-Speed Railway in Laibin, Guangxi, China. The straight-line distances from an large sinkhole pit, 85 m in diameter and 38 m in depth, to the above mainlines are 200, 600 and 500 m, respectively. Several investigation methods including geophysical technology, borehole and well drilling, groundwater elevation survey and hydrochemistry analysis of groundwater were used to study the formation mechanisms of these sinkholes. Based on the results, the spatial distribution of the Jili underground river was confirmed with a strike of SN along the middle Carboniferous limestone bedrock and the Quaternary deposits controlled the sinkhole formation. In addition, both historical sinkhole events and analysis of the groundwater–air pressure monitoring data installed in the underlying karst conduit system indicate that sinkholes in this area are more likely induced by extreme weather conditions within typical karst geological settings. Extreme weather conditions in the study area before the sinkhole collapses consisted of a year-long drought followed by continuous precipitation with a daily maximum precipitation of 442 mm between May 31 and June 1, 2010. Typical geological conditions include the Jili underground river overlain by the Quaternary overburden with thick clayey rubble. Especially in the recharge zone of the underground river, a stabilized shallow water table was formed in response to the extreme rainstorm because of the presence of the thick clayey rubble. When the underground conduit was flooded through the cave entrance on the surface, air blasting may have caused the cave roof collapse followed by formation of soil cavities and surface collapses. Borehole monitoring results of the groundwater–air pressure monitoring show that the potential karst sinkhole can pose threats to Shanbei village, the High-Speed Railway and the Wu-Ping highway. Local government needs to be aware of any early indicators of this geohazard so that devastating sinkholes can be prevented in the future. The results also suggest that groundwater–air pressure monitoring data collected both the Quaternary deposits and the bedrock karst system provide useful indicators for potential sinkhole collapses in similar karst areas where sinkholes usually occur during rainy season or karst groundwater level is always under the rockhead.  相似文献   

20.
In three field campaigns between the years 2000 and 2004 geophysical measurements were conducted in the Ejina Basin, NW China. Research work in the year 2004, which is described in this paper, was concentrated on the Gurinai Structure (101°25′E, 41°N) situated in the southeastern part of the Ejina Basin in transition to the dune fields of the Badain Jaran Shamo. On satellite images the Gurinai Structure can be identified by two almost 100 km long, subparallel, N–S-striking lineaments, which may indicate tectonic deformations of late Quaternary sediments. To get a coherent picture of the structure a geophysical survey employing three electromagnetic methods – magnetotellurics (MT), transient electromagnetics (TEM), and geoelectrics (DC) – has been conducted to map the subsurface resistivity at different depth scales.The geophysical data interpretation for shallow and intermediate depth down to a few hundred meters links the subsurface distribution of electric resistivity to geomorphological units known from field work in reference with satellite images. The westerly lineament of the Gurinai Structure coincides with a subvertical change in electric resistivity. Together with geomorphological indications from fieldwork and the analysis of elevation data (SRTM), a tectonic deformation of unconsolidated sediments along a fault with an extensional component is interpreted. In the central and eastern part of the Gurinai Structure a shallow resistive subsurface layer can be traced into the first dunes of the Badain Jaran Shamo. This resistive subsurface layer is linked to the presence of fresh water, indicating infiltration from the dune field. Also, in the eastern part of the Gurinai Structure a resistive, approximately ENE-striking feature can be seen at intermediate depth, which is interpreted as a crystalline basement ridge. Towards the southern margin of the Gurinai Structure a trough-shaped unit with low resistivities and a thickness of about 1 km is identified and can be explained by a sediment package saturated with fluids of high salinity or substantial amounts of clay. The strike direction of the structure can be connected to the regional pattern of tectonic faults and seismicity.The interpretation of electromagnetic data at various depth scales contributes to the general understanding of the Ejina Basin's buildup and tectonic setting in the vicinity of the Gurinai Structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号